Section 1.14

1.14 Tensor Calculus I: Tensor Fields

In this section, the concepts from the calculus of vectors are generalised to the calculus of
higher-order tensors.

1.14.1 Tensor-valued Functions

Tensor-valued functions of a scalar

The most basic type of calculus is that of tensor-valued functions of a scalar, for example
the time-dependent stress at a point, S = S(t) . If a tensor T depends on a scalar t, then

the derivative is defined in the usual way,

d_T _lim, , T(t + At) - T(t) ,
dt At
which turns out to be
dT.
ar _ &% —e¢, ®e, (1.14.1)
dt dt

The derivative is also a tensor and the usual rules of differentiation apply,

d(T B) dT dB

dt o dt

d dT da

Z(a(T) =

g @OT)=a g+
i(Ta)=T%+d—Ta
dt dt dt
i(T )=Td—B+d—TB
dt dt d

For example, consider the time derivative of QQ", where Q is orthogonal. By the

product rule, using QQ" =1,
Llee)-Tor+e2 Q -Rqrs Q( Qj

Thus, using Eqn. 1.10.3¢

QQ" =-QQ" =—(QQ")' (1.14.2)
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which shows that QQ" is a skew-symmetric tensor.

1.14.2 Vector Fields

The gradient of a scalar field and the divergence and curl of vector fields have been seen
in §1.6. Other important quantities are the gradient of vectors and higher order tensors
and the divergence of higher order tensors. First, the gradient of a vector field is
introduced.

The Gradient of a Vector Field

The gradient of a vector field is defined to be the second-order tensor

0 0a,

grada = 8_a ®e; = a—'ei ®e;| Gradient of a Vector Field (1.14.3)
X X

J J

In matrix notation,

da, 0Oa, 0a,
OX, OX, OX,
grada = @, o8, 08 (1.14.4)
X, OX, OX,
da, oJa, o0a,
| OX,  OX, OX; |
One then has
gradadx=—"¢, ®e (dx.e,)
j
= %dx e 1.14.5
o, e (1.14.5)
=da

= a(x + dx) —a(dx)

which is analogous to Eqn 1.6.10 for the gradient of a scalar field. As with the gradient
of a scalar field, if one writes dx as |dx

e, where e is a unit vector, then

gradae = (d_aj (1.14.6)
in e direction

Thus the gradient of a vector field a is a second-order tensor which transforms a unit
vector into a vector describing the gradient of a in that direction.
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As an example, consider a space curve parameterised by S, with unit tangent vector
T=dx/ds (see §1.6.2); one has

dx.
d_azﬁ_lzﬁ(r.e_)z @@e T:grada‘[_
ds ox; ds  ox, MR

Although for a scalar field grad¢ is equivalent to V¢, note that the gradient defined in
1.14.3 is not the same as V ®a. In fact,

(V®a)' = grada (1.14.7)

since

0 0a,
V®a=¢,_—®ae;, =—e¢ Qe; (1.14.8)
OX; OX;

These two different definitions of the gradient of a vector, 0a; /0x;e; ®e; and
oa; / ox,e; ®e;, are both commonly used. In what follows, they will be distinguished by

labeling the former as grada (which will be called the gradient of a) and the latter as
V®a.

Note the following:
 in much of the literature, V ® a is written in the contracted form Va, but the more
explicit version is used here.

 some authors define the operation of V& on a vector or tensor (0) not as in 1.14.8, but

through V®(0)E(8(0)/8Xi)®ei so that V®a=grada=(6‘ai /8Xj)ei ®e;.

Example (The Displacement Gradient)

Consider a particle p, of a deforming body at position X (a vector) and a neighbouring
point g, at position dX relative to p,, Fig. 1.14.1. As the material deforms, these two
particles undergo displacements of, respectively, u(X) and u(X+ dX). The final
positions of the particles are p, and q,. Then

dx = dX + u(X +dX) —u(X)
= dX + du(X)
= dX + gradu dX
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final

Figure 1.14.1: displacement of material particles

Thus the gradient of the displacement field u encompasses the mapping of (infinitesimal)
line elements in the undeformed body into line elements in the deformed body. For

example, suppose that u, =kX;,u, =u, =0. Then

o [0 20
gradu=%= 0 0 0]=2kX,e, ®e,
o 0 0

A line element dX = dX,e;, at X = X,e; maps onto

dx = dX + (2kX e, ®e, JdX e, + dX,e, + dX e, )
= dX +2kX,dX ,e,

The deformation of a box is as shown in Fig. 1.14.2. For example, the vector dX = dce,
(defining the left-hand side of the box) maps onto dx = 2ka dee, + ce, .

X2

Figure 1.14.2: deformation of a box

Note that the map dX — dx does not specify where in space the line element moves to.
It translates too according to x = X +u.
[

The Divergence and Curl of a Vector Field
The divergence and curl of vectors have been defined in §1.6.6, §1.6.8. Now that the
gradient of a vector has been introduced, one can re-define the divergence of a vector

independent of any coordinate system: it is the scalar field given by the trace of the
gradient { A Problem 4},
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|diva = tr(grada) = grada:1 =V -a| Divergence of a Vector Field (1.14.9)

Similarly, the curl of a can be defined to be the vector field given by twice the axial
vector of the antisymmetric part of grada.

1.14.3 Tensor Fields
A tensor-valued function of the position vector is called a tensor field, Tij,_,k (x).

The Gradient of a Tensor Field

The gradient of a second order tensor field T is defined in a manner analogous to that of
the gradient of a vector, Eqn. 1.14.2. It is the third-order tensor

T oT;
gradT = §T®ek = G_Jei ®e; ®e,| Gradient of a Tensor Field (1.14.10)

k Xk

This differs from the quantity

T,

b 0
V@T:eia@)(ﬂkej ®ek)= o

e, Ve, ®e, (1.14.11)

The Divergence of a Tensor Field

Analogous to the definition 1.14.9, the divergence of a second order tensor T is defined to
be the vector

0T, e Qe
divT =gradT:1 = 8—Tei = Mei
oX; oX;
oT Divergence of a Tensor (1.14.12)
ij
=_ei

8xj

The divergence of a tensor can also be equivalently defined as that vector field which
satisfies the relation

(divT)-v = div(T"v)
for all constant vectors v.

One also has

®ek)=87jie- (1.14.13)

Solid Mechanics Part 111 119 Kelly



Section 1.14

so that

divli =V -T"' (1.14.14)

As with the gradient of a vector, both (8Tij / OX; )ei and (aT i/ OX; )ei are commonly used

as definitions of the divergence of a tensor. They are distinguished here by labelling the
former as divT (called here the divergence of T) and the latter as V- T . Note that the
operations divT and V- T are equivalent for the case of T symmetric.

Note the following
« some authors define the operation of V- on a vector or tensor (0) not as in (1.14.13),
but through V- (e)=(8(s)/éx,)-€; so that V-T =divT = (3T, / X; )e,

« using the convention that the “dot” is omitted in the contraction of tensors, one should
write VT for V- T, but the “dot” is retained here because of the familiarity of this latter
notation from vector calculus.

« another operator is the Hessian, V®V = (82 / OX;0X; )ei ®e;.

Identities

Here are some important identities involving the gradient, divergence and curl
{ AProblem 5}:

grad(¢v) ggradv + v ® grad¢

grad(u - v) = (gradu)’ v + (gradv) u (1.14.15)
div(u ® v) = (gradu v + (div v)u
curl(u x v) = udivv — vdivu + (gradu )v — (gradv Ju
div(gA) = Agradg + gdivA
div(Av)=v-divA" + tr(Agradv)
div(AB) = AdivB + gradA : B (1.11.16)
div(A(#B)) = ¢div(AB)+ A(Bgradg)
grad(¢A) = ggradA + A ® gradg

Note also the following identities, which involve the Laplacian of both vectors and

scalars:

V2(u-

curlcurlu = grad(divu)-V’u
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v)=V’u-v+2gradu: gradv +u-V’y

(1.14.17)
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1.14.4 Cylindrical and Spherical Coordinates

Cylindrical and spherical coordinates were introduced in §1.6.10 and the gradient and
Laplacian of a scalar field and the divergence and curl of vector fields were derived in
terms of these coordinates. The calculus of higher order tensors can also be cast in terms

of these coordinates.

For example, from 1.6.30, the gradient of a vector in cylindrical coordinates is
gradu = (V®u)" with

T
0 1 0 0

radu=||e, —+e,—+e,— |®(u.e. +U.e, +U.e

g |:(r8r Hrae ZaZj (rr ove zz):|

= ou, e, ®e, + lou 4y e, ®e€+8ur e ®e,
or r oo r oz (11418)
+%e6®er+ lau—"+u—r eg€<)e6+au—‘9e€€<)eZ

or rog r 674

u, e, ®e, +lauz e, ®e, +
or r oo 674

z

+ e, ®e,

and from 1.6.30, 1.14.12, the divergence of a tensor in cylindrical coordinates is
{ AProblem 6}

aArr 1 6Ar@ aArz Arr B AHH
— + + e,

or r 06 0z r

+(8A9, LLOA, OA, A, Amj

divA=V- A" :(

1.14.19
or r oo a Co ( )

6Azr Azr 1 aAzH aAzz
+ + +— + e,
or r r oé 0z

1.14.5 The Divergence Theorem

The divergence theorem 1.7.12 can be extended to the case of higher-order tensors.
Consider an arbitrary differentiable tensor field T; , (x,t) defined in some finite region of

physical space. Let S be a closed surface bounding a volume V in this space, and let the
outward normal to S be n. The divergence theorem of Gauss then states that

aTij...k
[T nds =] dv (1.14.20)
OX
s v 0K
For a second order tensor,
ot
[Tnds = [divTdv,  [Tynds=[_—"dv (1.14.21)
S v s v OX;
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One then has the important identities { A Problem 7}

[(gT)nds = [div(gT)dv

ju@nds = jgradudv (1.14.22)
\%

S

_[u-TndS :IdiV(TTu)dV
S \%
1.14.6 Formal Treatment of Tensor Calculus

Following on from §1.6.12, here a more formal treatment of the tensor calculus of fields
is briefly presented.

Vector Gradient

What follows is completely analogous to Eqns. 1.6.46-49.

A vector field v:E’ -V is differentiable at a point x € E” if there exists a second
order tensor Dv(x) e E such that

v(x+h)=v(x)+ Dv(x)h + 0(“h||) forall heE (1.14.23)

In that case, the tensor DV(X) is called the derivative (or gradient) of v at x (and is given
the symbol Vv(x)).

Setting h = ¢w in 1.14.23, where w € E is a unit vector, dividing through by & and
taking the limit as £ — 0, one has the equivalent statement

Vv(x)w = di V(x+ gw) forall wekE (1.14.24)
2 =0

Using the chain rule as in §1.6.11, Eqn. 1.14.24 can be expressed in terms of the
Cartesian basis {e, },

Vv(x) w Lw,e, :?Ti(ei ®ej)\Nkek (1.14.25)

OX, i

This must be true for all w and so, in a Cartesian basis,

v(x)= Ve @, (1.14.26)

OX j

which is Eqn. 1.14.3.
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1.14.7 Problems

1. Consider the vector field v = Xe, + X;e, + X;e, . (a) find the matrix representation of
the gradient of v, (b) find the vector (gradv)v.

2. If u=XX,X;€, + X X,€, + X,€,, determine V’u.
Suppose that the displacement field is given by u, =0,u, =1,u, = X,. By using
gradu , sketch a few (undeformed) line elements of material and their positions in the

deformed configuration.
4. Use the matrix form of gradu and V ® u to show that the definitions

(1) diva = tr(grada)
(i1) curla = 2@, where ® is the axial vector of the skew part of grada

agree with the definitions 1.6.17, 1.6.21 given for Cartesian coordinates.
5. Prove the following:

(1) grad(¢v) = ggradv + v ® gradg
(i)  grad(u-v)=(gradu)’ v +(gradv) u
(i)  div (u ® V) = (grad u)v + (divv)u
(iv)  curl(uxv)=udivv - vdivu + (gradu)v — (gradv u
(v)  div(¢A)= Agradg + gdivA
(vi) diV(AV) =v-divA" +tr (Agradv)
(vii)  div(AB)= AdivB + gradA : B
(viii) div(A(gB)) = ¢div(AB)+ A(Bgradg)
(ix)  grad(gA)= geradA + A ® gradg
6. Derive Eqn. 1.14.19, the divergence of a tensor in cylindrical coordinates.

7. Deduce the Divergence Theorem identities in 1.14.22 [Hint: write them in index
notation. ]
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