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1.18 Curvilinear Coordinates: Tensor Calculus 
 
 
1.18.1 Differentiation of the Base Vectors 
 
Differentiation in curvilinear coordinates is more involved than that in Cartesian 
coordinates because the base vectors are no longer constant and their derivatives need to 
be taken into account, for example the partial derivative of a vector with respect to the 
Cartesian coordinates is 
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The Christoffel Symbols of the Second Kind 
 
First, from Eqn. 1.16.19 – and using the inverse relation, 
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     (1.18.1) 

 
this can be written as 
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   Partial Derivatives of Covariant Base Vectors   (1.18.2) 
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and k

ij  is called the Christoffel symbol of the second kind; it can be seen to be  

equivalent to the kth contravariant component of the vector j
i  /g .  One then has 

{▲Problem 1} 
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and the symmetry in the indices i and j is evident2.  Looking now at the derivatives of the 
contravariant base vectors ig : differentiating the relation k

i
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1 of course, one could express the 

i
g  in terms of the 

i
e , and use only the first of these expressions 

2 note that, in non-Euclidean space, this symmetry in the indices is not necessarily valid 
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and so 
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   Partial Derivatives of Contravariant Base Vectors   (1.18.5) 

 
Transformation formulae for the Christoffel Symbols 
 
The Christoffel symbols are not the components of a (third order) tensor.  This follows 
from the fact that these components do not transform according to the tensor 
transformation rules given in §1.17.  In fact, 
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The Christoffel Symbols of the First Kind 
 
The Christoffel symbols of the second kind relate derivatives of covariant (contravariant) 
base vectors to the covariant (contravariant) base vectors.  A second set of symbols can be 
introduced relating the base vectors to the derivatives of the reciprocal base vectors, 
called the Christoffel symbols of the first kind: 
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so that the partial derivatives of the covariant base vectors can be written in the 
alternative form 
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and it also follows from Eqn. 1.18.2 that 
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showing that the index k here can be raised or lowered using the metric coefficients as for 
a third order tensor (but the first two indexes, i and j, cannot and, as stated, the Christoffel 
symbols are not the components of a third order tensor). 
 
Example: Newton’s Second Law 
 
The position vector can be expressed in terms of curvilinear coordinates,  i xx .  The 
velocity is then 
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and the acceleration is 
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Equating the contravariant components of Newton’s second law af m  then gives the 
general curvilinear expression 
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Partial Differentiation of the Metric Coefficients 
 
The metric coefficients can be differentiated with the aid of the Christoffel symbols of the 
first kind {▲Problem 3}: 
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Using the symmetry of the metric coefficients and the Christoffel symbols, this equation 
can be written in a number of different ways: 
 

jkikijkijg , ,     kijijkijkg , ,     ijkjkijkig ,  

 
Subtracting the first of these from the sum of the second and third then leads to the useful 
relations (using also 1.18.8) 
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which show that the Christoffel symbols depend on the metric coefficients only.    
 
Alternatively, one can write the derivatives of the metric coefficients in the form (the first 
of these is 1.18.9) 
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Also, directly from 1.15.7, one has the relations 
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and from these follow other useful relations, for example {▲Problem 4} 
 

 
jjj

i
ij

J
J

g

g

g













 11log
       (1.18.13) 

 
and 
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1.18.2 Partial Differentiation of Tensors 
 
The Partial Derivative of a Vector 
 
The derivative of a vector in curvilinear coordinates can be written as 
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where 
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  Covariant Derivative of Vector Components  (1.18.16) 

 
The first term here is the ordinary partial derivative of the vector components.  The 
second term enters the expression due to the fact that the curvilinear base vectors are 
changing.  The complete quantity is defined to be the covariant derivative of the vector 
components.  The covariant derivative reduces to the ordinary partial derivative in the 
case of rectangular Cartesian coordinates. 
 
The jiv |  is the ith component of the j – derivative of v.  The jiv |  are also the 

components of a second order covariant tensor, transforming under a change of 
coordinate system according to the tensor transformation rule 1.17.4 (see the gradient of a 
vector below). 
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The covariant derivative of vector components is given by 1.18.10.  In the same way, the 
covariant derivative of a vector is defined to be the complete expression in 1.18.9, j,v , 

with ij
i

j v gv |,  . 

 
The Partial Derivative of a Tensor 
 
The rules for covariant differentiation of vectors can be extended to higher order tensors.  
The various partial derivatives of a second-order tensor 
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Thus, for example, 
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and, in summary, 
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Covariant Derivative of Tensor Components   
 
The covariant derivative formulas can be remembered as follows: the formula contains 
the usual partial derivative plus 
 for each contravariant index a term containing a Christoffel symbol in which that index 

has been inserted on the upper level, multiplied by the tensor component with that index 
replaced by a dummy summation index which also appears in the Christoffel symbol 

 for each covariant index a term prefixed by a minus sign and containing a Christoffel 
symbol in which that index has been inserted on the lower level, multiplied by the 
tensor with that index replaced by a dummy which also appears in the Christoffel 
symbol. 

 the remaining symbol in all of the Christoffel symbols is the index of the variable with 
respect to which the covariant derivative is taken. 

 
For example,  
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Note that the covariant derivative of a product obeys the same rules as the ordinary 
differentiation, e.g. 
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Covariantly Constant Coefficients 
 
It can be shown that the metric coefficients are covariantly constant3 {▲Problem 5}, 
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This implies that the metric (identity) tensor I is constant, 0, kI  (see Eqn. 1.16.32) – 

although its components ijg  are not constant.  Similarly, the components of the 

permutation tensor, are covariantly constant 
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In fact, specialising the identity tensor I and the permutation tensor E to Cartesian 
coordinates, one has ij
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ijk ee  , which are clearly constant.  

Specialising the derivatives, kijkijg ,|  , mijkmijke ,|  , and these are clearly zero.  

From §1.17, since if the components of a tensor vanish in one coordinate system, they 
vanish in all coordinate systems, the curvilinear coordinate versions vanish also, as stated 
above. 
 
The above implies that any time any of these factors appears in a covariant derivative, 
they may be extracted, as in     k
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The Riemann-Christoffel Curvature Tensor 
 
Higher-order covariant derivatives are defined by repeated application of the first-order 
derivative.  This is straight-forward but can lead to algebraically lengthy expressions.  For 
example, to evaluate mniv | , first write the first covariant derivative in the form of a second 

order covariant tensor B, 
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The covariant derivative nmiv |  is obtained by interchaning m and n in this expression.  

Now investigate the difference 
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The last two terms cancel here because of the symmetry of the Christoffel symbol, 
leaving 
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The order on the ordinary partial differentiation is interchangeable and so the second 
order partial derivative terms cancel, 
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After further cancellation one arrives at 
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where R is the fourth-order Riemann-Christoffel curvature tensor, with (mixed) 
components 
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Since the Christoffel symbols vanish in a Cartesian coordinate system, then so does j

imnR .  

Again, any tensor that vanishes in one coordinate system must be zero in all coordinate 
systems, and so 0

j
imnR , implying that the order of covariant differentiation is 
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From 1.18.10, it follows that 
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The latter of these known as the Bianchi identities.  In fact, only six components of the 
Riemann-Christoffel tensor are independent; the expression 0

j
imnR  then represents 6 

equations in the 6 independent components ijg . 

 
This analysis is for a Euclidean space – the usual three-dimensional space in which 
quantities can be expressed in terms of a Cartesian reference system – such a space is 
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called a flat space.  These ideas can be extended to other, curved spaces, so-called 
Riemannian spaces (Riemannian manifolds), for which the Riemann-Christoffel tensor 
is non-zero (see §1.19). 
 
 
1.18.3 Differential Operators and Tensors 
 
In this section, the concepts of the gradient, divergence and curl from §1.6 and §1.14 are 
generalized to the case of curvilinear components. 
 
Space Curves and the Gradient 
 
Consider first a scalar function  xf , where i

ix ex   is the position vector, with 

 jii xx  .  Let the curvilinear coordinates depend on some parameter s,  sjj  , 
so that )(sx  traces out a space curve C. 
 
For example, the cylindrical coordinates  sjj  , with ar   , cs / , csbz / , 

cs 20  , generate a helix. 
 
From §1.6.2, a tangent to C is 
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so that dsd i /  are the contravariant components of τ .  Thus 
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For Cartesian coordinates, τ fdsdf /  (see the discussion on normals to surfaces in 
§1.6.4).  For curvilinear coordinates, therefore, the Nabla operator of 1.6.11 now reads  
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so that again the directional derivative is 
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The Gradient of a Scalar 
 
In general then, the gradient of a scalar valued function   is defined to be 
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and, with i
i

i
i ddxd gex  , one has 
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The Gradient of a Vector 
 
Analogous to Eqn. 1.14.3, the gradient of a vector is defined to be the tensor product of 
the derivative j /u  with the contravariant base vector jg : 
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so that again one arrives at Eqn. 1.14.7,   uu gradT  . 
 
Again, one has for a space curve parameterised by s, 
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Similarly, from 1.18.18, the gradient of a second-order tensor is 
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 Gradient of a Tensor     (1.18.26) 

 
The Divergence 
 
From 1.14.9, the divergence of a vector is {▲Problem 6} 
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This is equivalent to the divergence operation involving the Nabla operator, .div uu    
An alternative expression can be obtained from 1.18.13 {▲Problem 7}, 
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Similarly, using 1.14.12, the divergence of a second-order tensor is 
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Here, one has the alternative definition, 
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gAgA |  

 
so that again one arrives at Eqn. 1.14.14, Tdiv AA  . 
 
The Curl 
 
The curl of a vector is defined by {▲Problem 8} 
 

ki

jijk
kij

ijk
k

k
u

eue gg
u

guu








 |curl    Curl of a Vector     (1.18.29) 

 
the last equality following from the fact that all the Christoffel symbols cancel out. 
 
Covariant derivatives as Tensor Components 
 
Equation 1.18.25 shows clearly that the covariant derivatives of vector components are 
themselves the components of second order tensors.  It follows that they can be 
manipulated as other tensors, for example, 
 

j
i

jm
im uug ||   

 
and it is also helpful to introduce the following notation: 
 

mj
m

ijimj
mi

j
i guuguu ||,||  . 

 
The divergence and curl can then be written as {▲Problem 10} 
 

kij
ijkkij

ijk

i
ii

i

ueue

uu

ggu

u

||curl

||div




. 
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Generalising Tensor Calculus from Cartesian to Curvilinear Coordinates 
 
It was seen in §1.16.7 how formulae could be generalised from the Cartesian system to 
the corresponding formulae in curvilinear coordinates.  In addition, formulae for the 
gradient, divergence and curl of tensor fields may be generalised to curvilinear 
components simply by replacing the partial derivatives with the covariant derivatives.  
Thus: 
 
  Cartesian Curvilinear 
Gradient Of a scalar field 

ix /,grad   i
ii  /|,   

of a vector field 
ji xu  /gradu  

j
iu |  

of a tensor field 
kij xT  /gradT  

k
ijT |  

Divergence of a vector field 
ii xu  /,div uu  

i
iu |  

of a tensor field jij xT  /divT  
j

ijT |  

Curl of a vector field 
ijijk xu  /,curl uu  

ij
ijk ue |  

Table 1.18.1: generalising formulae from Cartesian to General Curvilinear 
Coordinates 

 
All the tensor identities derived for Cartesian bases (§1.6.9, §1.14.3) hold also for 
curvilinear coordinates, for example {▲Problem 11} 
 

 
  vAAvvA

vvv

grad:divdiv

gradgradgrad


 

 

 
 
1.18.4 Partial Derivatives with respect to a Tensor 
 
The notion of differentiation of one tensor with respect to another can be generalised from 
the Cartesian differentiation discussed in §1.15.  For example: 
 

nm
nm

nm
jin

j
m
inm

ji

mn

ij

nm
ji

mn

ij

j
ij

i
ji

ij

A

A

A

B

AA

gggg

gggggggg
A

A

gggg
A

B

gggg
A









































 

 
 
1.18.5 Orthogonal Curvilinear Coordinates 
 
This section is based on the groundwork carried out in §1.16.9.  In orthogonal curvilinear 
systems, it is best to write all equations in terms of the covariant base vectors, or in terms 
of the corresponding physical components, using the identities (see Eqn. 1.16.45) 
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i
i

i
i

i

hh
ggg ˆ

11
2

      (no sum)      (1.18.30) 

  
The Gradient of a Scalar Field 
 
From the definition 1.18.23 for the gradient of a scalar field, and Eqn. 1.18.30, one has 
for an orthogonal curvilinear coordinate system, 
 

33
3

22
2

11
1

332
3

222
2

112
1

ˆ
1

ˆ
1

ˆ
1

111

ggg

ggg



























hhh

hhh
                     (1.18.31) 

 
The Christoffel Symbols 
 
The Christoffel symbols simplify considerably in orthogonal coordinate systems.  First, 
from the definition 1.18.4, 

 

kj
i

k

k
ij h

g
g






2

1
              (1.18.32) 

 
Note that the introduction of the scale factors h into this and the following equations 
disrupts the summation and index notation convention used hitherto.  To remain 
consistent, one should use the metric coefficients and leave this equation in the form 
 

m
km

j
ik

ij g g
g





  

 
Now 
 

  i
ijiij

i
iij

h 





 





 222 g

g
gg  

 
and 2

iii hgg  so, in terms of the derivatives of the scale factors, 

 

j
i

i
ik

k
ij

i
ij

h

h 





1
    (no sum)              (1.18.33) 

 
Similarly, it can be shown that {▲Problem 14}  
 

i
jki

j
kij

i
jki

k
ijk hhhh  2222  when kji          (1.18.34) 

 
so that the Christoffel symbols are zero when the indices are distinct, so that there are 
only 21 non-zero symbols of the 27.  Further, {▲Problem 15} 
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k
i

k

i

ji

k
ij

k
ii

h

h

h





 2

,   ki       (no sum)      (1.18.35) 

 
From the symmetry condition (see Eqn. 1.18.4), only 15 of the 21 non-zero symbols are 
distinct: 
 

3
33

3
32

3
23

3
22

3
31

3
13

3
11

2
33

2
32

2
23

2
22

2
21

2
12

2
11

1
33

1
22

1
31

1
13

1
21

1
12

1
11

,,,,

,,,,

,,,,







 

 
Note also that these are related to each other through the relation between (1.18.33, 
1.18.35), i.e. 
 

i
ik

k

ik
ii h

h


2

2

,    ki       (no sum) 

 
so that 
 

2
332

3

2
23

32
3
23

1
332

3

2
13

31
3

13
3
222

2

2
32

32
2
23

1
222

2

2
12

21
2

12
3

112
1

2
31

31
1
13

2
112

1

2
21

21
1
12

3
33

2
22

1
11

,,

,,

,,







h

h

h

h

h

h

h

h

h

h

h

h
 (1.18.36) 

 
The Gradient of a Vector 
 
From the definition 1.18.25, the gradient of a vector is 
 

jij

i

j

j
ij

i v
h

v ggggv 
2

1
grad     (no sum over jh )      (1.18.37) 

 
In terms of physical components, 
 

ji
ki

kj
k

iii
ijj

i

j

ji
i
kj

k
j

i

j

v
h

h
v

v

h

v
v

h

gg

ggv

ˆˆ
1

1
grad

2

































  (1.18.38) 

 
The Divergence of a Vector 
 

From the definition 1.18.27, the divergence of a vector is 
i

ivvdiv  or {▲Problem 16} 
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     





























3

21
3

2
31

2

1
32

1

321

1
div

hhvhhvhhv

hhh
v

v i
kiki

iv      (1.18.39) 

 
The Curl of a Vector 
 
From §1.16.10, the permutation symbol in orthogonal curvilinear coordinates reduceS to 
 

ijkijk

hhh
e 

321

1
     (1.18.40) 

 
where ijk

ijk    is the Cartesian permutation symbol.  From the definition 1.18.29, the 

curl of a vector is then 
 

   

   

































































































332
1

1

1
2

2

321

32

2
1

1

1

2
2

2

321

32
1

1
2

321321

ˆ
1

1

11
curl

g

g

ggv

h
hvhv

hhh

hvhv

hhh

vv

hhh

v

hhh ki

j
ijk

     (1.18.41) 

 
or 
 

3
3

2
2

1
1

321

332211

321

ˆˆˆ
1

curl

vhvhvh

hhh

hhh 










ggg

v         (1.18.42) 

 
The Laplacian 
 
From the above results, the Laplacian is given by 
 




















































3

3

21
32

2

31
21

1

32
1

321

2 1

h

hh

h

hh

h

hh

hhh
 

 
 
Divergence of a Tensor 
 
From the definition 1.18.28, and using 1.16.59, 1.16.62 {▲Problem 17} 
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j
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j
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h
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A

A

g

ggA

ˆ
11

|div









































 




  (1.18.43) 

 
Examples 
 
1. Cylindrical Coordinates 
 
Gradient of a Scalar Field: 

332
2

211
ˆˆ

1
ˆ ggg














    

 
Christoffel symbols: 

With 1,,1 3
1

21  hhh , there are two distinct non-zero symbols: 

1
2
21

2
12

11
22

1





 

 
Derivatives of the base vectors: 

The non-zero derivatives are 

 1
1

2
2

211
2

2
1 ,

1
g

g
g

gg















 

and in terms of physical components, the non-zero derivatives are 

12
2

22
1 ˆ

ˆ
,ˆ

ˆ
g

g
g

g









 

which agree with 1.6.32. 
 

The Divergence (see 1.6.33), Curl (see 1.6.34) and Gradient {▲Problem 18} (see 
1.14.18) of a vector: 




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









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
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3211
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vvv 


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
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






ggg

v  
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The Divergence of a tensor {▲Problem 19} (see 1.14.19): 
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2. Spherical Coordinates 
 
Gradient of a Scalar Field: 

332122111
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Christoffel symbols: 

With 21
3

1
21 sin,,1  hhh , there are six distinct non-zero symbols: 
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Derivatives of the base vectors: 

The non-zero derivatives are 
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and in terms of physical components, the non-zero derivatives are 
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which agree with 1.6.37. 
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The Divergence (see 1.6.38), Curl and Gradient of a Vector: 
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1.18.6 Problems 
 
1 Show that the Christoffel symbol of the second kind is symmetric, i.e. k

ji
k
ij  , and 

that it is explicitly given by k
j

ik
ij g

g





 . 

2 Consider the scalar-valued function   ji
ij vuA vAu .  By taking the gradient of 

this function, and using the relation for the covariant derivative of A, i.e. 

im
m
jkmj

m
ikkijkij AAAA  ,| , show that 

    k
ji

ijk

ji
ij vuA

vuA
|




, 
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i.e. the partial derivative and covariant derivative are equivalent for a scalar-valued 
function. 

3 Prove 1.18.9: 

(i) jkiikjk

ijg





,        (ii) i

km
jmj

km
im

k

ij

gg
g





 

[Hint: for (ii), first differentiate Eqn. 1.16.10, i
kkj

ij gg  .] 

4 Derive 1.18.13, relating the Christoffel symbols to the partial derivatives of g  and 

 glog .  [Hint: begin by using the chain rule 
j

mn

mn
j

g

g

gg











.] 

5 Use the definition of the covariant derivative of second order tensor components, Eqn. 
1.18.18, to show that (i) 0| kijg  and (ii) 0| k

ijg . 

6 Use the definition of the gradient of a vector, 1.18.25, to show that 

i
iu |:graddiv  Iuu . 

7 Derive the expression     iiugg  //1divu  

8 Use 1.16.54 to show that   kij
ijkkk ue gug |/  . 

9 Use the relation j
n

k
m

k
n

j
mimn

ijk    (see Eqn. 1.3.19) to show that 

 
     122113312332

332211

321

curl

vuvuvuvuvuvu

k
k

k
k

k
k

















ggg

vu . 

10 Show that (i) i
ii

i uu ||  , (ii) kij
ijkkij

ijk ueue gg ||   

11 Show that 
(i)    gradgradgrad  vvv ,    (ii)   vAAvvA grad:divdiv   

[Hint: you might want to use the relation  baTbaT  :  for the second of these.] 

12 Derive the relation   IAA  /tr  in curvilinear coordinates. 
13 Consider a (two dimensional) curvilinear coordinate system with covariant base 

vectors 1
1

221
2

1 ,2 egeeg  . 

(a) Evaluate the transformation equations )( jii xx   and the Jacobian J. 

(b) Evaluate the inverse transformation equations  jii x  and the contravariant 

base vectors ig . 

(c) Evaluate the metric coefficients ij
ij gg ,  and the function g: 

(d) Evaluate the Christoffel symbols (only 2 are non-zero 
(e) Consider the scalar field 21  .  Evaluate grad . 

(f) Consider the vector fields   21

21
2

2
1 2, ggvggu  : 

(i) Evaluate the covariant components of the vectors u and v 
(ii) Evaluate vu div,div  
(iii)Evaluate vu curl,curl  
(iv) Evaluate vu grad,grad  

(g) Verify the vector identities 
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vuuvvu

uuu

uuu

 

(h) Verify the identities 
 
     

   
     uvvuuvvuvu

uvvuvu

uvvuvu

vvv

gradgraddivdivcurl

)div(graddiv

gradgradgrad

gradgradgrad
TT







 

(i) Consider the tensor field 

   ji ggA 









 22

01
 

Evaluate all contravariant and mixed components of the tensor A 

14 Use the fact that 0 ik gg , ik   to show that 
k

ij

i
jki

k
ijk hh  22 .  Then permutate the 

indices to show that i
jki

j
kij

i
jki

k
ijk hhhh  2222  when kji  . 

15 Use the relation 

  jijii





,0gg  

to derive i
ij

j

ij
ii h

h


2

2

.  

16 Derive the expression 1.18.39 for the divergence of a vector field v. 
17 Derive 1.18.43 for the divergence of a tensor in orthogonal coordinate systems. 
18 Use the expression 1.18.38 to derive the expression for the gradient of a vector field 

in cylindrical coordinates. 
19 Use the expression 1.18.43 to derive the expression for the divergence of a tensor 

field in cylindrical coordinates. 
20 Use the expression 1.18.43 to derive the expression for the divergence of a tensor 

field in spherical coordinates. 


