1.14 Tensor Calculus I: Tensor Fields

In this section, the concepts from the calculus of vectors are generalised to the calculus of higher-order tensors.

1.14.1 Tensor-valued Functions

Tensor-valued functions of a scalar

The most basic type of calculus is that of tensor-valued functions of a scalar, for example the time-dependent stress at a point, $\mathbf{S}=\mathbf{S}(t)$. If a tensor \mathbf{T} depends on a scalar t, then the derivative is defined in the usual way,

$$
\frac{d \mathbf{T}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{T}(t+\Delta t)-\mathbf{T}(t)}{\Delta t}
$$

which turns out to be

$$
\begin{equation*}
\frac{d \mathbf{T}}{d t}=\frac{d T_{i j}}{d t} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.14.1}
\end{equation*}
$$

The derivative is also a tensor and the usual rules of differentiation apply,

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{T}+\mathbf{B}) & =\frac{d \mathbf{T}}{d t}+\frac{d \mathbf{B}}{d t} \\
\frac{d}{d t}(\alpha(t) \mathbf{T}) & =\alpha \frac{d \mathbf{T}}{d t}+\frac{d \alpha}{d t} \mathbf{T} \\
\frac{d}{d t}(\mathbf{T a}) & =\mathbf{T} \frac{d \mathbf{a}}{d t}+\frac{d \mathbf{T}}{d t} \mathbf{a} \\
\frac{d}{d t}(\mathbf{T B}) & =\mathbf{T} \frac{d \mathbf{B}}{d t}+\frac{d \mathbf{T}}{d t} \mathbf{B} \\
\frac{d}{d t}\left(\mathbf{T}^{\mathrm{T}}\right) & =\left(\frac{d \mathbf{T}}{d t}\right)^{\mathrm{T}}
\end{aligned}
$$

For example, consider the time derivative of $\mathbf{Q} \mathbf{Q}^{\mathbf{T}}$, where \mathbf{Q} is orthogonal. By the product rule, using $\mathbf{Q Q}^{\mathrm{T}}=\mathbf{I}$,

$$
\frac{d}{d t}\left(\mathbf{Q} \mathbf{Q}^{\mathrm{T}}\right)=\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathrm{T}}+\mathbf{Q} \frac{d \mathbf{Q}^{\mathrm{T}}}{d t}=\frac{d \mathbf{Q}}{d t} \mathbf{Q}^{\mathrm{T}}+\mathbf{Q}\left(\frac{d \mathbf{Q}}{d t}\right)^{\mathrm{T}}=\mathbf{0}
$$

Thus, using Eqn. 1.10.3e

$$
\begin{equation*}
\dot{\mathbf{Q}} \mathbf{Q}^{\mathrm{T}}=-\mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}}=-\left(\dot{\mathbf{Q}} \mathbf{Q}^{\mathrm{T}}\right)^{\mathrm{T}} \tag{1.14.2}
\end{equation*}
$$

which shows that $\dot{\mathbf{Q}} \mathbf{Q}^{\mathrm{T}}$ is a skew-symmetric tensor.

1.14.2 Vector Fields

The gradient of a scalar field and the divergence and curl of vector fields have been seen in §1.6. Other important quantities are the gradient of vectors and higher order tensors and the divergence of higher order tensors. First, the gradient of a vector field is introduced.

The Gradient of a Vector Field

The gradient of a vector field is defined to be the second-order tensor

$$
\begin{equation*}
\operatorname{grada} \equiv \frac{\partial \mathbf{a}}{\partial x_{j}} \otimes \mathbf{e}_{j}=\frac{\partial a_{i}}{\partial x_{j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \quad \text { Gradient of a Vector Field } \tag{1.14.3}
\end{equation*}
$$

In matrix notation,

$$
\operatorname{grad} \mathbf{a}=\left[\begin{array}{lll}
\frac{\partial a_{1}}{\partial x_{1}} & \frac{\partial a_{1}}{\partial x_{2}} & \frac{\partial a_{1}}{\partial x_{3}} \tag{1.14.4}\\
\frac{\partial a_{2}}{\partial x_{1}} & \frac{\partial a_{2}}{\partial x_{2}} & \frac{\partial a_{2}}{\partial x_{3}} \\
\frac{\partial a_{3}}{\partial x_{1}} & \frac{\partial a_{3}}{\partial x_{2}} & \frac{\partial a_{3}}{\partial x_{3}}
\end{array}\right]
$$

One then has

$$
\begin{align*}
\operatorname{grada} d \mathbf{x} & =\frac{\partial a_{i}}{\partial x_{j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\left(d x_{k} \mathbf{e}_{k}\right) \\
& =\frac{\partial a_{i}}{\partial x_{j}} d x_{j} \mathbf{e}_{i} \tag{1.14.5}\\
& =d \mathbf{a} \\
& =\mathbf{a}(\mathbf{x}+d \mathbf{x})-\mathbf{a}(d \mathbf{x})
\end{align*}
$$

which is analogous to Eqn 1.6 .10 for the gradient of a scalar field. As with the gradient of a scalar field, if one writes $d \mathbf{x}$ as $d \mathbf{d} \mathbf{e}$, where \mathbf{e} is a unit vector, then

$$
\begin{equation*}
\operatorname{grad} \mathbf{a} \mathbf{e}=\left(\frac{d \mathbf{a}}{d x}\right)_{\text {in e direction }} \tag{1.14.6}
\end{equation*}
$$

Thus the gradient of a vector field \mathbf{a} is a second-order tensor which transforms a unit vector into a vector describing the gradient of a in that direction.

As an example, consider a space curve parameterised by s, with unit tangent vector $\boldsymbol{\tau}=d \mathbf{x} / d s$ (see §1.6.2); one has

$$
\frac{d \mathbf{a}}{d s}=\frac{\partial \mathbf{a}}{\partial x_{j}} \frac{d x_{j}}{d s}=\frac{\partial \mathbf{a}}{\partial x_{j}}\left(\boldsymbol{\tau} \cdot \mathbf{e}_{j}\right)=\left(\frac{\partial \mathbf{a}}{\partial x_{j}} \otimes \mathbf{e}_{j}\right) \boldsymbol{\tau}=\operatorname{grad} \mathbf{\tau} .
$$

Although for a scalar field grad ϕ is equivalent to $\nabla \phi$, note that the gradient defined in 1.14.3 is not the same as $\nabla \otimes \mathbf{a}$. In fact,

$$
\begin{equation*}
(\nabla \otimes \mathbf{a})^{\mathrm{T}}=\operatorname{grad} \mathbf{a} \tag{1.14.7}
\end{equation*}
$$

since

$$
\begin{equation*}
\nabla \otimes \mathbf{a}=\mathbf{e}_{i} \frac{\partial}{\partial x_{i}} \otimes a_{j} \mathbf{e}_{j}=\frac{\partial a_{j}}{\partial x_{i}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.14.8}
\end{equation*}
$$

These two different definitions of the gradient of a vector, $\partial a_{i} / \partial x_{j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}$ and $\partial a_{j} / \partial x_{i} \mathbf{e}_{i} \otimes \mathbf{e}_{j}$, are both commonly used. In what follows, they will be distinguished by labeling the former as grada (which will be called the gradient of \mathbf{a}) and the latter as $\nabla \otimes \mathbf{a}$.

Note the following:

- in much of the literature, $\nabla \otimes \mathbf{a}$ is written in the contracted form $\nabla \mathbf{a}$, but the more explicit version is used here.
- some authors define the operation of $\nabla \otimes$ on a vector or tensor (\bullet) not as in 1.14.8, but through $\nabla \otimes(\bullet) \equiv\left(\partial(\bullet) / \partial x_{i}\right) \otimes \mathbf{e}_{i}$ so that $\nabla \otimes \mathbf{a}=\operatorname{grad} \mathbf{a}=\left(\partial a_{i} / \partial x_{j}\right) \mathbf{e}_{i} \otimes \mathbf{e}_{j}$.

Example (The Displacement Gradient)

Consider a particle p_{0} of a deforming body at position \mathbf{X} (a vector) and a neighbouring point q_{0} at position $d \mathbf{X}$ relative to p_{0}, Fig. 1.14.1. As the material deforms, these two particles undergo displacements of, respectively, $\mathbf{u}(\mathbf{X})$ and $\mathbf{u}(\mathbf{X}+d \mathbf{X})$. The final positions of the particles are p_{f} and q_{f}. Then

$$
\begin{aligned}
d \mathbf{x} & =d \mathbf{X}+\mathbf{u}(\mathbf{X}+d \mathbf{X})-\mathbf{u}(\mathbf{X}) \\
& =d \mathbf{X}+d \mathbf{u}(\mathbf{X}) \\
& =d \mathbf{X}+\operatorname{grad} \mathbf{u} d \mathbf{X}
\end{aligned}
$$

Figure 1.14.1: displacement of material particles
Thus the gradient of the displacement field \mathbf{u} encompasses the mapping of (infinitesimal) line elements in the undeformed body into line elements in the deformed body. For example, suppose that $u_{1}=k X_{2}^{2}, u_{2}=u_{3}=0$. Then

$$
\operatorname{grad} \mathbf{u}=\frac{\partial u_{i}}{\partial X_{j}}=\left[\begin{array}{ccc}
0 & 2 k X_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=2 k X_{2} \mathbf{e}_{1} \otimes \mathbf{e}_{2}
$$

A line element $d \mathbf{X}=d X_{i} \mathbf{e}_{i}$ at $\mathbf{X}=X_{i} \mathbf{e}_{i}$ maps onto

$$
\begin{aligned}
d \mathbf{x} & =d \mathbf{X}+\left(2 k X_{2} \mathbf{e}_{1} \otimes \mathbf{e}_{2}\right)\left(d X_{1} \mathbf{e}_{1}+d X_{2} \mathbf{e}_{2}+d X_{3} \mathbf{e}_{3}\right) \\
& =d \mathbf{X}+2 k X_{2} d X_{2} \mathbf{e}_{1}
\end{aligned}
$$

The deformation of a box is as shown in Fig. 1.14.2. For example, the vector $d \mathbf{X}=d \alpha \mathbf{e}_{2}$ (defining the left-hand side of the box) maps onto $d \mathbf{x}=2 k \alpha d \alpha \mathbf{e}_{1}+\alpha \mathbf{e}_{2}$.

Figure 1.14.2: deformation of a box
Note that the map $d \mathbf{X} \rightarrow d \mathbf{x}$ does not specify where in space the line element moves to. It translates too according to $\mathbf{x}=\mathbf{X}+\mathbf{u}$.

The Divergence and Curl of a Vector Field

The divergence and curl of vectors have been defined in §1.6.6, §1.6.8. Now that the gradient of a vector has been introduced, one can re-define the divergence of a vector independent of any coordinate system: it is the scalar field given by the trace of the gradient $\{\mathbf{\Delta}$ Problem 4\},

$$
\begin{equation*}
\operatorname{div} \mathbf{a}=\operatorname{tr}(\operatorname{grada})=\operatorname{grad} \mathbf{a}: \mathbf{I}=\nabla \cdot \mathbf{a} \quad \text { Divergence of a Vector Field } \tag{1.14.9}
\end{equation*}
$$

Similarly, the curl of a can be defined to be the vector field given by twice the axial vector of the antisymmetric part of grada.

1.14.3 Tensor Fields

A tensor-valued function of the position vector is called a tensor field, $T_{i j \ldots k}(\mathbf{x})$.

The Gradient of a Tensor Field

The gradient of a second order tensor field \mathbf{T} is defined in a manner analogous to that of the gradient of a vector, Eqn. 1.14.2. It is the third-order tensor

$$
\begin{equation*}
\operatorname{grad} \mathbf{T}=\frac{\partial \mathbf{T}}{\partial x_{k}} \otimes \mathbf{e}_{k}=\frac{\partial T_{i j}}{\partial x_{k}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \tag{1.14.10}
\end{equation*}
$$

This differs from the quantity

$$
\begin{equation*}
\nabla \otimes \mathbf{T}=\mathbf{e}_{i} \frac{\partial}{\partial x_{i}} \otimes\left(T_{j \mathbf{k}} \mathbf{e}_{j} \otimes \mathbf{e}_{k}\right)=\frac{\partial T_{j k}}{\partial x_{i}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \tag{1.14.11}
\end{equation*}
$$

The Divergence of a Tensor Field

Analogous to the definition 1.14.9, the divergence of a second order tensor \mathbf{T} is defined to be the vector

$$
\begin{aligned}
\operatorname{div} \mathbf{T} & =\operatorname{grad} \mathbf{T}: \mathbf{I}=\frac{\partial \mathbf{T}}{\partial x_{i}} \mathbf{e}_{i}=\frac{\partial\left(T_{j k} \mathbf{e}_{j} \otimes \mathbf{e}_{k}\right)}{\partial x_{i}} \mathbf{e}_{i} \\
& =\frac{\partial T_{i j}}{\partial x_{j}} \mathbf{e}_{i}
\end{aligned}
$$

Divergence of a Tensor (1.14.12)

One also has

$$
\begin{equation*}
\nabla \cdot \mathbf{T}=\mathbf{e}_{i} \frac{\partial}{\partial x_{i}} \cdot\left(T_{j k} \mathbf{e}_{j} \otimes \mathbf{e}_{k}\right)=\frac{\partial T_{j i}}{\partial x_{j}} \mathbf{e}_{i} \tag{1.14.13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\operatorname{div} \mathbf{T}=\nabla \cdot \mathbf{T}^{\mathrm{T}} \tag{1.14.14}
\end{equation*}
$$

As with the gradient of a vector, both $\left(\partial T_{i j} / \partial x_{j}\right) \mathbf{e}_{i}$ and $\left(\partial T_{j i} / \partial x_{j}\right) \mathbf{e}_{i}$ are commonly used as definitions of the divergence of a tensor. They are distinguished here by labelling the
former as $\operatorname{div} \mathbf{T}$ (called here the divergence of \mathbf{T}) and the latter as $\nabla \cdot \mathbf{T}$. Note that the operations div \mathbf{T} and $\nabla \cdot \mathbf{T}$ are equivalent for the case of \mathbf{T} symmetric.

The Laplacian of a scalar θ is the scalar $\nabla^{2} \theta \equiv \nabla \cdot \nabla \theta$, in component form $\partial^{2} \theta / \partial x_{i}^{2}$ (see section 1.6.7). Similarly, the Laplacian of a vector \mathbf{v} is the vector $\nabla^{2} \mathbf{v} \equiv \nabla \cdot \nabla \mathbf{v}$, in component form $\partial^{2} v_{i} / \partial x_{j}^{2}$. The Laplacian of a tensor \mathbf{T} in component form is similarly $\partial^{2} T_{i j} / \partial x_{k}^{2}$, which can be defined as that tensor field which satisfies the relation

$$
\left(\nabla^{2} \mathbf{T}\right) \cdot \mathbf{v}=\nabla^{2}(\mathbf{T} \mathbf{v})
$$

for all constant vectors \mathbf{v}.

Note the following

- some authors define the operation of $\nabla \cdot$ on a vector or tensor (\bullet) not as in (1.14.13), but through $\nabla \cdot(\bullet) \equiv\left(\partial(\bullet) / \partial x_{i}\right) \cdot \mathbf{e}_{i}$ so that $\nabla \cdot \mathbf{T}=\operatorname{div} \mathbf{T}=\left(\partial T_{i j} / \partial x_{j}\right) \mathbf{e}_{i}$.
- using the convention that the "dot" is omitted in the contraction of tensors, one should write $\nabla \mathbf{T}$ for $\nabla \cdot \mathbf{T}$, but the "dot" is retained here because of the familiarity of this latter notation from vector calculus.
- another operator is the Hessian, $\nabla \otimes \nabla=\left(\partial^{2} / \partial x_{i} \partial x_{j}\right) \mathbf{e}_{i} \otimes \mathbf{e}_{j}$.

Identities

Here are some important identities involving the gradient, divergence and curl
\{ $\boldsymbol{\Delta}$ Problem 5\}:

$$
\begin{align*}
\operatorname{grad}(\phi \mathbf{v}) & =\phi \operatorname{grad} \mathbf{v}+\mathbf{v} \otimes \operatorname{grad} \phi \\
\operatorname{grad}(\mathbf{u} \cdot \mathbf{v}) & =(\operatorname{gradu})^{\mathrm{T}} \mathbf{v}+(\operatorname{grad} \mathbf{v})^{\mathrm{T}} \mathbf{u} \tag{1.14.15}\\
\operatorname{div}(\mathbf{u} \otimes \mathbf{v}) & =(\operatorname{grad} \mathbf{u}) \mathbf{v}+(\operatorname{div} \mathbf{v}) \mathbf{u} \\
\operatorname{curl}(\mathbf{u} \times \mathbf{v}) & =\mathbf{u d i v v}-\mathbf{v d i v u}+(\operatorname{grad} \mathbf{u}) \mathbf{v}-(\operatorname{grad} \mathbf{v}) \mathbf{u} \\
\operatorname{div}(\phi \mathbf{A}) & =\mathbf{A g r a d} \phi+\phi \operatorname{div} \mathbf{A} \\
\operatorname{div}(\mathbf{A v}) & =\mathbf{v} \cdot \operatorname{div} \mathbf{A}^{\mathrm{T}}+\operatorname{tr}(\mathbf{A g r a d} \mathbf{v}) \\
\operatorname{div}(\mathbf{A B}) & =\mathbf{A d i v}+\operatorname{grad} \mathbf{A}: \mathbf{B} \tag{1.11.16}\\
\operatorname{div}(\mathbf{A}(\phi \mathbf{B})) & =\phi \operatorname{div}(\mathbf{A B})+\mathbf{A}(\mathbf{B g r a d} \phi) \\
\operatorname{grad}(\phi \mathbf{A}) & =\phi \operatorname{grad} \mathbf{A}+\mathbf{A} \otimes \operatorname{grad} \phi
\end{align*}
$$

Note also the following identities, which involve the Laplacian of both vectors and scalars:

$$
\begin{align*}
\nabla^{2}(\mathbf{u} \cdot \mathbf{v}) & =\nabla^{2} \mathbf{u} \cdot \mathbf{v}+2 \operatorname{grad} \mathbf{~}: \operatorname{grad} \mathbf{v}+\mathbf{u} \cdot \nabla^{2} \mathbf{v} \tag{1.14.17}\\
\operatorname{curlcurl} \mathbf{u} & =\operatorname{grad}(\operatorname{div} \mathbf{u})-\nabla^{2} \mathbf{u}
\end{align*}
$$

1.14.4 Cylindrical and Spherical Coordinates

Cylindrical and spherical coordinates were introduced in §1.6.10 and the gradient and Laplacian of a scalar field and the divergence and curl of vector fields were derived in terms of these coordinates. The calculus of higher order tensors can also be cast in terms of these coordinates.

For example, from 1.6.30, the gradient of a vector in cylindrical coordinates is $\operatorname{gradu}=(\nabla \otimes \mathbf{u})^{\mathrm{T}}$ with

$$
\begin{align*}
\text { gradu }= & {\left[\left(\mathbf{e}_{r} \frac{\partial}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\mathbf{e}_{z} \frac{\partial}{\partial z}\right) \otimes\left(u_{r} \mathbf{e}_{r}+u_{\theta} \mathbf{e}_{\theta}+u_{z} \mathbf{e}_{z}\right)\right]^{\mathrm{T}} } \\
= & \frac{\partial u_{r}}{\partial r} \mathbf{e}_{r} \otimes \mathbf{e}_{r}+\left(\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}}{r}\right) \mathbf{e}_{r} \otimes \mathbf{e}_{\theta}+\frac{\partial u_{r}}{\partial z} \mathbf{e}_{r} \otimes \mathbf{e}_{z} \tag{1.14.18}\\
& +\frac{\partial u_{\theta}}{\partial r} \mathbf{e}_{\theta} \otimes \mathbf{e}_{r}+\left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r}}{r}\right) \mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}+\frac{\partial u_{\theta}}{\partial z} \mathbf{e}_{\theta} \otimes \mathbf{e}_{z} \\
& +\frac{\partial u_{z}}{\partial r} \mathbf{e}_{z} \otimes \mathbf{e}_{r}+\frac{1}{r} \frac{\partial u_{z}}{\partial \theta} \mathbf{e}_{z} \otimes \mathbf{e}_{\theta}+\frac{\partial u_{z}}{\partial z} \mathbf{e}_{z} \otimes \mathbf{e}_{z}
\end{align*}
$$

and from 1.6.30, 1.14.12, the divergence of a tensor in cylindrical coordinates is
\{ $\mathbf{\Delta}$ Problem 6\}

$$
\begin{align*}
\operatorname{div} \mathbf{A}=\nabla \cdot \mathbf{A}^{\mathrm{T}}= & \left(\frac{\partial A_{r r}}{\partial r}+\frac{1}{r} \frac{\partial A_{r \theta}}{\partial \theta}+\frac{\partial A_{r z}}{\partial z}+\frac{A_{r r}-A_{\theta \theta}}{r}\right) \mathbf{e}_{r} \\
& +\left(\frac{\partial A_{\theta r}}{\partial r}+\frac{1}{r} \frac{\partial A_{\theta \theta}}{\partial \theta}+\frac{\partial A_{\theta z}}{\partial z}+\frac{A_{\theta r}+A_{r \theta}}{r}\right) \mathbf{e}_{\theta} \tag{1.14.19}\\
& +\left(\frac{\partial A_{z r}}{\partial r}+\frac{A_{z r}}{r}+\frac{1}{r} \frac{\partial A_{z \theta}}{\partial \theta}+\frac{\partial A_{z z}}{\partial z}\right) \mathbf{e}_{z}
\end{align*}
$$

1.14.5 The Divergence Theorem

The divergence theorem 1.7.12 can be extended to the case of higher-order tensors. Consider an arbitrary differentiable tensor field $T_{i j \ldots k}(\mathbf{x}, t)$ defined in some finite region of physical space. Let S be a closed surface bounding a volume V in this space, and let the outward normal to S be \mathbf{n}. The divergence theorem of Gauss then states that

$$
\begin{equation*}
\int_{S} T_{i j \ldots k} n_{k} d S=\int_{V} \frac{\partial T_{i j \ldots k}}{\partial x_{k}} d V \tag{1.14.20}
\end{equation*}
$$

For a second order tensor,

$$
\begin{equation*}
\int_{S} \mathbf{T} \mathbf{n} d S=\int_{V} \operatorname{div} \mathbf{T} d V, \quad \int_{S} T_{i j} n_{j} d S=\int_{V} \frac{\partial T_{i j}}{\partial x_{j}} d V \tag{1.14.21}
\end{equation*}
$$

One then has the important identities $\{\boldsymbol{\Delta}$ Problem 7\}

$$
\begin{align*}
& \int_{S}(\phi \mathbf{T}) \mathbf{n} d S=\int_{V} \operatorname{div}(\phi \mathbf{T}) d V \\
& \int_{S} \mathbf{u} \otimes \mathbf{n} d S=\int_{V} \operatorname{grad} \mathbf{u} d V \tag{1.14.22}\\
& \int_{S} \mathbf{u} \cdot \mathbf{T n} d S=\int_{V} \operatorname{div}\left(\mathbf{T}^{\mathrm{T}} \mathbf{u}\right) d V
\end{align*}
$$

1.14.6 Formal Treatment of Tensor Calculus

Following on from §1.6.12, here a more formal treatment of the tensor calculus of fields is briefly presented.

Vector Gradient

What follows is completely analogous to Eqns. 1.6.46-49.
A vector field $\mathbf{v}: E^{3} \rightarrow V$ is differentiable at a point $\mathbf{x} \in E^{3}$ if there exists a second order tensor $D \mathbf{v}(\mathbf{x}) \in E$ such that

$$
\begin{equation*}
\mathbf{v}(\mathbf{x}+\mathbf{h})=\mathbf{v}(\mathbf{x})+D \mathbf{v}(\mathbf{x}) \mathbf{h}+o(\|\mathbf{h}\|) \text { for all } \mathbf{h} \in E \tag{1.14.23}
\end{equation*}
$$

In that case, the tensor $D \mathbf{v}(\mathbf{x})$ is called the derivative (or gradient) of \mathbf{v} at \mathbf{x} (and is given the symbol $\nabla \mathbf{v}(\mathbf{x}))$.

Setting $\mathbf{h}=\varepsilon \mathbf{w}$ in 1.14.23, where $\mathbf{w} \in E$ is a unit vector, dividing through by ε and taking the limit as $\varepsilon \rightarrow 0$, one has the equivalent statement

$$
\begin{equation*}
\nabla \mathbf{v}(\mathbf{x}) \mathbf{w}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathbf{v}(\mathbf{x}+\varepsilon \mathbf{w}) \quad \text { for all } \quad \mathbf{w} \in E \tag{1.14.24}
\end{equation*}
$$

Using the chain rule as in $\S 1.6 .11$, Eqn. 1.14.24 can be expressed in terms of the Cartesian basis $\left\{\mathbf{e}_{i}\right\}$,

$$
\begin{equation*}
\nabla \mathbf{v}(\mathbf{x}) \mathbf{w}=\frac{\partial v_{i}}{\partial x_{k}} w_{k} \mathbf{e}_{i}=\frac{\partial v_{i}}{\partial x_{j}}\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right) w_{k} \mathbf{e}_{k} \tag{1.14.25}
\end{equation*}
$$

This must be true for all \mathbf{w} and so, in a Cartesian basis,

$$
\begin{equation*}
\nabla \mathbf{v}(\mathbf{x})=\frac{\partial v_{i}}{\partial x_{j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.14.26}
\end{equation*}
$$

which is Eqn. 1.14.3.

1.14.7 Problems

1. Consider the vector field $\mathbf{v}=x_{1}^{2} \mathbf{e}_{1}+x_{3}^{2} \mathbf{e}_{2}+x_{2}^{2} \mathbf{e}_{3}$. (a) find the matrix representation of the gradient of \mathbf{v}, (b) find the vector (gradv) \mathbf{v}.
2. If $\mathbf{u}=x_{1} x_{2} x_{3} \mathbf{e}_{1}+x_{1} x_{2} \mathbf{e}_{2}+x_{1} \mathbf{e}_{3}$, determine $\nabla^{2} \mathbf{u}$.
3. Suppose that the displacement field is given by $u_{1}=0, u_{2}=1, u_{3}=X_{1}$. By using gradu , sketch a few (undeformed) line elements of material and their positions in the deformed configuration.
4. Use the matrix form of gradu and $\nabla \otimes \mathbf{u}$ to show that the definitions
(i) $\operatorname{div} \mathbf{a}=\operatorname{tr}(\operatorname{grada})$
(ii) curla $=2 \boldsymbol{\omega}$, where $\boldsymbol{\omega}$ is the axial vector of the skew part of grada agree with the definitions $1.6 .17,1.6 .21$ given for Cartesian coordinates.
5. Prove the following:
(i) $\operatorname{grad}(\phi \mathbf{v})=\phi$ gradv $+\mathbf{v} \otimes \operatorname{grad} \phi$
(ii) $\operatorname{grad}(\mathbf{u} \cdot \mathbf{v})=(\operatorname{gradu})^{\mathrm{T}} \mathbf{v}+(\operatorname{grad} \mathbf{v})^{\mathrm{T}} \mathbf{u}$
(iii) $\operatorname{div}(\mathbf{u} \otimes \mathbf{v})=(\operatorname{grad} \mathbf{u}) \mathbf{v}+(\operatorname{div} \mathbf{v}) \mathbf{u}$
(iv) $\quad \operatorname{curl}(\mathbf{u} \times \mathbf{v})=\mathbf{u d i v v}-\mathbf{v d i v u}+(\operatorname{gradu}) \mathbf{v}-(\operatorname{gradv}) \mathbf{u}$
(v) $\operatorname{div}(\phi \mathbf{A})=\mathbf{A g r a d} \phi+\phi \operatorname{div} \mathbf{A}$
(vi) $\operatorname{div}(\mathbf{A v})=\mathbf{v} \cdot \operatorname{div} \mathbf{A}^{\mathrm{T}}+\operatorname{tr}(\mathbf{A g r a d} \mathbf{v})$
(vii) $\operatorname{div}(\mathbf{A B})=\mathbf{A d i v} \mathbf{B}+\operatorname{grad} \mathbf{A}: \mathbf{B}$
(viii) $\operatorname{div}(\mathbf{A}(\phi \mathbf{B}))=\phi \operatorname{div}(\mathbf{A B})+\mathbf{A}(\mathbf{B g r a d} \phi)$
(ix) $\operatorname{grad}(\phi \mathbf{A})=\phi \operatorname{grad} \mathbf{A}+\mathbf{A} \otimes \operatorname{grad} \phi$
6. Derive Eqn. 1.14 .19 , the divergence of a tensor in cylindrical coordinates.
7. Deduce the Divergence Theorem identities in 1.14 .22 [Hint: write them in index notation.]
