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4.4 Isotropic Hyperelasticity 
 
 
Attention is now restricted to the case of isotropic hyperelastic materials. 
 
 
4.4.1 Constitutive Equations in Material Form 
 
Consider the general hyperelastic constitutive law 4.2.5: 
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From §4.3.2, the strain energy for an isotropic hyperelastic material must be a function of 
the principal invariants of C: 
 

( ))(III),(II),(I CCC CCCWW =                              (4.4.2) 
 

Then, using the relations 1.11.33 for the derivatives of the invariants (taking into account 
that C is symmetric), 
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Further, the 1−C  term can be replaced by a 2C  term using the Cayley-Hamilton theorem.  
In summary then, expressing S in the form 4.3.9 (and 4.3.12),  
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Constitutive Equation in material description   (4.4.4) 
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4.4.2 Constitutive Equations in Spatial Form 
 
As mentioned at the end of §4.3.2, the invariants of C and b are the same and the strain 
energy can be expressed in terms of the invariants of b, ( ))(III),(II),(I bbb bbbWW = .  
Then  
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and the coefficients ii βα ,  are the same as in 4.4.4 
 
Taking the expression for C∂∂ /W  in 4.4.4, pre-contracting with F, post-contracting with 

TF , using the definitions TT , FFbFFC == , and (pre- or post-) contracting the above 
similar expression for b∂∂ /W  in terms of the invariants of b with b, one finds that  
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Therefore, using T1 −−= σFFS J , the constitutive equation in the material formulation, 

CCS ∂∂= /)(2 W , can be transformed into a spatial constitutive equation: 
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It should be emphasised that this expression, unlike the relation CCS ∂∂= /)(2 W , holds 
only for isotropic materials. 
 
Differentiating the strain energy with respect to b (exactly as in Eqn. 4.4.3) and pre- or 
post-contracting the result with b12 −J  then leads to  
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Constitutive Equation in spatial description   (4.4.8) 
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Principal Directions of the Cauchy Stress and Left Cauchy-Green Tensor 
 
Recall that the eigenvalues of the right stretch tensor U are the principal stretches iλ , and 
that the eigenvalues of the right Cauchy-Green tensor C and the left Cauchy-Green tensor 
b are the squares of the principal stretches, 2

iλ  (the eigenvectors of b are those of C 
rotated with the rotation tensor R).  Taking n̂  to be an eigenvector of b and 2λ  the 
corresponding eigenvalue, and using the constitutive equation 2

210 bbIσ ααα ++= , one 
has 
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Thus nnσ ˆˆ σ=  where σ  is an eigenvalue of σ , the principal stress, given by term inside 
the brackets, and so the eigenvectors, or principal directions, of the Cauchy stress and b 
coincide. 
 
If one takes a deformation for which 02313 == bb , it follows from 4.4.8 that, for arbitrary 
coefficient 1−β , one also has 02313 == σσ .  The tensors b and σ  are coaxial, that is, 

σbbσ = .  From this relation, one finds that one must have 
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This relation holds for all compressible isotropic hyperelastic materials under the stress 
and deformation conditions stated, regardless of the particular constitutive relation. 
 
 
4.4.3 Constitutive Equations in terms of the Stretches 
 
The derivatives of the stretch with respect to b are given in §2.3.3.  Introducing the 
principal stresses, and noting that iii nnb ˆˆ 2λ=  (no sum over the i) it follows then that (no 
sum over the i in what follows) 
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or 
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Similarly, for the Piola-Kirchhoff stresses, one has 
 

ii
i

i
i

WSWP
λλλ ∂
∂

=
∂
∂

=
1,                                (4.4.13) 

 
 
Example (Uniaxial Stretch) 
 
Consider a specimen of isotropic hyperelastic material under a uniaxial tension 11σ , with 
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Since σ  and b are coaxial (see 4.4.9), the principal stresses are, from 4.4.8, 
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Subtracting the second of these equations from the first leads to 
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Subtracting the third from the second leads to 
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which implies that 32 λλ =  (the terms inside the second bracket can also be zero, but not 
if 0,0 11 ≤> −ββ , as is usually the case). 
 
The material parameters 110 ,, −βββ  can be obtained from such a test by measuring 

111 , λσ  and 2λ .  On the other hand, if the constitutive relation, that is, the parameters, are 
known, then one can obtain the stretches by specifying the uniaxial stress. 

 ■  
 
 
4.4.4 Incompressible Materials 
 
When the material is incompressible, then 
 

1IIIIIIdet ==== bCFJ                                  (4.4.18) 
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and the strain energy function is only dependent on two invariants: 
 

( ) ( )bbCC II,III,I WWW == ,                             (4.4.19) 
 
and the constitutive equations are the same as those given earlier for the compressible 
material, with 1,1III 1 == −Jb .  However, the derivative CIII/ ∂∂W  is an unknown and in 
particular it is unknown at 1III =C . 
 
Returning to the more general constitutive equations for an incompressible material, 
4.2.36, 4.2.39, one has 
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Carrying out the differentiation as before, one now has, directly from these equations, 
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Constitutive Equation for an Isotropic Incompressible 
Hyperelastic Material (Material Form)  (4.4.21) 

and 
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Constitutive Equation for an Isotropic Incompressible 
Hyperelastic Material (Spatial Form)  (4.4.22) 

 
Comparing these equations with the more general compressible equations: in the S 
equation, 4.4.4, the hydrostatic pressure is equivalent to CIII/2 ∂∂− W  (with )1III =C ; in 
the σ  equation, 4.4.8, it is [ ]bbb II/IIIII/2 ∂∂+∂∂−= WWp . 
 
Similarly, the equations can be written in terms of the principal stretches and principal 
stresses (the incompressibility constraint is now 1321 =λλλ ): 
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Example (Strip Biaxial Tension) 
 
Consider an incompressible isotropic hyperelastic material which is stretched in the 1e  
direction but its dimensions in the 2e  direction is held constant, with 
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With 03 =σ ,one finds that 
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and the stresses are 
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■  
 
 
Example (Biaxial Stretch) 
 
Consider the biaxial stretch of a thin sheet of incompressible isotropic hyperelastic 
material, with 
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From 4.4.18: 
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Taking the stretches to be in-plane, with the larger faces stress-free, one has 03 =σ  so 
that, with 213 /1 λλλ = , one can solve for p, 
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and the stresses in the sheet are 
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If the strain energy is given in terms of the stretches, one would use 4.4.23 rather than 
4.4.22. 
 
The PK1 stresses, T−= σFP J , are, directly from these equations, 
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The total forces acting on the lateral surfaces are then, from 3.5.4, 
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(4.4.31) 
where 0A  is the area in the reference configuration. 
 
The material parameters 11 , −αα  can be determined from such a test by measuring the 
applied forces.  This is helped by controlling the stretches 1λ  and 2λ  in such a way that 
the invariant bI  is held constant, or the invariant bII  is held constant. 
 
When the two applied forces are equal, 21 FF = , one finds that 
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The term inside the first brackets gives the expected symmetric solution 21 λλ = .  
However, the term inside the second brackets can also be zero for 21 λλ ≠ , but this will 
only occur for fairly large stretches for typical values of the material parameters.  The 
symmetric equal-stretch solution holds up until this happens.  For example, for the typical 
value 1.0/ 11 =− − αα , the second term becomes zero when 17.321 ≈= λλ .  The 
symmetric solution is unstable, in the sense that the forces must be precisely equal for it 
to hold.  If there is even the slightest imbalance between 1F  and 2F , then  21 λλ ≈  up to 
about a value of 3.17 but then the near-square will begin to deform into a rectangle, with 
the response now keeping close to the asymmetric solution.  The long side of the 
rectangle will be along the direction of the slightly larger force and will keep lengthening 
until the stretch in the other direction returns back to 1=λ . 
 
This large strain problem differs from the problems of linear elasticity, which have unique 
solutions. 

■  
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Example (Simple Shear) 
 
The case of simple shear was discussed in detail in §2.2.6.  In the equations following 
2.2.40, let  
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Then the principal material directions can be expressed as 
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With RNn = , the principal spatial directions are (see figure 4.4.1 below) 
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The principal stretches are  
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and the principal stresses are, from 4.4.18, 
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Figure 4.4.1: principal directions for pure shear 
 
The strain energy here is a function of the invariants of b, which are 
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In the original Cartesian coordinates, the stresses are 
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It follows that (this is a universal relation, independent of the constitutive relation) 
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The fact that and 2211 σσ ≠  is called the Poynting effect.  The stress are now 
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The proportionality factor between the shear stress and the shear strain measure k is called 
the shear modulus: 
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In the case of plane stress, the hydrostatic pressure p can be evaluated, and one finds that 
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The stresses acting on the deformed material are shown in Fig. 4.4.2.  The unit normal e 
to the sloping surface (on the right hand side) is  
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and, from Cauchy’s law, the traction acting on that surface is  
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The normal and shear traction are then (using the Poynting effect) 
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(4.4.46) 
 
and tend to 11σ  and 12σ  as 0→k .  
 

 
 

Figure 4.4.2: stresses acting on the material in simple shear 
 
It is clear then that the pure shear of material discussed here can only occur when normal 
stresses are applied to the faces.  There is of course no volume change for an 
incompressible material; for a compressible material, however, there will in general be a 
volume change unless normal stresses are applied, a phenomenon known as the Kelvin 
effect. 

■  
 
See also the shear problem using convected coordinates discussed in the Appendix to this 
Chapter, §4.A.3. 
 
 
4.4.5 Series Expansion of the Strain Energy Function 
 
It is sometimes helpful when seeking specific constitutive laws for isotropic hyperelastic 
materials to expand the strain energy function into an infinite power series of the form 
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In the undeformed configuration, 1III,3III === CCC , and the strain energy is zero.  
For incompressible materials, this reads as 
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The series can be written in terms of the principal stretches by noting that 
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Next are considered some particular forms of the strain energy function. 
 
 
4.4.6 Incompressible Material Models 
 
First, models of isotropic hyperelastic incompressible materials are examined. 
 
The Ogden Model (Incompressible) 
 
The strain energy for the Ogden model is defined to be 
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where the ii αμ ,  are experimentally determined material constants.  Note that this model 
does not include terms involving the products of different stretches, which appear in the 
most general power series 4.4.48.  However, the Ogden model allows for fractional 
powers of iα .  Only three terms in the series are usually needed to correlate the model 
with experimental data of incompressible rubber.  Typical values  are  
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The Mooney-Rivlin Model (Incompressible) 
 
The Mooney-Rivlin model, applicable to incompressible materials, is 
 

( ) ( )3II3I 21 −+−= CC ccW                                   (4.4.51) 
 
And, from 4.4.22, the stresses are then 
 

Ibbσ pcc −−= −1
21 22                                      (4.4.52) 

 
From the simple shear example discussed in §4.4.4, the shear modulus for the Mooney-
Rivlin material is ( )212 cc + , implying that the shear stress to shear strain measure k is 
linear.  
 
The Mooney-Rivlin model is often used to model rubber-like materials and the numerical 
value of 2c  is usually much smaller than 1c . 
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Note that the Mooney-Rivlin model can be viewed as a special case of the Ogden model, 
since setting 2,2,2 21 −=== ααn  in that 4.4.50, and using the incompressibility 
constraint 12

3
2
2

2
1 =λλλ  gives 
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              (4.4.53) 

 
 
The Neo-Hookean Model (Incompressible) 
 
The Neo-Hookean is a special case of the Mooney-Rivlin model, wherein 02 =c , giving 
 

( )3I1 −= CcW                                                (4.4.54) 
 
It is useful as a model of non-linear elasticity within the small-strain range. 
 
The Varga Model (Incompressible) 
 
The Varga model is another special case of the Ogden model: 
 

)3( 3211 −++= λλλcW                                  (4.4.55) 
 
 
The Yeoh Model (Incompressible) 
 
The Yeoh model was motivated by the problem of predicting the behaviour of rubbers 
containing reinforcing fillers such as carbon black, for which the Mooney-Rivlin model 
does not succeed too well.  The strain energy here takes the form 
 

3
3

2
21 )3I()3I()3I( −+−+−= CCC cccW                              (4.4.56) 

 
As usual, 0)( =IW  in the reference configuration and the strain energy is a convex 
function, increasing monotonically with CI  (and attains a minimum in the reference 
configuration, so that 0I/ =∂∂ CW  must contain no real roots, which places restrictions 
on the values that the constants 321 ,, ccc  can take). 
 
The Arruda-Boyce Model (Incompressible) 
 
The Arruda-Boyce model is based on a proposed molecular network structure to a 
material, and the strain energy is 
 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+−+−= L27I

1050
119I

20
11I

2
1 3

2
2

CCC nn
W μ               (4.4.57) 
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The two parameters are μ , the shear modulus, and n, the number of segments in a 
polymer chain. 
 
 
4.4.7 Compressible Material Models 
 
 
The Mooney-Rivlin Model (Compressible) 
 
The compressible Mooney-Rivlin model reads as 
 

( ) ( )3II3Iln)(2)1( 2121
2 −+−++−−= bb ccJccJcW            (4.4.58) 

 
The stresses are then, from 4.4.8, with bIII=J , 
 

( )[ ] ( )[ ]{ }2
22121 tr)(4IIIIII

III
2 bbbIσ bb

b

cccccc −+++−−=        (4.4.59) 

 
 
The Neo-Hookean Model (Compressible) 
 
Neo-Hookean models are characterised by their dependence on the first (as in the 
incompressible case) and third invariants, but not on the second invariant.  There are quite 
a number of Neo-Hookean models available, for example (the last term here is the 
incompressible Neo-Hookean term) 
 

( )3I
2
1ln)(ln

2
2 −+−= bμμλ JJW                               (4.4.60) 

 
With corresponding stresses 
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                                 (4.4.61) 

 
The μλ,  of this compressible Neo-Hookean model are the classical Lamé constants, 
which can be seen by particularising the constitutive equation to the small strain range.   
 
Another Neo-Hookean model is 
 

( ) ( )3I
2
1ln

2
1 3/22 −+= −

bJJW μκ                            (4.4.62) 

 
with corresponding stresses 
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The Blatz and Ko Model (Compressible) 
 
Blatz and Ko proposed a compressible model based on a combination of theoretical 
arguments and experimental work on foamed materials: 
 

( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+⎥

⎦

⎤
⎢
⎣

⎡
−+−= +− 1III13

III
II

2
11III13I

2
ββ

β
μ

β
μ

b
b

b
bb ffW    (4.4.64) 

 
where 
 

ν
νβ

21−
=                                                     (4.4.65) 

 
and νμ ,  denote the shear modulus and Poisson’s ratio, and ]1,0[∈f  is an interpolation 
parameter.  When the material is incompressible, 1III =b , and the model reduces to the 
Mooney-Rivlin model.  Also, by letting 1=f , and replacing bIII  with 2J , the Blatz and 
Ko model reduces to the Neo-Hookean model 
 

( ) ( )11
2

3I
2

2 −+−= − β

β
μμ JW b                              (4.4.66) 

 
 
4.4.8 Problems 
 

 
1. Evaluate the PK2 stress for the Mooney-Rivlin material (incompressible) 
 


