INTEGRATION OF DIAGNOSTIC CAPABILITIES WITH ASP+POMDP PLANNING

Trisha Andrews, Olatide Omojaro
Dr. Mohan Sridharan
Texas Tech University, REU Site
July 8, 2013

DISCLAIMER
This material is based upon work supported by the National Science Foundation and the Department of Defense under Grant No. CNS-1263183. An opinions, findings, and conclusions or recommendation expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the Department of Defense.
OVERVIEW

- Motivation
- Statement of Objectives
- Related Work
- Proposed Tasks
- Current Status
- Summary
Motivation

• Robots work with incomplete domain knowledge
 • Missing or inaccurate information
 • Dynamic environment

• What if something unexpected occurs?

• Intelligent agents still possess a high level of dependency on humans.

• Inability of high-level collaboration between intelligent agents

• Need for intelligent agents to perform more efficiently, so as to incorporate them into more labor-intensive tasks

• Overall, improve current ASP+POMDP planning framework
Answer Set Programming

- Knowledge representation and reasoning
- Non-monotonic reasoning
 - Increasing knowledge base may decrease the number of logical conclusions
- Default reasoning
 - Does an animal fly?
- Reasoning about knowledge
- Belief revision
 - New observations might be inconsistent with older ones

(Gelfond & Kahl, 2013)
Defining kinds and abnormalities

If a book_name is a member of a category that is of a certain kind and that book_name is not believed to be abnormal or is not known to be not of that kind, then it is of the same kind as its super category.

\[
\text{kind_is}(\text{Bkn}, \text{useful}) \leftarrow \text{kind_is}(\text{Cat}, \text{useful}),
\]
\[
\quad \text{is_member}(\text{Bkn}, \text{Cat}),
\]
\[
\quad \text{not ab}(\text{nf}(\text{Bkn})),
\]
\[
\quad \text{not -kind_is}(\text{Bkn}, \text{useful}).
\]

If book_name might be a memoir, it is abnormal

\[
\text{ab}(\text{nf}(\text{Bkn})) \leftarrow \text{not -is_member}(\text{Bkn}, \text{memoir}).
\]

\[
\text{kind_is}(\text{Bkn}, \text{fun}) \leftarrow \text{kind_is}(\text{Cat}, \text{fun}),
\]
\[
\quad \text{is_member}(\text{Bkn}, \text{Cat}),
\]
\[
\quad \text{not ab}(\text{f}(\text{Bkn})),
\]
\[
\quad \text{not -kind_is}(\text{Bkn}, \text{fun}).
\]

Nancy Drew isn't fun

\[
\text{kind_is}(\text{nancy_drew}, \text{fun}).
\]

Initial state/information

\[
\text{bkn_is}(\text{cook_book}).
\]
\[
\text{bkn_is}(\text{dictionary}).
\]
\[
\text{bkn_is}(\text{harry_potter}).
\]
\[
\text{bkn_is}(\text{bossypants}).
\]
\[
\text{bkn_is}(\text{nancy_drew}).
\]
\[
\text{is_child}(\text{cook_book}).
\]
\[
\text{is_child}(\text{dictionary}).
\]
\[
\text{is_child}(\text{memoir}).
\]
\[
\text{is_child}(\text{fantasy}).
\]
\[
\text{is_child}(\text{mystery}).
\]
\[
\text{is_child}(\text{fiction}).
\]

DLV [build BEN/Dec 17 2012 gcc 4.6.1]

\[
\text{trisha@Penguin:~/Desktop/Internship}$
\]

julia_child, useful
webster, useful
harry_potter, fun
bossypants, useful
20 program rules
21
22 % Domain: a 3 room map, a box, a robot cleaner.
23
24 success :- goal(T).
25 :- not success.
26 occurs(A,T) | -occurs(A,T) :- not goal(T).
27
28 % Do not do more than one action per time step.
29 :- occurs(A1, T), occurs(A2, T), A1!=A2.
30
31 % Cleaning rules
32 holds(cleaned(R), T+1) :- occurs(clean(R), T),
33 holds(robot_in(R), T),
34 -holds(box_in(R), T).
35 holds(robot_in(R), T+1) :- occurs(move_robot(R), T).
36 holds(box_in(R2), T+1) :- occurs(move_box(R2), T),
37 holds(robot_in(R1), T),
38 holds(box_in(R1), T).
39 holds(robot_in(R2), T+1) :- occurs(move_box(R2), T),
40 holds(box_in(R1), T),
41 holds(robot_in(R1), T).
42 -holds(robot_in(R1), T) :- holds(robot_in(R2), T), R2!=R1.
43 -holds(box_in(R1), T) :- holds(box_in(R2), T), R2!=R1.
44
45 % Inertia
46 holds(F, T+1) :- holds(F, T), not -holds(F, T+1).
47 -holds(F, T+1) :- -holds(F, T), not holds(F, T+1).
48
49 % Initial state
50
51 holds(box_in(r1), 0).
52 holds(robot_in(r1), 0).
53 -holds(cleaned(R), 0).
54
55 goal(T) :- holds(cleaned(r1), T),
56 holds(cleaned(r2), T),
57 holds(cleaned(r3), T).
Partially Observable Markov Decision Process

- *Partial Observability* means the sensed data and measurements are not complete and noisy.

- *Markov Decision Process* in its own, uses the current state and control data to estimate the posterior distribution (the next state) over the possible states.

- POMDP is based off the Markov Decision Process.

- Ergo, *Partially Observable Markov Decision Process estimates a posterior distribution* (what happens next) over possible states, as the current state cannot be fully sensed directly.

(Probabilistic Robotics, 2006)
Why ASP+POMDP?

- ASP is good for knowledge representation and default reasoning, but has trouble probabilistically modeling uncertainty.

- POMDPs work effectively well in modeling uncertainties when planning
 - Capable of contingent planning – *able to handle unexpected outcomes*. (Yoon, Fern, Givan, 2007)
 - Capable of conformant planning – *able to achieve a goal regardless of uncertainty in the initial state or action state*. (Palacios, Geffner, 2009)

- Although, including common sense knowledge into POMDP can be a challenge.

- Use ASP to represent and reason about domain knowledge and POMDPs for sensing and information processing

 (Zhang, Sridharan, & Bao, 2012)
OBJECTIVES

• Create a more robust planning system

• Develop an ASP knowledge base that can handle unexpected events

• Estimate probabilistic values for a selection of causal factors for a state – using Partially Observable Markov Decision Processes (POMDPs)

• Integrate diagnostic layer with current ASP + POMDP system
 • Simulation level
 • Physical level (robots)
Current ASP+POMDP framework integrates probabilistic planning, non-monotonic logical reasoning, and human-robot interaction.
Proposed ASP+POMDP framework integrates logical and probabilistic diagnosis to the current framework.

- Shiqi Zhang’s work on programming & probabilistic planning on intelligent agents elucidates the architecture that integrates high-level logical inference with low-level probabilistic sequential decision-making.

- Chen’s work combines ASP with NLP for task planning in service robots.

- Sungwook’s work on probabilistic plannings sheds light on the POMDP’s capabilities of Contingent & Conformant planning.
With respect to **High Through-Put Phenotyping**...

- Peter Biber’s works on autonomous agricultural robots, births ‘Bonibot‘ that performs phenotyping tasks on mazie crops in a field on different days. He gave a detailed insight on the robust and accurate system of algorithms & sensors.

- Ulrich Weiss’ work on detection & mapping for agricultural robots explains the type and effectiveness of sensors used, based on GPS localization & 3D environment sensing.

MEMs based Light detection & Range sensor (circled) on BoniBot for 3D visualization of the environment.

(Biber, Weiss, Dorna, & Albert, 2012)
PROPOSED TASKS

• Develop diagnostic rules and methods
 • Simulation with ASP only

• Estimate probabilistic values for a selection of causal factors for a state – using POMDPs

• Interface the logical diagnosis layer with the probabilistic diagnosis layer to improve reasoning in intelligent agents

• Simulate using both ASP+POMDP

• Implement overall process on the physical robots

• Set the platform for examining the possible incorporation of the ASP+POMDP Diagnosis & Planning framework into agricultural robotics – the High Through-Put Phenotyping prototype...
 • Implements a possibly effective & optimal method of localizing & mapping cotton plants on a cotton field, to an accuracy of 30cm or less
 • Navigates to a specified cotton plant from any arbitrary position on the cotton field
CURRENT STATUS

• Learning about logic programming

• Working with simple ASP programs

• Understanding Bayes Filter’s implementation into the localization of a mobile robot – Markov_localization
 • In robotics, the Bayes Filter algorithm recursively calculates the probabilities of a sequence of beliefs sensed from measurement & control data, so a robot can infer its position & orientation.
 • The Markov_localization is just a straightforward application of the Bayes Filter to localization problems.

(Probabilistic Robotics, 2006)
Current Status

• Understanding the problem posed by **mapping** for mobile robots – **SLAM**
 • *Robot builds a map of the environment, and simultaneously localizes itself, relative to the built map.*

• Understanding technical functionalities and implementation techniques of state-of-the-art sensors for mobile robots - 3D sensors

• Becoming familiar with the Robot Operating System (**ROS**), which is used to interface with the robot (**Erratic**).
Current Status

• Created an active map of the third floor in the Computer Building at Texas Tech, Lubbock, to simulate a strict indoor domain that’s yet stochastic.

• A series of test runs to observe *Erratic* using POMDP to navigate around obstacles and arrive at a goal set on the map – simulates a mobile robot on an agricultural field navigating to specific plants.
• Research will expand the usability of the current ASP+POMDP project by implementing a diagnosis extension.

• System complete with diagnostic capabilities will be more tolerant of the changing and unexpected environments which are characteristic of real-world scenarios.

QUESTIONS?

Thank you for listening!