Section 1.18

1.18 Curvilinear Coordinates: Tensor Calculus

1.18.1 Differentiation of the Base Vectors

Differentiation in curvilinear coordinates is more involved than that in Cartesian
coordinates because the base vectors are no longer constant and their derivatives need to
be taken into account, for example the partial derivative of a vector with respect to the
Cartesian coordinates is

ov oy,

oV oy ov oV y og,
x; 0x '

but! = g vt B
00! 00! 00!

The Christoffel Symbols of the Second Kind

First, from Eqn. 1.16.19 — and using the inverse relation,

(1.18.1)

og _ 0 [ax") _ ox" a®kg
0! oellee )" o6l ox" "

this can be written as

og.
aéli = Fi:fgk Partial Derivatives of Covariant Base Vectors (1.18.2)
where
2ym k
Ko OX 00 (1.18.3)
00'e' ox"

and Fi;( is called the Christoffel symbol of the second kind; it can be seen to be

equivalent to the kth contravariant component of the vector dg, /0@’ . One then has
{ AProblem 1}

og; 0g ;
i g" —i-gk Christoffel Symbols of the 2" kind (1.18.4)

[=rk=28_.gk-_2=1
! ! a®lg G}

and the symmetry in the indices i and j is evident’. Looking now at the derivatives of the
contravariant base vectors g': differentiating the relation g, -g* = 5 leads to

og" g
_9%8 5 %S gk_T
o7 B =g 8 =T

m

ng'gk :Fi:'(

! of course, one could express the g, in terms of the e, , and use only the first of these expressions

2 note that, in non-Euclidean space, this symmetry in the indices is not necessarily valid
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and so

og' i
% = —F}kgk Partial Derivatives of Contravariant Base Vectors (1.18.5)

Transformation formulae for the Christoffel Symbols

The Christoffel symbols are not the components of a (third order) tensor. This follows
from the fact that these components do not transform according to the tensor
transformation rules given in §1.17. In fact,

FX _ 00° 007 00" _, . 0’0° 00~
Y00 00! 0" M 00'0! 60°

The Christoffel Symbols of the First Kind

The Christoffel symbols of the second kind relate derivatives of covariant (contravariant)
base vectors to the covariant (contravariant) base vectors. A second set of symbols can be
introduced relating the base vectors to the derivatives of the reciprocal base vectors,
called the Christoffel symbols of the first kind:

og, 0g; . .
Ly =Ty = ey ‘g, = a—@ﬂ-gk Christoffel Symbols of the 1% kind (1.18.6)

so that the partial derivatives of the covariant base vectors can be written in the
alternative form

0g;
_a®j :Fijkgk, (1.18.7)

and it also follows from Eqn. 1.18.2 that
L =T 9one Fi;( :Fijmgmk (1.18.8)

showing that the index K here can be raised or lowered using the metric coefficients as for
a third order tensor (but the first two indexes, i and j, cannot and, as stated, the Christoffel
symbols are not the components of a third order tensor).

Example: Newton’s Second Law

The position vector can be expressed in terms of curvilinear coordinates, x = x(@i ) The
velocity is then

dx ox d®' de'
v X _ _

“dt 6@ dt dt o
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and the acceleration is

a_d_v_d2®‘ +d@j og; do* (d’e' r de’' de*
gt dt’ o dt o dt de> ¥ dt dt )

Equating the contravariant components of Newton’s second law f = ma then gives the
general curvilinear expression

fl=m@ +r,60%)

Partial Differentiation of the Metric Coefficients

The metric coefficients can be differentiated with the aid of the Christoffel symbols of the
first kind { A Problem 3}:

09;; _
o0k

L + Ty (1.18.9)

Using the symmetry of the metric coefficients and the Christoffel symbols, this equation
can be written in a number of different ways:

Oix =Lwi ¥ lw> O =L > Ouj =T + i

Subtracting the first of these from the sum of the second and third then leads to the useful
relations (using also 1.18.8)

1
L :E(gjk,i + 0k j _gij,k)
(1.18.10)

I om
ri;( = Eg k(gjm,i +0mij— gij,m)
which show that the Christoffel symbols depend on the metric coefficients only.

Alternatively, one can write the derivatives of the metric coefficients in the form (the first
of these is 1.18.9)

Oiix =Ly + T
e T (1.18.11)
9% =-9"Tg 9",
Also, directly from 1.15.7, one has the relations
0 i 0
A _ggi, A g, (1.18.12)

09, agh
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and from these follow other useful relations, for example { A Problem 4}

ﬂ:m%wa_1a{'

0 \/_ o 6®j (1.18.13)
and
oe;.
. uk \/_ uk\/_l—‘n _ellkrn
a®m 06" (1.18.14)
e’ _ ik (1/\/5) _ ik ernn _ _eijkrr:n
00" oo™ Jo
1.18.2 Partial Differentiation of Tensors
The Partial Derivative of a Vector
The derivative of a vector in curvilinear coordinates can be written as
ov ov' . og. o i
0! 00’ 00’ oe! 006! 00!
V' I
:@gl+v l“ugk or :8(9’ g — jkgk (1.18.15)
=V ‘jgi = Vi|jg

where

V' [ =V 4 Tgv"
- Covariant Derivative of Vector Components (1.18.16)
=v. .-V

j ij "k

Vi |}

The first term here is the ordinary partial derivative of the vector components. The
second term enters the expression due to the fact that the curvilinear base vectors are
changing. The complete quantity is defined to be the covariant derivative of the vector
components. The covariant derivative reduces to the ordinary partial derivative in the
case of rectangular Cartesian coordinates.

The v, |; is the ith component of the j — derivative of v. The v, |; are also the

components of a second order covariant tensor, transforming under a change of
coordinate system according to the tensor transformation rule 1.17.4 (see the gradient of a
vector below).
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The covariant derivative of vector components is given by 1.18.10. In the same way, the
covariant derivative of a vector is defined to be the complete expression in 1.18.9, v ;,

with v = |; &
The Partial Derivative of a Tensor

The rules for covariant differentiation of vectors can be extended to higher order tensors.
The various partial derivatives of a second-order tensor

A=Alg ®g; =Ag ®g' =A'g' ®g; = Ajg, O’
are indicated using the following notation:

0A
GO

Al g ®g; =Ayl, g' ®g’ =Al|, g' ®g; =A]l, g ®g'  (1.18.17)

Thus, for example,

A=Ay g ®gl+ Ai,-gi,k Rg! +Aijgi gl
=Ry g ®g’ _Aijrikgm gl -A g ®T) g"

m j km

= [Aij,k —Fif Amj _ro< Ain ki ® gj

and, in summary,

Aij |k:Aij,k _ri? Amj —F}E Aim
AVl =AY +T, A" +T ) A"
A‘ij = Ai‘j,k +rn!|kAiAm _riTM
A4ij k= Aij,k +rrink AT _ro( A'im

Covariant Derivative of Tensor Components

(1.18.18)

The covariant derivative formulas can be remembered as follows: the formula contains

the usual partial derivative plus

« for each contravariant index a term containing a Christoffel symbol in which that index
has been inserted on the upper level, multiplied by the tensor component with that index
replaced by a dummy summation index which also appears in the Christoffel symbol

« for each covariant index a term prefixed by a minus sign and containing a Christoffel
symbol in which that index has been inserted on the lower level, multiplied by the
tensor with that index replaced by a dummy which also appears in the Christoffel
symbol.

e the remaining symbol in all of the Christoffel symbols is the index of the variable with
respect to which the covariant derivative is taken.

For example,

A-ijk = Aijk,l +Frinl A-Tk _FjT Aimk Ty A

Ajm
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Note that the covariant derivative of a product obeys the same rules as the ordinary
differentiation, e.g.

(U AX)| =y, [ AK +u AR

il |m
Covariantly Constant Coefficients

It can be shown that the metric coefficients are covariantly constant® { A Problem 5},
gij|k:gij|k: 0,

This implies that the metric (identity) tensor I 'is constant, I, =0 (see Eqn. 1.16.32) —
although its components g are not constant. Similarly, the components of the

permutation tensor, are covariantly constant
—_alk| —
eiklm=e"[,=0.

In fact, specialising the identity tensor I and the permutation tensor E to Cartesian

coordinates, one has g; =g R O, € " _ &, which are clearly constant.

ik =¢© ijk »

Specialising the derivatives, g; |, — iy » € |n— Eij.m » and these are clearly zero.
From §1.17, since if the components of a tensor vanish in one coordinate system, they
vanish in all coordinate systems, the curvilinear coordinate versions vanish also, as stated

above.

The above implies that any time any of these factors appears in a covariant derivative,
they may be extracted, as in (g iju')|k = (g i )J' Iy -

The Riemann-Christoffel Curvature Tensor

Higher-order covariant derivatives are defined by repeated application of the first-order
derivative. This is straight-forward but can lead to algebraically lengthy expressions. For
example, to evaluate V,|,, , first write the first covariant derivative in the form of a second

mn >

order covariant tensor B,
=V. - Fk v, =B
i,m im Yk im

so that

= Bipn — TinBin = Tnn Bic (1.18.19)
= (Vi,m _riir(nvk ),n _ril; (V _rklmvl)_rk (Vi,k _rilkvl)

k,m mn
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The covariant derivative Vv;|,, is obtained by interchaning m and n in this expression.
Now investigate the difference

Vi |mn -V |nm= (Vi,m _riir(nvk ),n _(Vi,n _Fihvk ),m _ril:m (Vk,m _rlimvl )+rilr(n (Vk,n _rklnvl)
~T, (Vi,k _riLVI)+r:m(vi,k _rilkvl)

mn

The last two terms cancel here because of the symmetry of the Christoffel symbol,
leaving

k
in,m

k
Vi |mn —V; |nm: Vi Vi +Finvk,m

I
B

k k
mn -T; Vi _Fimvk,n _V',nm +T

im,n i

- Filr(w (V - Fklmvl )+ Fil:n (Vk,n - Flinvl )

k,m

The order on the ordinary partial differentiation is interchangeable and so the second
order partial derivative terms cancel,

k
in,m

- I_‘klmvl )+ Flif(ﬂ (Vk,n - 1—‘kInVI )

_ k k k
Vi |mn -V |nm_ Vimn -T; Vi _Fimvk,n _Vi,nm +T Vi +Finvk,m

im,n

-Thv

i
>

k,m
After further cancellation one arrives at

v, =RJ v (1.18.20)

-Aimn ¥ j

vl

1mn

where R is the fourth-order Riemann-Christoffel curvature tensor, with (mixed)
components

Rhy =Ty ~ Ty +TET) AT (1.1821)

-imn in,m im,n

Since the Christoffel symbols vanish in a Cartesian coordinate system, then so does R} .
Again, any tensor that vanishes in one coordinate system must be zero in all coordinate
systems, and so R} =0, implying that the order of covariant differentiation is

immaterial, V;| ., =V;|m-
From 1.18.10, it follows that

Rijkl = _Rjikl = _Rijlk = Rklij
Rija + Rigy + Ry =0

The latter of these known as the Bianchi identities. In fact, only six components of the
j
-imn

Riemann-Christoffel tensor are independent; the expression R; =0 then represents 6

equations in the 6 independent components g;; .

This analysis is for a Euclidean space — the usual three-dimensional space in which
quantities can be expressed in terms of a Cartesian reference system — such a space is
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called a flat space. These ideas can be extended to other, curved spaces, so-called
Riemannian spaces (Riemannian manifolds), for which the Riemann-Christoffel tensor
is non-zero (see §1.19).

1.18.3 Differential Operators and Tensors

In this section, the concepts of the gradient, divergence and curl from §1.6 and §1.14 are
generalized to the case of curvilinear components.

Space Curves and the Gradient

Consider first a scalar function f(x), where x = x'e; is the position vector, with

x' = x'(®). Let the curvilinear coordinates depend on some parameter s, ©' =@ (s),
so that x(S) traces out a space curve C.

For example, the cylindrical coordinates ©' = ®’ (S), with r=a ,6=s/c, z=sb/c,
0 < s <27c, generate a helix.

From §1.6.2, a tangent to C is

dx ox d@' ;
T=—=———=7'g,
ds 00©' ds

so that d®' /ds are the contravariant components of T. Thus

ﬂ_ﬂ,i_(i ij,(,j )
ds 00 o 817

For Cartesian coordinates, df /ds = Vf -t (see the discussion on normals to surfaces in
§1.6.4). For curvilinear coordinates, therefore, the Nabla operator of 1.6.11 now reads

i O
V=g'— 1.18.22
g o ( )
so that again the directional derivative is
ar =Vf.1
ds

The Gradient of a Scalar

In general then, the gradient of a scalar valued function @ is defined to be

VO = grad® = %gi Gradient of a Scalar (1.18.23)
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and, with dx = dx'e, = d®'g, , one has

4o =22 4o = v dx (1.18.24)
00!

The Gradient of a Vector

Analogous to Eqn. 1.14.3, the gradient of a vector is defined to be the tensor product of
the derivative du/®’ with the contravariant base vector g’ :

gradu:a—u.@)gj =U; | gi ®gj
00’ Gradient of a Vector  (1.18.25)

=u' l; gi®gj

Note that
.0 . Ou D
V®u= I—.®u= I®—.=U-- I® J=UJ- I® :
g o 8o ilig ®g g ®g;

so that again one arrives at Eqn. 1.14.7, (V ® u)T = gradu.

Again, one has for a space curve parameterised by s,

du Ou ; Ou - - ou )
_— — I:—_T. ! = I®—_ T = I'adll“l'
ds 00 a®'( ) [g a@j g

Similarly, from 1.18.18, the gradient of a second-order tensor is

OA

gradA:a®k ®g‘ =A"| g Qg ®g"

_ i j k

=A g ®g' Og Gradient of a Tensor (1.18.26)
=A'| g ®g; ®g"
= A-ij lk & ®g! ®g"

The Divergence

From 1.14.9, the divergence of a vector is { A Problem 6}

. i 0 i
diva =gradu:I=u'|, (z ﬁ . g‘j Divergence of a Vector (1.18.27)

This is equivalent to the divergence operation involving the Nabla operator, divu =V - u.
An alternative expression can be obtained from 1.18.13 { A Problem 7},
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La(\/ﬁui)_y1 o(au')

divu=u'|= =

Jg 0@ 00’

Similarly, using 1.14.12, the divergence of a second-order tensor is

divA = grad A : 1= A" i (:a—Ajg"j )
00 Divergence of a Tensor (1.18.28)

:AiAj |j gi

Here, one has the alternative definition,

.0 . 0A
V'A: I—.'Az I'—._A“
& 00' 8 00’

;&
so that again one arrives at Eqn. 1.14.14, divA =V -A".
The Curl

The curl of a vector is defined by { A Problem 8}

curlu =V xu = g* xa—uze”ku- g, =e™ aij.gk Curl of a Vector (1.18.29)
o0~ ' 00!

the last equality following from the fact that all the Christoffel symbols cancel out.
Covariant derivatives as Tensor Components

Equation 1.18.25 shows clearly that the covariant derivatives of vector components are
themselves the components of second order tensors. It follows that they can be
manipulated as other tensors, for example,

im

g u, |j=u

and it is also helpful to introduce the following notation:

Ui l'=uiln @™, u''=u'f, g™

The divergence and curl can then be written as { A Problem 10}

divu=u'|=u, |

ijkuj li &« :eijkuj ' g*

curlu =¢e
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Generalising Tensor Calculus from Cartesian to Curvilinear Coordinates

It was seen in §1.16.7 how formulae could be generalised from the Cartesian system to
the corresponding formulae in curvilinear coordinates. In addition, formulae for the
gradient, divergence and curl of tensor fields may be generalised to curvilinear
components simply by replacing the partial derivatives with the covariant derivatives.
Thus:

Cartesian Curvilinear
Gradient Of a scalar field gradg, Vg = 0¢/ ox, ¢, =¢|;=0¢/00'
of a vector field gradu = AU, / OX; u'l;
of a tensor field gradT = OT;; / X, TY,
Divergence of a vector field divu, V-u = ou, / ox, u'l;
of a tensor field divT = aT;; / X T,
Curl of a vector field curlu, Vxu = g, 0u; / 0x, e”kuj l

Table 1.18.1: generalising formulae from Cartesian to General Curvilinear
Coordinates

All the tensor identities derived for Cartesian bases (§1.6.9, §1.14.3) hold also for
curvilinear coordinates, for example { A Problem 11}

grad(av) = agradv + v ® grada
div(vA) = v-divA + A : gradv

1.18.4 Partial Derivatives with respect to a Tensor

The notion of differentiation of one tensor with respect to another can be generalised from
the Cartesian differentiation discussed in §1.15. For example:

oD 8@ oD

) ® =
A aA, g, = oA — g, ®g/
0B,
B _ —¢'®g'®g, ®g, =
A OA,
oA _ OA;

®g'®g, ®g, =6"5]g' ®g' ®g, ®
aA@Agggmgn g ¥Wg ®g g,

=g"®g"®g, ®g,

1.18.5 Orthogonal Curvilinear Coordinates
This section is based on the groundwork carried out in §1.16.9. In orthogonal curvilinear

systems, it is best to write all equations in terms of the covariant base vectors, or in terms
of the corresponding physical components, using the identities (see Eqn. 1.16.45)

Solid Mechanics Part IIT 174 Kelly




Section 1.18

g' =hizgi =higi (no sum) (1.18.30)

The Gradient of a Scalar Field

From the definition 1.18.23 for the gradient of a scalar field, and Eqn. 1.18.30, one has
for an orthogonal curvilinear coordinate system,

V(I)—Laﬂ +La£ +La£
h 00 & hi oo S h e O
_iaﬁ" +L_aq) O +L_aq) O
h 00' &' " h, 60252 h, s0® &

(1.18.31)

The Christoffel Symbols

The Christoffel symbols simplify considerably in orthogonal coordinate systems. First,
from the definition 1.18.4,

= er B (1.18.32)

Note that the introduction of the scale factors h into this and the following equations
disrupts the summation and index notation convention used hitherto. To remain
consistent, one should use the metric coefficients and leave this equation in the form

k_agi

km
i~ o) ‘0 8n

Now

0 0g; 2i
a@] (gl g|) (a®] gl] L

and g, -g, = h’ so, in terms of the derivatives of the scale factors,

i _ 1k _ 1 oh,
I, =T} |k:i “h 0T (no sum) (1.18.33)
Similarly, it can be shown that { A Problem 14}
heTy =—h’T} =—hiT} =h’T}, when i= j =k (1.18.34)

so that the Christoffel symbols are zero when the indices are distinct, so that there are
only 21 non-zero symbols of the 27. Further, { A Problem 15}
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__h on
i hoe’

ik (nosum) (1.18.35)

ij

rili( - rk|i:

From the symmetry condition (see Eqn. 1.18.4), only 15 of the 21 non-zero symbols are
distinct:

1 1 _ I 1 _ I 1 1
Fll’ F12 _le’ 1—‘13 _r31’r22’ I_‘33
2 2 2 2 2 2 2
1—‘119 1—‘12 - rzlﬂ 1—‘22’ 1—‘23 _F329 1—‘33
3 3 _ 13 3 3 _ 3 3
1—‘1171—‘13 _r31>r22’r23 _r32’r33

Note also that these are related to each other through the relation between (1.18.33,
1.18.35), i.e.

h? . .
Iy =—h—'21“i'k, i=k (nosum)
k
so that
rlll’ rzzza F333
h2 h2 h?2
1 1 2 1 1 3 2 2 1
L, =15, :_h_zzrll’ I =15 z_h_irm I, =15 =_h_12F22 (1.18.36)
I I 2
h?2 h?2 h2
r223 = r322 = ——32F232, 1—‘133 = r331 = ——12F313, F233 = r332 = ——22F323
2 3 3

The Gradient of a Vector

From the definition 1.18.25, the gradient of a vector is

! V' g ®g; (nosumover h;) (1.18.37)

gradv = V' 8 ®g! :E

In terms of physical components,

1( ov |

gradv = F(@wkrm Jgi ®g;
j
i

\ (1.18.38)
= _[av_ —Tivi +lr;jv<k>Jgi ®8,

1
hle@? 7 h,
The Divergence of a Vector

From the definition 1.18.27, the divergence of a vector is divv = V' |i or { AProblem 16}
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. (1) (2) (3)
diVVZﬂi.+Vka'i = ! 6(v h12h3)+a(v hzlh3)+6(v h;hz)
00’ h,h,h; 00 00 00

(1.18.39)

The Curl of a Vector

From §1.16.10, the permutation symbol in orthogonal curvilinear coordinates reduceS to

T (1.18.40)

where & = & 18 the Cartesian permutation symbol. From the definition 1.18.29, the

curl of a vector is then

1 ov, 1 Tov, oy
curlv = gijk -g, = = 5 g3+...
hhh, 5% 50 % “hhh, |20 o@

1 {8(V2h§)_ 5(V'hf)}g3 +} (1.18.41)

“hhh || @ 00

1 [[alv®n,) alvn )]
:hlhzhs{{ o a@zl}hsgﬁ“}

or

hlgl h2g2 h3g3
curlv = ! 0 0 0 (1.18.42)

h,h,h, o'  00* 00’
1 2 3
h1V<> h2V< ) h3V< )

The Laplacian

From the above results, the Laplacian is given by
V2D = V.V = 1 o (h,h, o0 N o (hh, oo N o (hh, oD
hhh,|6@'\ h 00') 60°\ h, 60*) 60’ h, 00’

Divergence of a Tensor

From the definition 1.18.28, and using 1.16.59, 1.16.62 { A Problem 17}
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d

. n i 8 i m ma-j i
d1VA=Ai‘|,- g :{ﬁ"_rr:ﬂAi —FijAm’}g

:{i 0 (l A<ij>]+LFj.A<im> _hy FmA<mj>}§.
i h mj hh 1 1

m it

(1.18.43)

Examples
1. Cylindrical Coordinates

Gradient of a Scalar Field:
Vo oD . 1 oD . od .

=8t 58+ =8
0'" eree,” e’

Christoffel symbols:
With h, =1, h, =®', h, =1, there are two distinct non-zero symbols:
lez =-0'
1
2 2
Flz = le = @
Derivatives of the base vectors:
The non-zero derivatives are

o8 _0g | %8 __g

0’ 0 0 5
and in terms of physical components, the non-zero derivatives are
g _, 08 _ .

1

e’ 5 et
which agree with 1.6.32.

The Divergence (see 1.6.33), Curl (see 1.6.34) and Gradient { A Problem 18} (see
1.14.18) of a vector:

ov Vv ov ov
divy = _<11>+<_11>+L1 <22> N <33>
00 ® 06 00 00
g1 ®1g2 éz
1la a0
e 00> 00’
MOREPNC I
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Ny o o Ny Ny

gradv=ﬁgl ®g1 +wg2 ®g1 + a®1 g; ®g1
1 6V<1> n n 1 aV<2> A A
*@[W‘V@]& o +a(a@z D

Ly ) s Moy o Moy o0 Mg
+@ 20° g3®g2+a®3 g|®g3+a®3 g2®g3+6®3 g,®g,

The Divergence of a tensor { A Problem 19} (see 1.14.19):

. oA 1 A" aAl™ AT _ AP
WA e e T T e [®
oA 1 oA oAl RN LAl
PN P 3t 1 8>
00" ' ©' 00 a0 ®

3 (83

oABY AR oAl Al
o ol Tal ez T aas
00 ® 0 0 00

2. Spherical Coordinates

Gradient of a Scalar Field:
od . 1 00 . 1 oD .

VO =——-g +— +
20 2 "o 0072 T 9'sne? 00 >

Christoffel symbols:
With h, =1,h, =0®', h, =@'sin ®", there are six distinct non-zero symbols:
r, =-0' T =-0'sin>e>
1 .
I) =03 =—,T3 =-sin®”cos®’

1
3 3 3 3 2
I; =173 =—, I';; =T3, =cot®

Derivatives of the base vectors:
The non-zero derivatives are
g, :%:Lg og, _ogs 1 8 __g

002 00 0'°Y 0 e 6'" /e’

1

0 . .
8 __@'sin? ®’g, —sin®’ cosO’g,

%8, _ %8 _ or0g,,

00, 00, 00,
and in terms of physical components, the non-zero derivatives are

g, . 0% . .. 08, .

Wzgz, ﬁ:sm@ng ﬁ:_gl

agz _ 026 aé3 - sin®%% — 026

0’ =cos®°g,, T =-sin®°g, —cosO°g,

which agree with 1.6.37.
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The Divergence (see 1.6.38), Curl and Gradient of a Vector:
1)? . 2
1 (3((@ ) V<1>)+ 1 8(51n® V<2>)+ 1 N3,

divv =
(@1)2 00! 0'sin®>  00° 0'sin®’ 60°
g ©0'g, 0'sinO’g,
curlv = ! : 0 0
@)sne’ @ @ @
vl ev®  @'sin@v®
avl . . 1 o Vi . N
gradv=a—(§fg1®gl+[@£<§—§ g ®g,

®'sin®’ 60° 6! 00"

YR o ’
+[ | OV +ﬂ}§z ®g, +[; 5 ~eoto” ﬁng e

1 ov Vs ). OV .
+[— W _ﬁJ& ®g, +ﬁg2 ®g,

@' 0’ @ 0'sin®2 60’ o'
ov ov
B oa L LY s
+ 50 g,®g +aﬁg3 ®g,
1 o Yy E P
S B E +——+cot®" — g, ®
(@)lsm@2 00 O o |58
The Divergence of a tensor { A Problem 20}
doa o OAY v aA™ 1 A" 2A" reot@’A™ AR - AT |
00" O 90> 0'sin®’ /0° o' &
oA 1 A I oA™ A" 1 2ARY s eor@ (AP - APV
—t T 2 ;T 1 g
00 ® 00 ® sin®° 0O ®
Lot 1 ™ 1 oA AW oA +eot® (AP + AP )|
00"  ©'sin®’ 0 O'sin®> /0° Q' &

1.18.6 Problems

1 Show that the Christoffel symbol of the second kind is symmetric, i.e. Fi;‘ = F}‘i , and
og;
_j . g k .
1%,
2 Consider the scalar-valued function ® = (Au)- v=AuU 'v1. By taking the gradient of
this function, and using the relation for the covariant derivative of A, i.e.
Aile=Ajx — Ty Auj _rjmk Ay > show that
alAu'v!)

o~ AUVl

that it is explicitly given by Fi}( =
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i.e. the partial derivative and covariant derivative are equivalent for a scalar-valued
function.

Prove 1.18.9:
g, N U
(1) 6(“):( =Ly + s (i1) ag)k =-9"Ty, —9""T,

[Hint: for (ii), first differentiate Eqn. 1.16.10, g" 9y = 5; .

Derive 1.18.13, relating the Christoffel symbols to the partial derivatives of \/5 and
o9 _ 9 O,

201 o9, 00

Use the definition of the covariant derivative of second order tensor components, Eqn.
1.18.18, to show that (i) g;|,=0 and (ii) g"|,=0.

Use the definition of the gradient of a vector, 1.18.25, to show that

divu = gradu:I=u'}|,.

Derive the expression diva = (1/ \/E )6(\/5 u' )/ 00!

Use 1.16.54 to show that g* x (ou/60* )=e™u, |, g, .

Use the relation £%™&,,, = 5)6% —555) (see Eqn. 1.3.19) to show that

g 2, g3

curl(u X v) = o +T) o +T5 G_gf +T8

1 2

(U2V3 —U3V2) _@1\/3 —U3V1) (UIVZ —uy!
Show that (i) u' [;=u; [, (ii) eijkuj i 8« :eijkuj ' g

Show that

(1) grad(av) = agradv + v® grada, (ii) diV(VA) =v-divA + A : gradv

[Hint: you might want to use the relation aT-b =T:(a®b) for the second of these.]

1og(\/5 ) [Hint: begin by using the chain rule

Derive the relation 6(trA)/dA =T in curvilinear coordinates.

Consider a (two dimensional) curvilinear coordinate system with covariant base

vectors g, = ©’e, —2e,, g, =0le,.

(a) Evaluate the transformation equations x' = x'(®') and the Jacobian J.

(b) Evaluate the inverse transformation equations @' = ©' (Xj ) and the contravariant
base vectors g' .

(c) Evaluate the metric coefficients g, g U and the function g:

(d) Evaluate the Christoffel symbols (only 2 are non-zero
(e) Consider the scalar field ® =®' + ®>. Evaluate grad®.

(f) Consider the vector fields u=g, +®°g,, v= —(G)l)zg1 +2¢g,:
(i) Evaluate the covariant components of the vectors u and v
(i1) Evaluate divu, divv
(ii))Evaluate curlu, curlv
(iv)Evaluate gradu, gradv

(g) Verify the vector identities
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Odivu+grad® -u

div(du
curl (®u) = ®curlu + grad ® xu

)
)
div (u X V)
)
)

curlu—u-curlv

curl (grad®

div(curlu
(h) Verify the identities
grad(CDV) = {gradv + v ® gradd

V .
]
0

grad(u-v) = (gradu)' v + (gradv)' u

div(u® v) = (gradu)v + (div v)u

curl(ux v) = udivv — vdivu + (gradu )v — (gradv )u
(i) Consider the tensor field

Ay ofeee)

Evaluate all contravariant and mixed components of the tensor A

Use the fact that g, -g; =0, k =i to show that h;T} = —hizl“}k: . Then permutate the
indices to show that h{I} =—-h’T =—h'T\) =hT}, when i j=k.
Use the relation
%(gi 'gj)zo’ i#]

2
to derive ') = —h—izl“i} .

j
Derive the expression 1.18.39 for the divergence of a vector field v.
Derive 1.18.43 for the divergence of a tensor in orthogonal coordinate systems.
Use the expression 1.18.38 to derive the expression for the gradient of a vector field
in cylindrical coordinates.
Use the expression 1.18.43 to derive the expression for the divergence of a tensor
field in cylindrical coordinates.
Use the expression 1.18.43 to derive the expression for the divergence of a tensor
field in spherical coordinates.
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