Optimal task scheduling

Oliver Sinnen

o.sinnen@auckland.ac.nz
www.ece.auckland.ac.nz/~sinnen/
Task scheduling

2 processors

+

task graph

Scheduling problem:
Spatial and temporal assignment of DAG onto processors
Optimal task scheduling

Goal: find schedule with shortest schedule length (makespan)

=> NP-hard problem

=> usually scheduling heuristics

 ● List scheduling, clustering,
 ● Genetic algorithms, etc.

Optimal task scheduling

Goal: find schedule with shortest schedule length (makespan)

=> NP-hard problem

=> usually scheduling heuristics

- List scheduling, clustering,
- Genetic algorithms, etc.

Here: Optimal scheduling algorithm

- based on A*
- for small graphs (still NP-hard)
Content

• Scheduling model
• A* principle
• A* for scheduling
• \(f\) function
• Pruning techniques
• Results
• Outlook
Scheduling model
Graph representation of program

Example:

task graph (DAG)

<table>
<thead>
<tr>
<th>Node</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a = 1</td>
</tr>
<tr>
<td>B</td>
<td>b = a+1</td>
</tr>
<tr>
<td>C</td>
<td>c = a*a</td>
</tr>
<tr>
<td>D</td>
<td>d = b+c</td>
</tr>
</tbody>
</table>

- Graph representation of program
- Input of task scheduling

Directed acyclic graph (DAG)

- Node (n): sub-task
- Edge (e): dependence (communication)
- Weight: computation $w(n)$ or communication time $c(e)$
Scheduling constraints

Schedule definitions: DAG: $G(V,E,w,c)$, node n, edge e

- start time: $t_s(n)$; finish time: $t_f(n) = t_s(n) + w(n)$
- processor assignment: $proc(n)$

Constraints:

- Processor constraint:

 $proc(n_i) = proc(n_j) \implies t_s(n_i) \geq t_f(n_j)$ or $t_s(n_j) \geq t_f(n_i)$

- Precedence constraint:

 for all edges e_{ji} of E (from n_j to n_i)

 $t_s(n_i) \geq t_f(n_j) + c(e_{ji})$ if $proc(n_i) \neq proc(n_j)$

 $t_s(n_i) \geq t_f(n_j)$ if $proc(n_i) = proc(n_j)$
Classic system model

Properties:

- Dedicated system
- Dedicated processors
- Zero-cost local communication
- Communication subsystem
- Concurrent communication
- Fully connected

System model

e.g. 8 processors
A*
A*

Best first state space search algorithm

Example
- Finding shortest route Lyon to Paris
- Map modelled as graph
 - Nodes: towns
 - Edges: links between towns; weights: km travelled
A

Best first state space search algorithm

Example

- Finding shortest route Lyon to Paris
- Map modelled as graph
 - Nodes: towns
 - Edges: links between towns; weights: km travelled
- Estimated final distance \(f \):
 - Distance already travelled + direct line to Paris
A*

Best first state space search algorithm

Example

- Finding shortest route Lyon to Paris
- Map modelled as graph
 - Nodes: towns
 - Edges: links between towns; weights: km travelled
- Estimated final distance f:
 - Distance already travelled + direct line to Paris

[Diagram showing a graph with distances and f values calculated for various nodes, including Paris and Lyon.]
A* -- principle

Best first state space search algorithm

- State s represents partial solution to problem
- New states created by expanding state s with all possible choices
- Only most promising state is expanded at a time – cost function $f(s)$
- Cost function $f(s)$
 - underestimate of minimum cost $f^*(s)$ of final solution – the tighter the better
- If $f^*(s) \geq f(s)$ for any s (i.e. $f(s)$ is admissible)
 - then final solution is optimal
A* -- algorithm

- OPEN: priority list of unexamined states
- CLOSED: set of already examined states

Init
OPEN <= initial state
CLOSED <= Ø

Loop
Pop best state s from OPEN (with lowest $f(s)$)
Test if s is goal state
 If yes, finished
Expand s => create new states
 Calculate f for states
 Insert in OPEN
Insert s in CLOSED
A* for task scheduling
A* for task scheduling

- State => partial schedule
- Cost function $f(s)$ => underestimate of schedule length
- State is expanded by scheduling one more node

State tree
A* for task scheduling

Like list scheduling:

- At each step choice between all free nodes, *free(s)*
- On all p processors

\Rightarrow *free(s) x p* new states created
$f(s)$ function
Cost function $f(s)$ principle

Principle

- Underestimate of length of final schedule
 - based on the current partial schedule of s
- Gauge minimum schedule length of any schedule based on current partial schedule
 - Use node levels, especially bottom level
Cost function $f(s)$

Previously:

- Finish time of latest node to finish: $t_f(n_{max})$
 - i.e. length of current partial schedule
- Plus maximum bottom level of any of its successors

$bl_w(n)$ bottom level: longest path from n to exit

- path length is sum of its node weights
Cost function $f(s)$

Previously:

- Finish time of latest node to finish: $t_f(n_{max})$
 - i.e. length of current partial schedule
- Plus maximum bottom level of any of its successors

$$f_{KA}(s) = t_f(n_{max}) + \max_{n \in \text{succ}(n_{max})} \{ bl_w(n) \}$$

$bl_w(n)$ bottom level: longest path from n to exit
- path length is sum of its node weights
Cost function $f(s)$

Previously:

- Finish time of latest node to finish: $t_f(n_{\text{max}})$
 - i.e. length of current partial schedule
- Plus maximum bottom level of any of its successors

\[
f_{KA}(s) = t_f(n_{\text{max}}) + \max_{n \in \text{succ}(n_{\text{max}})} \{bl_w(n)\}
\]

\[
= t_s(n_{\text{max}}) + bl_w(n_{\text{max}})
\]

$bl_w(n)$ *bottom level*: longest path from n to exit

- path length is sum of its node weights
Proposed cost function $f(s)$

Part 1:
- Maximum of start time and bottom level of any node
 - Better, since last node to finish can have small bottom level
 - Can be calculated incrementally, i.e. $O(1)$ for each state

$$f_1(s) = \max_{n \in \text{partial sched. of } s} \left\{ t_s(n) + bl_w(n) \right\}$$
Proposed cost function $f(s)$

Part 2:

Schedule length is bounded by total computation load plus total idle time over number of processors p

- $idle(s)$: total idle time of partial schedule of s

$$f_2(s) = (idle(s) + \sum_{n \in V} w(n))/p$$
Proposed cost function $f(s)$

Part 3:

- Part 1 only considers already scheduled nodes
- Now, additionally consider all *free* nodes
- Minimal Data Ready Time
 - Earliest time a node can start on any processor

\[
t_{dr}(n) = \min_{P \in P} \left\{ t_{dr}(n, P) \right\}
\]
Proposed cost function $f(s)$

Part 3:
- Part 1 only considers already scheduled nodes
- Now, additionally consider all *free* nodes
- Minimal Data Ready Time
 - Earliest time a node can start on any processor

 $$t_{dr}(n) = \min_{P \in P} \{ t_{dr}(n, P) \}$$

$$f_3(s) = \max_{n \in \text{free}(s)} \{ t_{dr}(n) + bl_w(n) \}$$
Proposed cost function $f(s)$

Proposed cost function:

- Maximum of all three parts

\[
f(s) = \max \{ f_1(s), f_2(s), f_3(s) \}
\]

\[
f_1(s) = \max_{n \in \text{partial sched. of } s} \{ t_s(n) + bl_w(n) \}
\]

\[
f_2(s) = (\text{idle}(s) + \sum_{n \in V} w(n)) / p
\]

\[
f_3(s) = \max_{n \in \text{free}(s)} \{ t_{dr}(n) + bl_w(n) \}
\]
Pruning techniques
Detecting duplicates

Pruning of unpromising subtrees

• Duplicate states
 – Identical partial schedule
 – Only one needs to be expanded
• Automatically detected when inserting into OPEN and comparing with CLOSED

=> Importance of CLOSED set
Processor normalisation

Normalising schedules

- Condition: homogeneous processors

Principle

- Order nodes, e.g., $a,b,c,d \ldots$
- Name processor on which first node, a, is schedule P_1, name processor of b P_2 (unless on same processor as a) and so on

\Rightarrow leads to more duplicates
Node equivalence

If nodes are equivalent, it is enough to only consider (any) one scheduling order

- Implemented with virtual edges
- Reduces number of free nodes

\Rightarrow branching factor

Node equivalence:
- same node weights
- same predecessors and successors
- same in/out edge weights
Other pruning/optimisation

- Use heuristic (list scheduling) to find upper bound on schedule length
 - All states with higher $f(s)$ value can be discarded
 - Would never be expanded
 => saves memory and makes OPEN list faster
- Partial expansion
 - Only expand a state until a new state with same $f(s)$ is found
 - One node at a time, not all free nodes
 => go deep as fast as possible
 - Good if $f(s) = f_{opt}(s)$
Experiments
Experiments

- A* scheduling implemented in Java
- Workload
 - Large set of task graphs
 - 5-40 nodes
 - Different structures
 - Different weights
- Scheduled on 2, 4 and 8 processors
- Two minute time limit => unfinished not included in results

Remember, all produced schedules are optimal
- observing runtime of scheduling algorithm, not schedule length
 - normalised as number of states
 - actual runtime ranged from seconds to minutes
Results

- Proposed $f(s)$ function dramatically more efficient
Results

- New pruning technique -- processor normalisation -- significantly reduces number of states.
Results

- Pruning technique – node equivalence -- significantly reduces number of states
Results

- Runtime graph structure dependent!
Results

- Importance of CLOSED list
Results

- Improvements can occasionally lead to more states
Outlook

• With contention
 – One port model
• Round costs (accepting cost errors) to make more nodes identical
 – Approximation ratio
• Only clustering
 – Using properties of clustering
 – e.g. optimal linear clustering exists for coarse grain graphs
• Node duplication
Conclusions

A* based optimal task scheduling algorithm

• Improved previous approach
 – Dramatically improved $f(s)$ cost function
 – Introduced new efficient pruning techniques

• New insights from experimental results
 – Importance of task graph structure
 • Branching factor

Suitable for small task graphs

• For time crucial applications
• To evaluate scheduling algorithms
• For optimally scheduling kernels of iterative computations
Results

- Evaluation of heuristics possible – here List Scheduling