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2.2 Deformation and Strain 
 
A number of useful ways of describing and quantifying the deformation of a material are 
discussed in this section.   
 
Attention is restricted to the reference and current configurations.  No consideration is 
given to the particular sequence by which the current configuration is reached from the 
reference configuration and so the deformation can be considered to be independent of 
time.  In what follows, particles in the reference configuration will often be termed 
“undeformed” and those in the current configuration “deformed”.  
 
In a change from Chapter 1, lower case letters will now be reserved for both vector- and 
tensor- functions of the spatial coordinates x, whereas upper-case letters will be reserved 
for functions of material coordinates X.  There will be exceptions to this, but it should be 
clear from the context what is implied. 
 
 
2.2.1 The Deformation Gradient 
 
The deformation gradient F is the fundamental measure of deformation in continuum 
mechanics.  It is the second order tensor which maps line elements in the reference 
configuration into line elements (consisting of the same material particles) in the current 
configuration. 
 
Consider a line element Xd  emanating from position X in the reference configuration 
which becomes xd  in the current configuration, Fig. 2.2.1.  Then, using 2.1.3, 
 

   
  Xχ

XχXXχx

d

dd

Grad


                 (2.2.1) 

 
A capital G is used on “Grad” to emphasise that this is a gradient with respect to the 
material coordinates1, the material gradient, Xχ  / . 
 

 
 

Figure 2.2.1: the Deformation Gradient acting on a line element 
 
 

                                                 
1 one can have material gradients and spatial gradients of material or spatial fields – see later 
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The motion vector-function χ  in 2.1.3, 2.2.1, is a function of the variable X, but it is 

customary to denote this simply by x, the value of χ  at X, i.e.  t,Xxx  , so that 
 

J

i
iJ X

x
F








 ,Grad x
X

x
F      Deformation Gradient          (2.2.2) 

 
with 
 

JiJi dXFdxdd  ,XFx      action of F                             (2.2.3) 

 
Lower case indices are used in the index notation to denote quantities associated with the 
spatial basis  ie  whereas upper case indices are used for quantities associated with the 

material basis  IE . 
 
Note that  
 

X
X

x
x dd




  

 
is a differential quantity and this expression has some error associated with it; the error 
(due to terms of order 2)( Xd  and higher, neglected from a Taylor series) tends to zero as 
the differential 0Xd .  The deformation gradient (whose components are finite) thus 
characterises the deformation in the neighbourhood of a point X, mapping infinitesimal 
line elements Xd  emanating from X in the reference configuration to the infinitesimal 
line elements xd  emanating from x in the current configuration, Fig. 2.2.2. 
 

 
 

Figure 2.2.2: deformation of a material particle 
 
Example 
 
Consider the cube of material with sides of unit length illustrated by dotted lines in Fig. 
2.2.3.  It is deformed into the rectangular prism illustrated (this could be achieved, for 
example, by a continuous rotation and stretching motion).  The material and spatial 
coordinate axes are coincident.  The material description of the deformation is 

 

2 1 1 2 3 3

1 1
( ) 6

2 3
X X X    x χ X e e e  

 
and the spatial description is 

before after 
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Figure 2.2.3: a deforming cube 
 
Then 
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Once F is known, the position of any element can be determined.  For example, taking a 
line element T]0,0,[dad X , T]0,2/,0[ dadd  XFx . 

■  
 
Homogeneous Deformations 
 
A homogeneous deformation is one where the deformation gradient is uniform, i.e. 
independent of the coordinates, and the associated motion is termed affine.  Every part of 
the material deforms as the whole does, and straight parallel lines in the reference 
configuration map to straight parallel lines in the current configuration, as in the above 
example.  Most examples to be considered in what follows will be of homogeneous 
deformations; this keeps the algebra to a minimum, but homogeneous deformation 
analysis is very useful in itself since most of the basic experimental testing of materials, 
e.g. the uniaxial tensile test, involve homogeneous deformations. 
 
Rigid Body Rotations and Translations 
 
One can add a constant vector c to the motion, cxx  , without changing the 
deformation,    xcx GradGrad  .  Thus the deformation gradient does not take into 
account rigid-body translations of bodies in space.  If a body only translates as a rigid 
body in space, then IF  , and cXx   (again, note that F does not tell us where in 
space a particle is, only how it has deformed locally).  If there is no motion, then not only 
is IF  , but Xx  . 
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If the body rotates as a rigid body (with no translation), then RF  , a rotation tensor 
(§1.10.8).  For example, for a rotation of   about the 2X  axis,  

 
sin 0 cos

0 1 0

cos 0 sin

 

 

 
   

  

F  

 
Note that different particles of the same material body can be translating only, rotating 
only, deforming only, or any combination of these. 
 
The Inverse of the Deformation Gradient 
 
The inverse deformation gradient 1F  carries the spatial line element dx to the material 
line element dX.  It is defined as 
 

j

I
jI x

X
F








  11 ,grad X
x

X
F      Inverse Deformation Gradient       (2.2.4) 

 
so that 

 

jIjI dxFdXdd 11 ,   xFX      action of 1F                        (2.2.5) 

 
with (see Eqn. 1.15.2) 
 

IFFFF   11           ijjMiM FF 1                                      (2.2.6) 

 
Cartesian Base Vectors 
 
Explicitly, in terms of the material and spatial base vectors (see 1.14.3), 
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     (2.2.7) 

 
so that, for example,       xeEEeXF ddXXxdXXxd iJJiMMJiJi  // . 

 
Because F and 1F  act on vectors in one configuration to produce vectors in the other 
configuration, they are termed two-point tensors.  They are defined in both 
configurations.  This is highlighted by their having both reference and current base 
vectors E and e in their Cartesian representation 2.2.7. 
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Here follow some important relations which relate scalar-, vector- and second-order 
tensor-valued functions in the material and spatial descriptions, the first two relating the 
material and spatial gradients {▲Problem 1}. 
 

T

1

1

:Graddiv

Gradgrad

Gradgrad













FAa

FVv

F

               (2.2.8) 

 
Here,   is a scalar; V and v are the same vector, the former being a function of the 
material coordinates, the material description, the latter a function of the spatial 
coordinates, the spatial description.  Similarly, A is a second order tensor in the material 
form and a is the equivalent spatial form. 
 
The first two of 2.2.8 relate the material gradient to the spatial gradient: the gradient of a 
function is a measure of how the function changes as one moves through space; since the 
material coordinates and the spatial coordinates differ, the change in a function with 
respect to a unit change in the material coordinates will differ from the change in the same 
function with respect to a unit change in the spatial coordinates (see also §2.2.7 below).  
 
 
Example 
 
Consider the deformation 
 

     
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

 

 
so that 
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Consider the vector       33123

2
2121 32)( eeexv xxxxxx   which, in the 

material description, is 
 

      3212
2
2321132 53325)( EEEXV XXXXXXXX   

 
The material and spatial gradients are 
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and it can be seen that 
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■  

 
 
2.2.2 The Cauchy-Green Strain Tensors 
 
The deformation gradient describes how a line element in the reference configuration 
maps into a line element in the current configuration.  It has been seen that the 
deformation gradient gives information about deformation (change of shape) and rigid 
body rotation, but does not encompass information about possible rigid body translations.  
The deformation and rigid rotation will be separated shortly (see §2.2.5).  To this end, 
consider the following strain tensors; these tensors give direct information about the 
deformation of the body.  Specifically, the Left Cauchy-Green Strain and Right 
Cauchy-Green Strain tensors give a measure of how the lengths of line elements and 
angles between line elements (through the vector dot product) change between 
configurations. 
 
The Right Cauchy-Green Strain 
 
Consider two line elements in the reference configuration )2()1( , XX dd  which are mapped 

into the line elements )2()1( , xx dd  in the current configuration.  Then, using 1.10.3d, 
 

   
 

)2()1(

)2(T)1(

)2()1()2()1(

XCX
XFFX
XFXFxx

dd
dd
dddd





     action of C                     (2.2.9) 

 
where, by definition, C is the right Cauchy-Green Strain2 
 

J

k

I

k
JkIkIJ X

x

X

x
FFC







 ,TFFC      Right Cauchy-Green Strain     (2.2.10) 

 
It is a symmetric, positive definite (which will be clear from Eqn. 2.2.17 below), tensor, 
which implies that it has real positive eigenvalues (cf. §1.11.2), and this has important 
consequences (see later).  Explicitly in terms of the base vectors, 
 

k m k k
I k m J I J

I J I J

x x x x

X X X X

     
           

C E e e E E E .    (2.2.11) 

 
Just as the line element Xd  is a vector defined in and associated with the reference 
configuration, C is defined in and associated with the reference configuration, acting on 
vectors in the reference configuration, and so is called a material tensor. 
                                                 
2 “right” because F is on the right of the formula 
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The inverse of C, C-1, is called the Piola deformation tensor. 
 
The Left Cauchy-Green Strain 
 
Consider now the following, using Eqn. 1.10.18c: 

 

   
 

)2(1)1(

)2(1T)1(

)2(1)1(1)2()1(

xbx

xFFx

xFxFXX

dd

dd

dddd













     action of 1b              (2.2.12) 

 
where, by definition, b is the left Cauchy-Green Strain, also known as the Finger tensor: 
 

K

j

K

i
KjKiij X

x

X

x
FFb








 ,TFFb      Left Cauchy-Green Strain       (2.2.13) 

 
Again, this is a symmetric, positive definite tensor, only here, b is defined in the current 
configuration and so is called a spatial tensor. 
 
The inverse of b, b-1, is called the Cauchy deformation tensor. 
 
It can be seen that the right and left Cauchy-Green tensors are related through 
 

-1-1 , FCFbbFFC      (2.2.14) 
 
Note that tensors can be material (e.g. C), two-point (e.g. F) or spatial (e.g. b).  Whatever 
type they are, they can always be described using material or spatial coordinates through 
the motion mapping 2.1.3, that is, using the material or spatial descriptions.  Thus one 
distinguishes between, for example, a spatial tensor, which is an intrinsic property of a 
tensor, and the spatial description of a tensor. 
 
The Principal Scalar Invariants of the Cauchy-Green Tensors 
 
Using 1.10.10b, 
 

    bFFFFC trtrtrtr TT      (2.2.15) 
 
This holds also for arbitrary powers of these tensors, nn bC trtr  , and therefore, from 
Eqn. 1.11.17, the invariants of C and b are equal. 
 
 
2.2.3 The Stretch 
 
The stretch (or the stretch ratio)   is defined as the ratio of the length of a deformed 
line element to the length of the corresponding undeformed line element: 
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X

x

d

d
  The Stretch    (2.2.16) 

 
From the relations involving the Cauchy-Green Strains, letting XXX ddd  )2()1( , 

xxx ddd  )2()1( , and dividing across by the square of the length of Xd  or xd , 
 

xbx
x

X
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X

x
ˆˆ,ˆˆ 1

2

2
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2 dd
d

d
dd

d

d  




















                      (2.2.17) 

 

Here, the quantities XXX ddd /ˆ   and xxx ddd /ˆ   are unit vectors in the directions of 

Xd  and xd .  Thus, through these relations, C and b determine how much a line element 
stretches (and, from 2.2.17, C and b can be seen to be indeed positive definite). 
 
One says that a line element is extended, unstretched or compressed according to 1 , 

1  or 1 . 
 
Stretching along the Coordinate Axes 
 
Consider three line elements lying along the three coordinate axes3.  Suppose that the 
material deforms in a special way, such that these line elements undergo a pure stretch, 
that is, they change length with no change in the right angles between them.  If the 
stretches in these directions are 1 , 2  and 3 , then  

 

333222111 ,, XxXxXx           (2.2.18) 

 
and the deformation gradient has only diagonal elements in its matrix form: 
 

JiiJiF 





















 ,

00

00

00

3

2

1

F    (no sum)   (2.2.19) 

 
Whereas material undergoes pure stretch along the coordinate directions, line elements 
off-axes will in general stretch/contract and rotate relative to each other.  For example, a 

line element T]0,,[ Xd  stretches by  2 2
1 2

ˆ ˆ / 2d d    XC X  with 

T
21 ]0,,[ xd , and rotates if 21   . 

 
It will be shown below that, for any deformation, there are always three mutually 
orthogonal directions along which material undergoes a pure stretch.  These directions, 
the coordinate axes in this example, are called the principal axes of the material and the 
associated stretches are called the principal stretches.   
 
 
 
                                                 
3 with the material and spatial basis vectors coincident 
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The Case of F Real and Symmetric 
 
Consider now another special deformation, where F is a real symmetric tensor, in which 
case the eigenvalues are real and the eigenvectors form an orthonormal basis (cf. 
§1.11.2)4.  In any given coordinate system, F will in general result in the stretching of line 
elements and the changing of the angles between line elements.  However, if one chooses 
a coordinate set to be the eigenvectors of F, then from Eqn. 1.11.11-12 one can write5 
 

 















 


3

2

13

1 00

00

00

,ˆˆ





 FNnF

i
iii     (2.2.20) 

 
where 321 ,,   are the eigenvalues of F.  The eigenvalues are the principal stretches and 

the eigenvectors are the principal axes.  This indicates that as long as F is real and 
symmetric, one can always find a coordinate system along whose axes the material 
undergoes a pure stretch, with no rotation.  This topic will be discussed more fully in 
§2.2.5 below. 
 
 
2.2.4 The Green-Lagrange and Euler-Almansi Strain Tensors 
 
Whereas the left and right Cauchy-Green tensors give information about the change in 
angle between line elements and the stretch of line elements, the Green-Lagrange strain 
and the Euler-Almansi strain tensors directly give information about the change in the 
squared length of elements. 
 
Specifically, when the Green-Lagrange strain E operates on a line element dX, it gives 
(half) the change in the squares of the undeformed and deformed lengths: 
 

 

  

XXE
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XXXXC
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dd

dd

dddd
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
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

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1
2

1

2

22

      action of E         (2.2.21) 

 
where 
 

     JIJIJI CE 
2

1
,

2

1

2

1 T IFFICE      Green-Lagrange Strain      (2.2.22) 

 
It is a symmetric positive definite material tensor.  Similarly, the (symmetric spatial) 
Euler-Almansi strain tensor is defined through 

                                                 
4 in fact, F in this case will have to be positive definite, with det 0F  (see later in §2.2.8) 
5 

i
n̂  are the eigenvectors for the basis 

i
e , 

I
N̂  for the basis 

i
Ê , with 

i
n̂ , 

I
N̂  coincident; when the bases are 

not coincident, the notion of rotating line elements becomes ambiguous – this topic will be examined later 
in the context of objectivity 
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xex
Xx

dd
dd




2

22

     action of e                          (2.2.23) 

 
and 
 

   1T1

2

1

2

1   FFIbIe      Euler-Almansi Strain           (2.2.24) 

 
Physical Meaning of the Components of E 
 

Take a line element in the 1-direction,  T1)1( 0,0,dXd X , so that  T)1( 0,0,1ˆ Xd .  The 

square of the stretch of this element is 
 

   1
2

1
1

2

1ˆˆ 2
)1(111111)1()1(

2
)1(   CECdd XCX  

 
The unit extension is   1/  XXx ddd .  Denoting the unit extension of )1(Xd  by 

)1(E , one has 

 
2

)1()1(11 2

1
EE E      (2.2.25) 

 
and similarly for the other diagonal elements 3322 , EE . 

 
When the deformation is small, 2

)1(E  is small in comparison to )1(E , so that 11 (1)E  E .  For 

small deformations then, the diagonal terms are equivalent to the unit extensions. 
 
Let 12  denote the angle between the deformed elements which were initially parallel to 

the 1X  and 2X  axes.  Then 
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 (2.2.26) 

 
and similarly for the other off-diagonal elements.  Note that if 2/12   , so that there is 

no angle change, then 012 E .  Again, if the deformation is small, then 2211 , EE  are 
small, and  
 

12121212 2cos
2

sin
2

E





  

              (2.2.27) 

 



Section 2.2 

Solid Mechanics Part III                                                                                Kelly 217

In words: for small deformations, the component 12E  gives half the change in the original 
right angle. 
 
 
2.2.5 Stretch and Rotation Tensors 
 
The deformation gradient can always be decomposed into the product of two tensors, a 
stretch tensor and a rotation tensor (in one of two different ways, material or spatial 
versions).  This is known as the polar decomposition, and is discussed in §1.11.7.  One 
has 
 

RUF   Polar Decomposition  (Material)             (2.2.28) 
 
Here, R is a proper orthogonal tensor, i.e. IRR T  with 1det R , called the rotation 
tensor.  It is a measure of the local rotation at X. 
 
The decomposition is not unique; it is made unique by choosing U to be a symmetric 
tensor, called the right stretch tensor.  It is a measure of the local stretching (or 
contraction) of material at X.  Consider a line element dX.  Then  
 

XRUXFx ˆˆˆ ddd       (2.2.29) 
 
and so {▲Problem 2} 
 

XUUX ˆˆ2 dd       (2.2.30) 
 
Thus (this is a definition of U) 
 

 UUCCU   The Right Stretch Tensor     (2.2.31) 
 
From 2.2.30, the right Cauchy-Green strain C (and by consequence the Euler-Lagrange 
strain E) only give information about the stretch of line elements; it does not give 
information about the rotation that is experienced by a particle during motion.  The 
deformation gradient F, however, contains information about both the stretch and rotation.  
It can also be seen from 2.2.30-1 that U is a material tensor. 
 
Note that, since 
 

 XURx dd  , 
 
the undeformed line element is first stretched by U and is then rotated by R into the 
deformed element xd  (the element may also undergo a rigid body translation c), Fig. 
2.2.4.  R is a two-point tensor. 
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Figure 2.2.4: the polar decomposition 
 
Evaluation of U 
 

In order to evaluate U, it is necessary to evaluate C .  To evaluate the square-root, C 
must first be obtained in relation to its principal axes, so that it is diagonal, and then the 
square root can be taken of the diagonal elements, since its eigenvalues will be positive  
(see §1.11.6).  Then the tensor needs to be transformed back to the original coordinate 
system. 
 
Example 
 
Consider the motion 
 

33212211 ,,22 XxXXxXXx   

 
The (homogeneous) deformation of a unit square in the 21 xx   plane is as shown in Fig. 
2.2.5. 
 

 
 

Figure 2.2.5: deformation of a square 
 
One has 
 

         jiji EEFFCEeF 


































 
 :basis

100

053

035

,:basis

100

011

022
T  

 

undeformed 

stretched 

final 
configuration 

principal 
material 

axes 
R

11, xX

32 , xX



Section 2.2 

Solid Mechanics Part III                                                                                Kelly 219

Note that F is not symmetric, so that it might have only one real eigenvalue (in fact here it 
does have complex eigenvalues), and the eigenvectors may not be orthonormal.  C, on the 
other hand, by its very definition, is symmetric; it is in fact positive definite and so has 
positive real eigenvalues forming an orthonormal set. 
 
To determine the principal axes of C, it is necessary to evaluate the 
eigenvalues/eigenvectors of the tensor.  The eigenvalues are the roots of the characteristic 
equation 1.11.5, 
 

0IIIIII 23  CCC   

 
and the first, second and third invariants of the tensor are given by 1.11.6 so that 

0162611 23   , with roots 1,2,8 .  The three corresponding eigenvectors 
are found from 1.11.8, 
 

0ˆ)1(

0ˆ)5(ˆ3

0ˆ3ˆ)5(

0ˆ)(ˆˆ
0ˆˆ)(ˆ
0ˆˆˆ)(

3

21

21

333232131

323222121

313212111










N

NN

NN

NCNCNC

NCNCNC

NCNCNC










 

 
Thus (normalizing the eigenvectors so that they are unit vectors, and form a right-handed 
set, Fig. 2.2.6): 
 

(i)  for 8 , 0ˆ7,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

1
ˆ EEN   

(ii)  for 2 , 0ˆ,0ˆ3ˆ3,0ˆ3ˆ3 32121  NNNNN ,  22
1

12
1

2
ˆ EEN   

(iii) for 1 , 0ˆ0,0ˆ4ˆ3,0ˆ3ˆ4 32121  NNNNN ,  33
ˆ EN    

 

 
 

Figure 2.2.6: deformation of a square 
 
Thus the right Cauchy-Green strain tensor C, with respect to coordinates with base 

vectors 11 N̂E  , 22 N̂E   and 33 N̂E  , that is, in terms of principal coordinates, is 
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This result can be checked using the tensor transformation formulae 1.13.6, 
      QCQC T , where Q is the transformation matrix of direction cosines (see also the 
example at the end of §1.5.2), 
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The stretch tensor U, with respect to the principal directions is 
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These eigenvalues of U (which are the square root of those of C) are the principal 
stretches and, as before, they are labeled 321 ,,  . 

 
In the original coordinate system, using the inverse tensor transformation rule 1.13.6, 
     TQUQU  , 
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so that 
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and it can be verified that R is a rotation tensor, i.e. is proper orthogonal. 
 
Returning to the deformation of the unit square, the stretch and rotation are as illustrated 
in Fig. 2.2.7 – the action of U is indicated by the arrows, deforming the unit square to the 
dotted parallelogram, whereas R rotates the parallelogram through o45  as a rigid body to 
its final position. 
 
Note that the line elements along the diagonals (indicated by the heavy lines) lie along the 
principal directions of U and therefore undergo a pure stretch; the diagonal in the 1N̂  
direction has stretched but has also moved with a rigid translation. 
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Figure 2.2.7: stretch and rotation of a square 
■  

 
Spatial Description 
 
A polar decomposition can be made in the spatial description.  In that case, 
 

vRF    Polar Decomposition  (Spatial)            (2.2.32) 
 
Here v is a symmetric, positive definite second order tensor called the left stretch tensor, 
and bvv  , where b is the left Cauchy-Green tensor.  R is the same rotation tensor as 
appears in the material description.  Thus an elemental sphere can be regarded as first 
stretching into an ellipsoid, whose axes are the principal material axes (the principal axes 
of U), and then rotating; or first rotating, and then stretching into an ellipsoid whose axes 
are the principal spatial axes (the principal axes of v).  The end result is the same. 
 
The development in the spatial description is similar to that given above for the material 
description, and one finds by analogy with 2.2.30, 
 

xvvx ˆˆ 112 dd                                                       (2.2.33) 
 
In the above example, it turns out that v takes the simple diagonal form 
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. 

 
so the unit square rotates first and then undergoes a pure stretch along the coordinate axes, 
which are the principal spatial axes, and the sequence is now as shown in Fig. 2.2.9. 
 

11, xX

22 , xX
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Figure 2.2.8: stretch and rotation of a square in spatial description 
 
 
Relationship between the Material and Spatial Decompositions 
 
Comparing the two decompositions, one sees that the material and spatial tensors 
involved are related through 
 

TRURv  ,    TRCRb        (2.2.34) 
 

Further, suppose that U has an eigenvalue   and an eigenvector N̂ .  Then NNU ˆˆ  , so 

that RNRUN  .  But vRRU  , so    NRNRv ˆˆ  .  Thus v also has an eigenvalue 

 , but an eigenvector NRn ˆˆ  .  From this, it is seen that the rotation tensor R maps the 
principal material axes into the principal spatial axes.  It also follows that R and F can be 
written explicitly in terms of the material and spatial principal axes (compare the first of 
these with 1.10.25)6: 
 

ii NnR ˆˆ  ,          



3

1

3

1

ˆˆˆˆ
i

iii
i

iii NnNNRRUF                 (2.2.35) 

 
and the deformation gradient acts on the principal axes base vectors according to 
{▲Problem 4} 
 

iiii
i

ii
i

iiii NnFNnFnNFnNF ˆˆ,ˆ1
ˆ,ˆ

1ˆ,ˆˆ T1T 


               (2.2.36) 

 
The representation of F and R in terms of both material and spatial principal base vectors 
in 2.3.35 highlights their two-point character. 
 
Other Strain Measures 
 
Some other useful measures of strain are 

 
The Hencky strain measure: UH ln  (material)   or    vh ln (spatial) 
 

                                                 
6 this is not a spectral decomposition of F (unless F happens to be symmetric, which it must be in order to 
have a spectral decomposition) 

11, xX

22 , xX
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The Biot strain measure: IUB   (material) or  Ivb    (spatial) 
 
The Hencky strain is evaluated by first evaluating U along the principal axes, so that the 
logarithm can be taken of the diagonal elements. 
 
The material tensors H, B , C, U and E are coaxial tensors, with the same eigenvectors 

iN̂ .  Similarly, the spatial tensors h, b , b, v and e are coaxial with the same eigenvectors 

in̂ .  From the definitions, the spectral decompositions of these tensors are 
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                   (2.2.37) 

 
Deformation of a Circular Material Element 
 
A circular material element will deform into an ellipse, as indicated in Figs. 2.2.2 and 
2.2.4.  This can be shown as follows.  With respect to the principal axes, an undeformed 

line element 1 1 2 2d dX dX X N N  has magnitude squared    2 2 2
1 2dX dX c  , where c 

is the radius of the circle, Fig. 2.2.9.  The deformed element is d dx U X , or 

1 1 1 2 2 2 1 1 2 2d dX dX dx dx    x N N n n .  Thus 1 1 1 2 2 2/ , /dx dX dx dX   , which 

leads to the standard equation of an ellipse with major and minor axes 1 2,c c  : 

   2 2

1 1 2 2/ / 1dx c dx c   . 

 

 
 

Figure 2.2.9: a circular element deforming into an ellipse 
 
 
 
 

undeformed 

1 1,X x

2 2,X x dX

dx
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2.2.6 Some Simple Deformations 
 
In this section, some elementary deformations are considered. 
 
Pure Stretch 
 
This deformation has already been seen, but now it can be viewed as a special case of the 
polar decomposition.  The motion is 
 

333222111 ,, XxXxXx         Pure Stretch            (2.2.38) 

 
and the deformation gradient is 
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Here, IR   and there is no rotation.  FU   and the principal material axes are 
coincident with the material coordinate axes.  321 ,,  , the eigenvalues of U, are the 

principal stretches. 
 
Stretch with rotation 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx   

 
so that 
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where tank .  This decomposition shows that the deformation consists of material 

stretching by )1(sec 2k , the principal stretches, along each of the axes, followed 

by a rigid body rotation through an angle   about the 03 X  axis, Fig. 2.2.10.  The 

deformation is relatively simple because the principal material axes are aligned with the 
material coordinate axes (so that U is diagonal).  The deformation of the unit square is as 
shown in Fig. 2.2.10. 
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Figure 2.2.10: stretch with rotation 
 
Pure Shear 
 
Consider the motion 
 

33212211 ,, XxXkXxkXXx       Pure Shear           (2.2.39) 

 
so that 
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where, since F is symmetric, there is no rotation, and UF  .  Since the rotation is zero, 
one can work directly with U and not have to consider C.  The eigenvalues of U, the 
principal stretches, are 1,1,1 kk  , with corresponding principal directions 

22
1

12
1

1
ˆ EEN  , 22

1
12

1
2

ˆ EEN   and 33
ˆ EN  .  

 
The deformation of the unit square is as shown in Fig. 2.2.11.  The diagonal indicated by 
the heavy line stretches by an amount k1  whereas the other diagonal contracts by an 
amount k1 .  An element of material along the diagonal will undergo a pure stretch as 
indicated by the stretching of the dotted box. 
 

 
 

Figure 2.2.11: pure shear 
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Simple Shear 
 
Consider the motion 
 

3322211 ,, XxXxkXXx       Simple Shear            (2.2.40) 

 
so that 
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The invariants of C are 1III,3II,3I 22  CCC kk  and the characteristic equation 

is 01)1()3( 23   k , so the principal values of C are 

1,41 2
2
12

2
1 kkk  .  The principal values of U are the (positive) square-roots of 

these: 1,4 2
12

2
1 kk  .  These can be written as 1,tansec    by letting 

k2
1tan  .  The corresponding eigenvectors of C are 
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or, normalizing so that they are of unit size, and writing in terms of  , 
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The transformation matrix of direction cosines is then 
 

 
   
   





















100

02/sin12/sin1

02/sin12/sin1




Q  

 
so that, using the inverse transformation formula,      TQUQU  , one obtains U in 
terms of the original coordinates, and hence 
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The deformation of the unit square is shown in Fig. 2.2.12 (for o0.2, 5.71k   ).  The 

square first undergoes a pure stretch/contraction ( 1N̂  is in this case at o47.86  to the 1X  
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axis, with the diagonal of the square becoming the diagonal of the parallelogram, at o45.5  
to the 1X  axis), and is then brought to its final position by a negative (clockwise) rotation 

of  . 
 
For this deformation, 1det F  and, as will be shown below, this means that the simple 
shear deformation is volume-preserving. 
 

 
 

Figure 2.2.12: simple shear 
 
 
2.2.7 Displacement & Displacement Gradients 
 
The displacement of a material particle7 is the movement it undergoes in the transition 
from the reference configuration to the current configuration.  Thus, Fig. 2.2.13,8 
 

XXxXU  ),(),( tt      Displacement (Material Description)              (2.2.41) 
 

),(),( tt xXxxu       Displacement (Spatial Description)                  (2.2.42) 
 
Note that U and u have the same values, they just have different arguments. 
 

 
 

Figure 2.2.13: the displacement 

                                                 
7 In solid mechanics, the motion and deformation are often described in terms of the displacement u.  In 
fluid mechanics, however, the primary field quantity describing the kinematic properties is the velocity v 
(and the acceleration va  ) – see later.   
8 The material displacement U here is not to be confused with the right stretch tensor discussed earlier. 
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Displacement Gradients 
 
The displacement gradient in the material and spatial descriptions, XXU  /),( t  and 

xxu  /),( t , are related to the deformation gradient and the inverse deformation gradient 
through 
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                 (2.2.43) 

 
and it is clear that the displacement gradients are related through (see Eqn. 2.2.8) 
 

1Gradgrad  FUu                                (2.2.44) 
 
The deformation can now be written in terms of either the material or spatial displacement 
gradients: 
 

xuXxuXx

XUXXUXx

ddddd

ddddd

grad)(

Grad)(




            (2.2.45) 

 
Example 
 
Consider again the extension of the bar shown in Fig. 2.1.5.  The displacement is 
 

  1
1 1 1

3
( ) 3 , ( )

1 3

t x t
t X t

t

      
U X E u x e  

 
and the displacement gradients are 
 

1 1

3
Grad 3 , grad

1 3

t
t

t
     

U E u e  

 
The displacement is plotted in Fig. 2.2.14 for 1t  .  The two gradients  1 1/U X   and 

1 1/u x   have different values (see the horizontal axes on Fig. 2.2.14). In this example, 

1 1 1 1/ /U X u x      – the change in displacement is not as large when “seen” from the 

spatial coordinates. 
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Figure 2.1.14: displacement and displacement gradient 
 

■  
 
Strains in terms of Displacement Gradients 
 
The strains can be written in terms of the displacement gradients.  Using 1.10.3b, 
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(2.2.46a) 
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(2.2.46b) 
 
Small Strain 
 
If the displacement gradients are small, then the quadratic terms, their products, are small 
relative to the gradients themselves, and may be neglected.  With this assumption, the 
Green-Lagrange strain E (and the Euler-Almansi strain) reduces to the small-strain 
tensor, 
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,GradGrad
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1 T UUε                   (2.2.47) 
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Since in this case the displacement gradients are small, it does not matter whether one 
refers the strains to the reference or current configurations – the error is of the same order 
as the quadratic terms already neglected9, so the small strain tensor can equally well be 
written as 
 

   














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


i

j

j

i
ij x

u

x

u

2

1
,gradgrad

2

1 T uuε  Small Strain Tensor     (2.2.48) 

 
 
2.2.8 The Deformation of Area and Volume Elements 
 
Line elements transform between the reference and current configurations through the 
deformation gradient.  Here, the transformation of area and volume elements is examined. 
 
The Jacobian Determinant 
 
The Jacobian determinant of the deformation is defined as the determinant of the 
deformation gradient, 
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F      The Jacobian Determinant    (2.2.49) 

 
Equivalently, it can be considered to be the Jacobian of the transformation from material 
to spatial coordinates (see Appendix 1.B.2). 
 
From Eqn. 1.3.17, the Jacobian can also be written in the form of the triple scalar product 
 





















321 XXX

J
xxx

          (2.2.50) 

 
Consider now a volume element in the reference configuration, a parallelepiped bounded 
by the three line-elements )1(Xd , )2(Xd  and )3(Xd .  The volume of the parallelepiped10 is 
given by the triple scalar product (Eqns. 1.1.4): 
 

 )3()2()1( XXX ddddV           (2.2.51) 
 
After deformation, the volume element is bounded by the three vectors )(idx , so that the 
volume of the deformed element is, using 1.10.16f, 
 

                                                 
9 although large rigid body rotations must not be allowed – see §2.7 . 
10 the vectors should form a right-handed set so that the volume is positive. 
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

        (2.2.52) 

 
Thus the scalar J is a measure of how the volume of a material element has changed with 
the deformation and for this reason is often called the volume ratio. 
 

dVJdv   Volume Ratio       (2.2.53) 
 
Since volumes cannot be negative, one must insist on physical grounds that 0J .  Also, 
since F has an inverse, 0J .  Thus one has the restriction 
 

0J        (2.2.54) 
 
Note that a rigid body rotation does not alter the volume, so the volume change is 
completely characterised by the stretching tensor U.  Three line elements lying along the 
principal directions of U form an element with volume dV , and then undergo pure stretch 
into new line elements defining an element of volume dVdv 321  , where i  are the 

principal stretches, Fig. 2.2.15.  The unit change in volume is therefore also 
 

1321 
 
dV

dVdv
     (2.2.55) 

 

 
 

Figure 2.2.15: change in volume 
 
For example, the volume change for pure shear is 2k  (volume decreasing) and, for 
simple shear, is zero (cf. Eqn. 2.2.40 et seq., 01)1)(tan)(sectan(sec   ). 
 
An incompressible material is one for which the volume change is zero, i.e. the 
deformation is isochoric.  For such a material, 1J , and the three principal stretches are 
not independent, but are constrained by 
 

1321   Incompressibility Constraint                   (2.2.56) 

 

current 
configuration 

reference 
configuration 

principal material 
axes 

dV dVdv 321 
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Nanson’s Formula 
 

Consider an area element in the reference configuration, with area dS , unit normal N̂ , 
and bounded by the vectors )2()1( , XX dd , Fig. 2.2.16.  Then 
 

)2()1(ˆ XXN dddS         (2.2.57) 
 
The volume of the element bounded by the vectors )2()1( , XX dd  and some arbitrary line 

element Xd  is XN ddSdV  ˆ .  The area element is now deformed into an element of 
area ds  with normal n̂  and bounded by the line elements )2()1( , xx dd .  The volume of the 
new element bounded by the area element and XFx dd   is then 
 

XNXFnxn ddSJddsddsdv  ˆˆˆ       (2.2.58) 
 

 
 

Figure 2.2.16: change of surface area 
 
Thus, since dX is arbitrary, and using 1.10.3d, 
 

dSJds NFn ˆˆ T  Nanson’s Formula   (2.2.59) 
 
Nanson’s formula shows how the vector element of area dsn̂  in the current 

configuration is related to the vector element of area dSN̂  in the reference configuration. 
 
 
2.2.9 Inextensibility and Orientation Constraints 
 
A constraint on the principal stretches was introduced for an incompressible material, 
2.2.56.  Other constraints arise in practice.  For example, consider a material which is 

inextensible in a certain direction, defined by a unit vector Â  in the reference 

configuration.  It follows that 1ˆ AF  and the constraint can be expressed as 2.2.17,  

 

1ˆˆ ACA      Inextensibility Constraint               (2.2.60) 
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If there are two such directions in a plane, defined by Â  and B̂ , making angles   and   

respectively with the principal material axes 21
ˆ,ˆ NN , then 
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and      22

2
2
1

2
2

22
2

2
1 cos1cos  .  It follows that   ,   , 

   or  2  (or 121   , i.e. no deformation). 
 
Similarly, one can have orientation constraints.  For example, suppose that the direction 

associated with the vector Â  maintains that direction.  Then 
 

AAF ˆˆ       Orientation Constraint                 (2.2.61) 
 
for some scalar 0 . 
 
 
2.2.10 Problems 
 
1. In equations 2.2.8, one has from the chain rule 
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Derive the other two relations. 
2. Take the dot product    ˆ ˆd d x x  in Eqn. 2.2.29.  Then use IRR T , UU T , and 

1.10.3e to show that 

X

X
UU

X

X

d

d

d

d
2  

3. For the deformation 

3213322311 22,2,2 XXXxXXxXXx   

(a) Determine the Deformation Gradient and the Right Cauchy-Green tensors 
(b) Consider the two line elements 2

)2(
1

)1( , eXeX  dd  (emanating from (0,0,0)).  
Use the Right Cauchy Green tensor to determine whether these elements in the 
current configuration ( )2()1( , xx dd ) are perpendicular. 

(c) Use the right Cauchy Green tensor to evaluate the stretch of the line element 

21 eeX d , and hence determine whether the element contracts, stretches, or 
stays the same length after deformation. 

(d) Determine the Green-Lagrange and Eulerian strain tensors 
(e) Decompose the deformation into a stretching and rotation (check that U is 

symmetric and R is orthogonal).  What are the principal stretches? 
4. Derive Equations 2.2.36. 
5. For the deformation 

32332211 ,, XaXxXXxXx   
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(a) Determine the displacement vector in both the material and spatial forms 
(b) Determine the displaced location of the particles in the undeformed state which 

originally comprise 
(i) the plane circular surface )1/(1,0 22

3
2
21 aXXX   

(ii) the infinitesimal cube with edges along the coordinate axes of length 
idX  

Sketch the displaced configurations if 2/1a  
6. For the deformation 

313322211 ,, XaXxaXXxaXXx   

(a) Determine the displacement vector in both the material and spatial forms 
(b) Calculate the full material (Green-Lagrange) strain tensor and the full spatial 

strain tensor 
(c) Calculate the infinitesimal strain tensor as derived from the material and spatial 

tensors, and compare them for the case of very small a. 
7. In the example given above on the polar decomposition, §2.2.5, check that the 

relations 3,2,1,  iii nCn   are satisfied (with respect to the original axes).  Check 

also that the relations 3,2,1,  iii nnC   are satisfied (here, the eigenvectors are the 

unit vectors in the second coordinate system, the principal directions of C, and C is 
with respect to these axes, i.e. it is diagonal). 


