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1.14 Tensor Calculus I: Tensor Fields 
 
In this section, the concepts from the calculus of vectors are generalised to the calculus of 
higher-order tensors. 
 
 
1.14.1 Tensor-valued Functions 
 
Tensor-valued functions of a scalar 
 
The most basic type of calculus is that of tensor-valued functions of a scalar, for example 
the time-dependent stress at a point, )(tSS  .  If a tensor T depends on a scalar t, then 
the derivative is defined in the usual way, 
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which turns out to be 
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The derivative is also a tensor and the usual rules of differentiation apply, 
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For example, consider the time derivative of TQQ , where Q is orthogonal.  By the 

product rule, using IQQ T , 
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Thus, using Eqn. 1.10.3e 
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which shows that TQQ  is a skew-symmetric tensor. 
 
 
1.14.2 Vector Fields 
 
The gradient of a scalar field and the divergence and curl of vector fields have been seen 
in §1.6.  Other important quantities are the gradient of vectors and higher order tensors 
and the divergence of higher order tensors.  First, the gradient of a vector field is 
introduced.  
 
The Gradient of a Vector Field 
 
The gradient of a vector field is defined to be the second-order tensor 
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In matrix notation, 
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One then has 
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which is analogous to Eqn 1.6.10 for the gradient of a scalar field.  As with the gradient 
of a scalar field, if one writes xd  as exd , where e is a unit vector, then 
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Thus the gradient of a vector field a is a second-order tensor which transforms a unit 
vector into a vector describing the gradient of a in that direction. 
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As an example, consider a space curve parameterised by s, with unit tangent vector 
/d dsτ x  (see §1.6.2); one has 
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Although for a scalar field grad  is equivalent to  , note that the gradient defined in 
1.14.3 is not the same as a .  In fact, 
 

  aa gradT      (1.14.7) 
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These two different definitions of the gradient of a vector, jiji xa ee  /  and 

jiij xa ee  / , are both commonly used.  In what follows, they will be distinguished by 

labeling the former as agrad  (which will be called the gradient of a) and the latter as 
a . 

 
Note the following: 
 in much of the literature, a  is written in the contracted form a , but the more 

explicit version is used here. 
 some authors define the operation of   on a vector or tensor    not as in 1.14.8, but 
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Example (The Displacement Gradient) 
 
Consider a particle 0p  of a deforming body at position X (a vector) and a neighbouring 

point 0q  at position Xd  relative to 0p , Fig. 1.14.1.  As the material deforms, these two 

particles undergo displacements of, respectively, )(Xu  and )( XXu d .  The final 

positions of the particles are fp  and fq .  Then 
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Figure 1.14.1: displacement of material particles 
 
Thus the gradient of the displacement field u encompasses the mapping of (infinitesimal) 
line elements in the undeformed body into line elements in the deformed body.  For 
example, suppose that 0, 32

2
21  uukXu .  Then 
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A line element iidXd eX   at iiX eX   maps onto 

 
  

122

332211212

2

2

eX

eeeeeXx

dXkXd

dXdXdXkXdd




 

 
The deformation of a box is as shown in Fig. 1.14.2.  For example, the vector 2eX dd   

(defining the left-hand side of the box) maps onto 212 eex   dkd . 
 

 
 

Figure 1.14.2: deformation of a box 
 
Note that the map xX dd   does not specify where in space the line element moves to.  
It translates too according to uXx  . 

 ■  
 
 
The Divergence and Curl of a Vector Field 
 
The divergence and curl of vectors have been defined in §1.6.6, §1.6.8.  Now that the 
gradient of a vector has been introduced, one can re-define the divergence of a vector 
independent of any coordinate system: it is the scalar field given by the trace of the 
gradient {▲Problem 4},  
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aIaaa  :grad)grad(trdiv  Divergence of a Vector Field   (1.14.9) 

 
Similarly, the curl of a can be defined to be the vector field given by twice the axial 
vector of the antisymmetric part of agrad . 
 
 
1.14.3 Tensor Fields 
 
A tensor-valued function of the position vector is called a tensor field, )(xkijT  .  

 
The Gradient of a Tensor Field 
 
The gradient of a second order tensor field T is defined in a manner analogous to that of 
the gradient of a vector, Eqn. 1.14.2.  It is the third-order tensor 
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This differs from the quantity 
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The Divergence of a Tensor Field 
 
Analogous to the definition 1.14.9, the divergence of a second order tensor T is defined to 
be the vector 
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The divergence of a tensor can also be equivalently defined as that vector field which 
satisfies the relation 
 

   vTvT Tdivdiv   
 
for all constant vectors v. 
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so that 
 

Tdiv TT                (1.14.14) 
 
As with the gradient of a vector, both   ijij xT e /  and   ijji xT e /  are commonly used 

as definitions of the divergence of a tensor.  They are distinguished here by labelling the 
former as Tdiv  (called here the divergence of T) and the latter as T .  Note that the 
operations Tdiv  and T  are equivalent for the case of T symmetric. 
 
Note the following 
 some authors define the operation of   on a vector or tensor    not as in (1.14.13), 

but through     / i ix      e  so that  div /ij j iT x    T T e . 

 using the convention that the “dot” is omitted in the contraction of tensors, one should 
write T  for T , but the “dot” is retained here because of the familiarity of this latter 
notation from vector calculus. 

 another operator is the Hessian,  2 / i j i jx x     e e . 

 
Identities 
 
Here are some important identities involving the gradient, divergence and curl 
{▲Problem 5}: 
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Note also the following identities, which involve the Laplacian of both vectors and 
scalars: 
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1.14.4 Cylindrical and Spherical Coordinates 
 
Cylindrical and spherical coordinates were introduced in §1.6.10 and the gradient and 
Laplacian of a scalar field and the divergence and curl of vector fields were derived in 
terms of these coordinates.  The calculus of higher order tensors can also be cast in terms 
of these coordinates. 
 
For example, from 1.6.30, the gradient of a vector in cylindrical coordinates is 

 Tgrad uu   with 
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and from 1.6.30, 1.14.12, the divergence of a tensor in cylindrical coordinates is 
{▲Problem 6} 
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1.14.5 The Divergence Theorem 
 
The divergence theorem 1.7.12 can be extended to the case of higher-order tensors.  
Consider an arbitrary differentiable tensor field ),( tT kij x  defined in some finite region of 

physical space.  Let S be a closed surface bounding a volume V in this space, and let the 
outward normal to S be n.  The divergence theorem of Gauss then states that 
 

 




V k

kij

S

kkij dV
x

T
dSnT 

     (1.14.20) 

 
For a second order tensor, 
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One then has the important identities {▲Problem 7} 
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1.14.6 Formal Treatment of Tensor Calculus 
 
Following on from §1.6.12, here a more formal treatment of the tensor calculus of fields 
is briefly presented. 
 
Vector Gradient 
 
What follows is completely analogous to Eqns. 1.6.46-49. 
 
A vector field VE 3:v  is differentiable at a point 3Ex  if there exists a second 
order tensor   ED xv  such that 
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In that case, the tensor  xvD  is called the derivative (or gradient) of v at x (and is given 

the symbol  xv ). 
 
Setting wh   in 1.14.23, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
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Using the chain rule as in §1.6.11, Eqn. 1.14.24 can be expressed in terms of the 
Cartesian basis  ie , 
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This must be true for all w and so, in a Cartesian basis,  
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which is Eqn. 1.14.3. 
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1.14.7 Problems 
 
1. Consider the vector field 3

2
22

2
31

2
1 eeev xxx  . (a) find the matrix representation of 

the gradient of v, (b) find the vector  vvgrad . 

2. If 312211321 eeeu xxxxxx  , determine u2 . 

3. Suppose that the displacement field is given by 1321 ,1,0 Xuuu  .  By using 

ugrad , sketch a few (undeformed) line elements of material and their positions in the 
deformed configuration. 

4. Use the matrix form of ugrad  and u  to show that the definitions 
(i)  )grad(trdiv aa                   

 (ii) ωa 2curl  , where ω  is the axial vector of the skew part of agrad  
agree with the definitions 1.6.17, 1.6.21 given for Cartesian coordinates. 

5. Prove the following: 
(i)    gradgradgrad  vvv  

(ii)       uvvuvu TT gradgradgrad   

(iii)     uvvuvu )div(graddiv   

(iv)      uvvuuvvuvu gradgraddivdivcurl   

(v)   AAA divgraddiv    

(vi)    vAAvAv gradtrdivdiv T   

(vii)   BABAAB :graddivdiv   

(viii)        graddivdiv BAABBA   

(ix)    gradgradgrad  AAA  
6. Derive Eqn. 1.14.19, the divergence of a tensor in cylindrical coordinates. 
7. Deduce the Divergence Theorem identities in 1.14.22 [Hint: write them in index 

notation.] 
 


