9 2D (Plane) Linear Elasticity

9.1 Governing Equations

The equations governing the elasticity problem in the plane are

(1)

2)

€)

the two dimensional equations of equilibrium

oo oo Oo
oo, Y b =0, LTI L p =0 (9.1)
ox oy ox oy

where o, are the stress components and b =[b,,b, 1" is the body force.

the kinematic (strain-displacement) relations

_ Ou ov ou Ov

— =4+ —
Yo =5 " ox

E . =—), & =—
T ox Yoy

3

(9.2)

where u, v are the displacements in the x and y directions respectively, &, are the

strain components, and y , = 2e, is the engineering shear strain.

the constitutive equations (Hooke’s Law). These can be either for (assuming the

material to be isotropic)

(a) plane stress conditions

E

o, = _ [gxx +vgyy]

o, = l—Ev2 [vgxx + gyy] (9.3a)
E

O _ = R
v T 1)

or

(b) plane strain conditions
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- @+vg—b/
- = 1— .
»w (1+V 1_2V)[V8xx +( V)gyy] (9 3b)
_E
v T 1)

where E is Young’s modulus and v is the Poisson’s ratio.

The above are eight equations in the eight unknowns of stress (3), strain (3) and

displacement (2).

The governing equations are solved subject to the boundary conditions: these are either on

displacement (geometric BCs) or on stress (traction BCs)

Note that equations (9.3b) can be obtained from equations (9.3a) by making the following

change of material parameters:

(9.4)

Thus if one solves the plane stress problem, one can obtain the plane strain solution by

making the substitutions (9.4), and vice versa.

9.1.1 Compatibility

In addition to the above equations, the condition of compatibility must be satisfied:

2 0’e..  Oc..
a?—z v 2T 9.5)
oy oxoy  Ox

This ensures that the strains can be integrated to give a unique continuous displacement
field.
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9.1.2 Matrix Notation

Introduce now the following matrix notation for the stresses, strains and constitutive

relation:

O-,‘OC XX
oj=10,p  lef=1e, . lo)=[Cle) (9.6)
Oy Vs

E _1 14 0
~lv 1 0 -+ planeo
I-vilo 0 L(1-v)
[C]: (9.7)
E [1-v v 0
| v 1l-v 0 -+ planeg
(+v)i=2v) 0 0 1(-2v)

Materials which are not isotropic will have a different material property matrix [C], but the

rest of the equations, and the theory which follows, are the same as for the isotropic case.

9.2 Derivation of the FEM Equations

9.2.1 The Weighted Residual Equations

The weighted residual method is applied to the equilibrium equations:

oo
| 99 9% ©0,dS + [ b,,dS =0
Q

ox 0
° oo ao)'} ©-8)
[l =2 +—= }Azds + [b,@,dS =0
A oy o

where Q is the complete 2D domain. Thus in the FEM, the equilibrium equations are

satisfied in an average way over the domain. Green’s theorem now leads to
y
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_J‘ 5601 +%o-xyde+J.a)l(amnx +o,n y}lC+J‘b ®,dS =0

2 oy 09
— o, +—2 S + a)za)c N }IC+ b,w,dS =0
i ax y ay I y yy y J'
where I" is the boundary of the domain.
t ) Introduce the traction vector t =[7 7, 1" such that
Q n
7 t,.=o . n . +o.n
t x
} t,=0.n, +O'yyyn}y (©.10)
Thus
—j 5‘”1 o de+jwlt dC+jb ®,dS =0
(9.11)
—j 6‘02 o, S+ja)2t dC+jb ©,dS =0
and 7, ¢, are the tractions on the surface of the material.
Writing in matrix form and substituting in the constitutive relations now leads to
—% 0 0o, |
Ox oy b, .
| [C]{s}dS:I[wl 0} dS+I[a)1 0} C (9.12)
ow, o0 a0 @y | pL0 @i
@ 0 @, 2 v y
oy ox |

The displacements u and v can be interpolated with the same shape functions N, of m

degrees of freedom:

a0 = YN ok, V)= 2N (o, ©.13)

These interpolations can be written in terms of a shape function matrix [N],
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U,
Vi
0 N, 0]]%
N, 0 N, ||"
um
vm

and the strains can then be written in terms of a strain-displacement matrix [B],

u
ou ON, 0 ON, 0 ON, 0 vl
ox Ox Ox Ox ul
2
{e} =[B1{d}, » ol Moy M o W v,
Oy y oy Py || :
ou  ov ON, ON, ON, ON, ON, ON, ||,
oy ox) | oy Ox Oy @ Ox oy ox ||v,
Substituting back into (9.12), with the integrations now over an element, gives
[, 0 ow, | ]
Ox Oy b .o, t .o,
[cIBs |{a}= | s+ | dC
a“l dw, Ow, o |b,o, ro|t,o,
L »  ox |
9.2.2 The Galerkin FEM
In the Galerkin FEM, one sets @, = o, = N, j=1...m, leading to
ON, 0 ON,
ox oy b
N, 0 || N, 0
[c]BYs [{a}= j[of N} ds+ | { N N}
Q© ON, ON, Q© 7d1b T I
0 J J y
L oy  Ox | ]
j=1...m

or
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FEM Equations for 2D Elasticity:
[Kiaj=f

where [K]= [ [B]'[C[BES, f= | [N]T{gf}dm | [N]T{;:x}dC

ol o© ¥ @

(9.18)

<

The f here is a force per unit length (normal to the plane). One can re-formulate the

problem and explicitly include the thickness, ¢ say, so that

K= 8] clshs, 1= [ N} {g; }dS+t [ INT {; }dc

Q) r y

in which case f is a force.

9.3 Example Problems

Here, some example problems are considered, to illustrate the application of the above

equations and the effectiveness of various elements.

9.3.1 Plate Extension

Consider a plate loaded along one edge by a

’ constant stress o,. The plate is fixed along
—
u, =01y — the opposite edge, but can slide vertically,
— " as shown. Plane stress conditions are
SX —> assumed. = The exact solution to this
u,=u,=0 problem is
o, o,/ E
[6]=10},  [g]=4-vo,/E}, {”}:[ on“/E } (9.19)
0 0 u, —vo,y/ E

This is a simple linearly varying displacement field and constant stress and strain field.
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Linear Triangular Elements

In terms of global coordinates, the displacement field within a linear triangular element is

u=a,+a,x+a,y 9.20)

v=p+fx+ By
The strains are then
gxx:aZ’ gyy:ﬂ39 7xy:a3+ﬂ2 (921)

and for this reason the linear triangular element is also called the constant strain triangle
(CST) element when used in the context of plane elasticity. The linear displacement field
implies that the straight element edges remain straight after deformation. Further, because
the strains are constant, the stresses are constant, so the equilibrium equations are satisfied
exactly for this element in the absence of a body force. It can also be seen that

compatibility is satisfied.

The exact solution to the plate extension problem involves a constant stress and strain field

and so the CST element gives exact results.

The shape function [N] matrix and the strain-displacement [B] matrix are, in terms of

local coordinates,

faj=1"21 [N]=[l‘%"7 N 0} 9.22)

[B]l=—1] O Xy — X, 0 X, — X, 0 X, — X, (9.23)
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The strain-displacement [B] matrix and the material property
[C] matrix are independent of position, so, transforming the
3 2 3 stiffness matrix integrals to local coordinates,
B
11-¢
T T
(K] =[B]' [CIBY/ | [dnds=a[B]'[C[B]  (9.24)
A 00
1
1 2
For a regular triangular mesh which includes the two types of
<>
a element illustrated, 4 and B, the matrix multiplication leads to
simple stiffness matrices:
Element A
b ~b? vab 0 —~vab |
Li-vp®>  L(-v)ab ~Li-vp* —L(1-v)ab 0
[KA]= E 1 L1-v)a> +b>  —L1(1+v)ab L1-v)a®  wvab
1-v? 2ab a’ +i(1-vp? Ll-v)ab -a’
L1-v)a® 0
aZ
(9.25)
Element B
L(1=v)a? 0 —1(1-v)ab -1(1-v)a? L1=v)ab ]
—vab 0 vab -a’
[KB]— E 1 b’ 0 -b’ vab
1—v? 2ab L1-vp? L(1-v)ab —L1-vp?
L1-v)a® +b>  —L(1+v)ab
L a* +1(1-v)p? |

Let the complete plate be modeled with just the two elements illustrated, so that there are

8 degrees of freedom. Integrating along the edge 2 —3 of element A leads to the loads
vector
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(”4a"4)

E-n 0 ] -¢&-7] [0 ] 0]

0 1-¢-7 0 |0 Lo |0

4 0 1 _ ¢ _ -7 _boy|1

: c o1dC =0y | R dC =bo,[| " ldn = o
T 0 1

n 0 n n

0 n | . 0] L 0 ] 0]

(9.27)

(uz’VZ) which is equivalent to putting half the total force applied to the

edge at each of the two edge-nodes.

Assembling the matrices and applying the essential boundary
conditions u; =v, =u, =0 leads to the global system

(”3:"3)

L(1=v)a® +b

(”1 7"1)

ek S :
a’ +1(1-vp>  L(1-v)ab ~a’ 0

SYM a’+1(1-v)p?

(9.28)

leading to the exact solution

u, =u,=ac,/E, v,=0, v,=v,==vbo,/E (9.29)

Within each element, the strains are obtained from (9.15), {e} =[B]{d}, and the stresses are
obtained from the strains through (9.6), {6} =[Cl{e}, leading to the exact solution (9.19).
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Bilinear Quadrilateral (Q4) Elements

In terms of global coordinates, the displacement field within a bilinear quadrilateral

element is

U=, +a,x+a,y+a,xy (9.30)
v= 0+ B,x+ By + Bxy

and so the strains are

En=a,ta,y, &,=F+Bx 7y, = (a, + B,)+a,x+ B,y (9.31)
The displacement field implies that the straight element edges do not remain straight after
deformation, unless they are aligned with the global x —y axes. Compatibility is satisfied
but the equations of equilibrium are not necessarily satisfied exactly.
For the bilinear quadrilateral element, the displacement vector is

b=t v owy vy ow vy uy vy, (9.32)

and the shape function [N] matrix in terms of local coordinates is

A h

1 (1+§2)(1—77) (1+§())(1— )
NG eien) 0 3

aoein TR

0 (1-&)1+7)]

The strain-displacement [B] matrix must be evaluated using the inverse Jacobian J':

% 0 ON, 0 ON, 0 ON, 0
ox ox ox ox
[B]=| O % 0 N, 0 N, 0 N, (9.34)
y y y y
ON, ON, ON, ON, ON, ON, ON, ON,
| oy Ox Oy Ox oy ox oy ox |
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with

oN, J (9.35)
on

ON, _ 0N,y N, o ON, 0N,
ox  0F on PE

Taking a single rectangular element to model the plate, as illustrated below,

, [-olt-n) 0 +b(1-7) 0
[B]=— 0 —a(l-¢& 0 —a(l+¢
4ab| _q(1-¢) -b(1-75) -a(l+&) +b(1-7 936
o(l+n) 0 —b(l+n) 0 '
0 +all+¢ 0 +all-¢&
+a(l+&) +b(l+7) +a(l-&) —-bl+7y
4 3 The single element stiffness matrix is now
+1+1
b [K]=ab| [[B] [C]Blinds (9.37)
-1-1
1 2
c N Evaluating the integrals leads to the symmetric matrix
a
[4(aa® +b%) ab(+v+a) 2aa® -4b* ab(+v-«a
3 3 3
%(a2 +ab2) ab(-v+a) 2a* —tab’
%(aaz +b2) ab(-v-a)
E_1 o v )
1-v? 4ab
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~2aa® -2b* ab( v-a) -—%tad®+2b’  ab(-v+a)
ab( a) -2a*-2ab’® ab(+v-a) -—ia’>+Zab’

—taa’ +%b2 ab( v—a) -2aa*-2b> ab(+v+a)
ab(-v+a) —%4a*+2ab®  ab(+v+a) -2a’-2ab’ 9.38)
%(aaz +b2) ab( +v+a) 2ad’-4b°  ab(+v-a) '

ila +ab2) ab(-v+a)  2a’—iab’
%(aaz +b2) ab(-v - a)
%(a2 +ab2)

where o = (l—v)/Z. Applying the essential boundary conditions u, =v, =u, =0 and

using the loads vector

{ﬂ:b?&)o 1010 0 o0, (9.39)

then leads to the exact solution.

9.3.2 Beam Bending

Consider next a beam built in at one end and subjected to a pure moment M at the other

end. The exact solution to this problem for conditions of plane stress is

12M |7 12M |7
y=+h/2 }M [o]= x 8’ [s]=h3E —gy} (9.40)

y=-h/2 Xx=I It i . :
x=0 t is not possible to get an exact solution for the

displacements; an approximate solution is

_12M 12M | 1
= [y] v=-— Zn {E(xz +Vy2)} (9.41)

which when differentiated give the exact strains; they satisfy the condition
u(0,0) =v(0,0) = 0 but do not satisfy v|x:0 =0 unless y=0.

For the right-angled CST element shown below, the load vector is { A Problem 1}
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_2Mb

_ f 5 [0 0 3y,+b 0 3y,+2b Of (9.42)
—
O-XX
—> where y, is the y coordinate of the bottom right vertex, as
( —)> illustrated. For a single element, with y, =—-h/2, b=h, this
X35>

gives rise to forces of =M /h at the two end-nodes. The loads
vector for the Q4 element is the same (with two extra zero entries at the bottom of the

vector).

Clearly, from (9.21), the CST element does not give the exact solution, and indeed does
not perform well. From (9.31), the Q4 element cannot model the linear variation of the ¢,
strain in y. Further, since ¢, in (9.31) needs to be non-zero to model the linear variation of
&, 1n y, it develops a non-zero shear strain y . Thus, not only is the bending resisted by

XX

the flexural stresses o, it is resisted by shear stresses o, and the consequence is that the

Q4 element is overly stiff in bending.

Results for the CST and Q4 elements for the displacement at the lower right hand end of
the beam are given in the following table. The geometry is / =10, 7 =2. In this table, n

is the number of nodes, N is the number of elements and dof is the number of degrees of
freedom (before application of the essential BC’s). Results are given for various m xm,

meshes, these being the number of divisions of the beam in the x and y directions
respectively; for example, the 10x2 mesh of CST elements is shown below. The

Poisson’s ratio was taken to be v =0.3.

CST Q4

Mesh | n | dof | N | %tlo | Fwl, oo | N | 0l | Eul, 0
5x1 | 12 | 24 | 10 | -355117 | -17.19328 | 5 | -10.11111 | -50.55555
10x2 | 33 | 66 | 40 | -8.18828 | -40.45249 | 20 | -13.35359 | -66.73442
20x2 | 63 | 126 | 80 | -9.18705 | -45.68630 | 40 | -14.28070 | -71.40650
50x2 | 153 | 306 | 200 | -9.47978 | -47.33016 | 100 | -14.56502 | -72.84635
50x10 | 561 | 1122|1000 | -14.46915 | -72.45387 | 500 | -14.90095 | -74.60057
100x20 | 2121 | 4242 | 4000 | -14.84735 | -74.33781 | 2000 | -14.96151 | -74.89682
Approx. Solution (Eqn. 9.36) | -15.00000 | -75.22500 -15.00000 | -75.22500

Table: Performance of CST and Q4 elements for Pure Bending
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Locking

If the aspect ratio of the Q4 element is allowed to get very
large, its stiffness becomes very inaccurate. For example,
< > consider the beam bending modelled by a single Q4

4 31" element. The FE solution for the displacements is then

b AN 61—
/ 0 U, =—u, = —a(ﬁ, v, =v,=au, (9.43)

The element deforms as indicated by the dotted lines. The

true solution for the angle @ indicated is, from the simple
beam theory, 12Ma/b*E , where M is the true moment
required. Setting this & equal to that obtained from the FE solution gives

2
M=y L (9.44)
I+v|2\b l-v
Thus for large aspect ratio a/b, the moment required in the FE model tends to infinity and
the model becomes infinitely stiff, a phenomenon known as locking.
The Improved Bilinear Quadrilateral (Q6) Element
The Q6 element was introduced in order to overcome the problems associated with the Q4

element in bending. It has the same four nodes as the Q4 element, but six degrees of

freedom. The displacements within the element are given by

u:iNiui +(1_§2ﬁ5 +<1_772)176
v=Z4:N,-vl- (1= + -7,

(9.45)
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where the N, are the same as the Q4 shape functions. The u., u,, v,, v, are new degrees

of freedom termed infernal degrees of freedom — they are not nodal displacements. This
new interpolation allows straight edges to deform into curves; in fact, considering a

rectangular element with edges aligned with the global axes,

0u 8 _ v 8 _
> e 040

These are constant curvatures within an element, the inverses of the radii of curvature

shown in the figure below.

R=1/(0%v/0x%)

.' =T R=1/(0u’y*)

If this element is rectangular with sides aligned with the global axes, then a state of pure

bending can be represented exactly. The loads vector for the single element shown is

_2Mb

f 5 [0 0 3y,+b 0 3y,+2b 0 0 0 0 O 4y,+2b 0] (9.47)

and the corresponding FE solution is

6Ma 6Ma> 0 - 3Ma®> _  3Mv

u, =—u =, V, =V =, U =U, = , Vv =, Vv, =
0 e 7 BT > 2EL’T ° 2Eb

(9.48)

., M/b

which leads to the exact expressions for the

strains within the element, and the exact

«— M/b
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expression for the radius of curvature, R = —h’E/12M .

Although the compatibility equation (9.5) is satisfied by (9.45), the

Q6 element is still incompatible in the sense that the edges of two

~

adjacent elements which are initially coincident can deform to two

- ~

separate curves, corresponding to an overlap of material, as

illustrated here. This problem dissipates as the mesh is refined and a

state of constant strain is approached within each element.

9.3.3 The Cantilever Beam

Consider now a more challenging problem to model, that of a cantilever beam subjected to
a shear force F at its end. The exact solution to this problem for conditions of plane stress

is

2xy
6F
y=1h/2 [6]=— 0o 4 (9.49)
F 1 ________________________ h(h12)* =y?
y=-h/2
x=0 x= 2xy
[e]= oF —2wxy (9.50)
WE
21+v)(h/2) - 3*)

It is not possible to get an exact expression for the displacements; they are given by

u= ;}I; ~2+v)y? —3([2 —xz)y+%(l+v)h2y]+2y
B (9.51)
V= ;}1; [—x3 — 3wy’ +312x—2l3]+ A(l - x)

where A4 is constant. These expressions satisfy the strain-displacement relations and
satisty u(/,0) =v(/,0) = 0. It is not possible to ensure (9.51) satisfy u =v =0 all along the

right hand end; A can be determined by enforcing some condition there, for example zero
slope  dv/ox| =0 gives A4=0, whereas zero slope du/ 8y|x:l =0 gives

x=/

A=-3F(1+v)/Eh. The exact solution is somewhere between these extremes. The

displacements at the lower left hand corner are

244



so that, if the beam is slender, // A >> 1, and the first terms here will dominate.

u|

_F
(0,-h/2) E

[3/m) ]+ o),

Y

The exact solution involves a stress and strain field
which vary through the thickness of the beam. As

with pure bending, a single CST element in the

thickness direction is not able to capture this variation

and in fact a model such as that shown here returns

very poor results.

No matter how many CST

elements are used in the horizontal direction, the

_F
(0,-h/2) E

[ a(/n) |+ 0a/m)

(9.52)

solution is very inaccurate, for example with //A =10 and 200 elements, the error in
Even when the number of elements in the thickness direction is

u 0,-h/2)

is about 70%.

increased, the results are not very good, unless many hundreds of elements are used. The
results using the Q4 element are better. Results for both CST and Q4 elements for the

displacement at the lower left hand end are given in the following table. Again,
/=10, h=2 and v=0.3.
CST Q4

Mesh | n | dof | N | Floun | ]y 0 | N | Fodon | F10]y
5x1 12 24 10 16.32264 | -125.0169 5 50.55555 | -346.6667
10x2 33 66 40 39.75799 | -279.4301 | 20 66.63406 | -455.2244
20% 2 63 126 80 45.20658 | -315.1775 | 40 71.29923 | -487.3444
50x2 153 | 306 | 200 | 47.07871 | -327.0089 | 100 | 72.73698 | -497.2866
50x10 | 561 | 1122 | 1000 | 72.53138 | -496.2589 | 500 | 74.80125 | -511.0163
100x20 | 2121 | 4242 | 4000 | 74.53338 | -509.3301 | 2000 | 75.15152 | -513.2310
Approx. Solution (Eqn. 9.52) 75.00000 | -500.0000 75.00000 | -500.0000

Table: Performance of CST and Q4 elements for Tip Loading of a Cantilever

As expected, the Q6 element gives better results tan either the CST or Q4.

9.4 Problems

1.

Derive the loads vector f for the CST triangle in the beam bending problem.
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