Aim: To understand and be able to apply the basic principles of thermodynamics, fluid mechanics and heat transfer.

Lecturers: Dr Rajnish Sharma (course organiser) Room 1.1005 r.sharma@auckland.ac.nz
 Prof Richard Flay Room 1.906 r.flay@auckland.ac.nz
 Assoc Prof Joe Deans Room 1.905 j.deans@auckland.ac.nz

Tutors: Dr Rajnish Sharma (RS) Prof Richard Flay (RF) Assoc Prof Joe Deans (JD)
 Assoc Prof Robert Raine (RR) Room 1.902 r.raine@auckland.ac.nz
 Mr Alexander Blakeley (AB) abla089@aucklanduni.ac.nz

Assessment: Final examination 60% + Coursework 39%. + Completion of online course survey 1%
In addition, you must obtain at least 40% in the final examination to pass.
Coursework is: 30% tests (3 tests x 10% each), and 9% labs (3 labs x 3% each).

Examination: Closed Book (and also for tests)

Timetable:
Lectures: Mondays 11 am MLT 1 (303-G23)
 Wednesdays 2 pm Lib B15 (109-B15)
 Thursdays 12 pm OGGB 3 (260-092)

Tutorials: Fridays 4pm

Labs: 3 labs, 5 sessions in each week as follows (refer SSO for your group and time):

Lab 1: Energy Balance & Heat Transfer Wks 3, 4, 5 (Room 3.308)
Lab 2: Momentum of an Air Jet Wks 7, 8, 9 (Room 3.209)
Lab 3: Flow Measurement Wks 10, 11, 12 (Room 3.209)

YOU MUST ATTEND ALL 3 LABS AT THE TIMES ADVISED FOR YOUR GROUP. IF YOU MISS A LAB, YOU WILL NOT BE ALLOWED TO ATTEND ANOTHER SESSION, except under special circumstances. The first lab starts in week 3 and is in room 3.308.

Tests: There will be three 50-minute tests during the tutorial hour in Weeks 4, 8, and 12. Each test will cover only the material from the previous 3 weeks, and will be worth 10%.

Prescribed Textbook: Fundamentals of Thermal-Fluid Sciences 3rd Edn
By Y A Cengel, R H Turner & J M Cimbala, (McGraw Hill) - Available at both the UBS.

IMPORTANT: It will be difficult to pass this course unless you own this text!
Philosophy:

The emphasis in this paper is on

- basic principles and their application to simple, ideal and real systems; and
- integration of thermodynamics, fluids and heat transfer into useful systems.

What you need to know:

To pass this paper you need to learn to solve basic problems in thermodynamics, heat transfer and fluid dynamics. This means that you must be able to:

- understand all the definitions and the conservation laws (mass, momentum and energy)
- find properties of substances, and determine their phase
- recognise when you can make approximations
- decide correctly which equations apply to particular processes
- describe your solutions clearly and unambiguously.

Note: This paper introduces many new concepts which you must understand, so the material does not lend itself to last-minute cramming for exams. Therefore, you are expected to:

1. Attend the tutorials; and
2. Devote at least 6 hours to this course each week, in addition to the 4 contact hours. You may spend such time towards reading material and examples from the text and then attempting problems from tutorial sheets and the text.

Outline:

Thermodynamics [JD] (Weeks 1 - 4) Ch 1 – 6 Cengel, Turner & Cimbala

1. Introduction and Overview
2. Basic Concepts of Thermodynamics
3. Properties of Pure Substances
4. Energy Transfer by Heat, Work and Mass
5. The First Law of Thermodynamics

Fluid Mechanics [RGF] (Weeks 5 - 8) Ch 9-15 Cengel, Turner & Cimbala

6. Basic Concepts of Fluid Mechanics
7. Fluid Statics
8. Bernoulli, Energy and Momentum Equations
9. Flow in Pipes
10. Flow over Bodies: Drag and Lift

Heat Transfer [RNS] (Weeks 9 - 12) Ch 16, 17, 19, 22 Cengel, Turner & Cimbala

11. Mechanisms of Heat Transfer
12. Conduction
13. Convection
14. Heat Exchangers

Handouts:

Lectures:

During each lecture week, you will be provided with a 1 to 2 page handout containing keywords and textbook section numbers for your reading. Lecture notes containing blanked-out sections will be posted on Cecil that you may print for use during lectures. Where possible, powerpoint presentations will be made available via Cecil.

Tutorials:

A tutorial sheet will be handed out each week and uploaded onto Cecil as well.

Laboratories:

Lab handouts will be made available from weeks 3, 7, and 9 for the 3 labs respectively; and uploaded onto Cecil as well.