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9 2D (Plane) Linear Elasticity 
 

 

9.1 Governing Equations 
 

The equations governing the elasticity problem in the plane are 

 

(1) the two dimensional equations of equilibrium 
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where ij  are the stress components and T],[ yx bbb  is the body force. 

 

(2) the kinematic (strain-displacement) relations 
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where vu,  are the displacements in the x and y directions respectively, ij  are the 

strain components, and xyxy e2  is the engineering shear strain.  

 

(3) the constitutive equations (Hooke’s Law).  These can be either for (assuming the 

material to be isotropic) 

 

(a) plane stress conditions 
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or 

 

(b) plane strain conditions 
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where E is Young’s modulus and   is the Poisson’s ratio.  

 

The above are eight equations in the eight unknowns of stress (3), strain (3) and 

displacement (2). 

 

The governing equations are solved subject to the boundary conditions: these are either on 

displacement (geometric BCs) or on stress (traction BCs) 

 

Note that equations (9.3b) can be obtained from equations (9.3a) by making the following 

change of material parameters: 
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Thus if one solves the plane stress problem, one can obtain the plane strain solution by 

making the substitutions (9.4), and vice versa. 

 

 

9.1.1 Compatibility 
 

In addition to the above equations, the condition of compatibility must be satisfied: 
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This ensures that the strains can be integrated to give a unique continuous displacement 

field. 
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9.1.2 Matrix Notation 
 

Introduce now the following matrix notation for the stresses, strains and constitutive 

relation: 
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where the material property matrix  C  is 

 

 
 

    































































 plane
2100

01
01

211

 plane
100
01
01

1

2
1

2
12





E

E

C      (9.7) 

 
Materials which are not isotropic will have a different material property matrix  C , but the 

rest of the equations, and the theory which follows, are the same as for the isotropic case. 

 

 

9.2 Derivation of the FEM Equations 
 

 

9.2.1 The Weighted Residual Equations 
 

The weighted residual method is applied to the equilibrium equations: 
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where   is the complete 2D domain.  Thus in the FEM, the equilibrium equations are 

satisfied in an average way over the domain.  Green’s theorem now leads to 
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where   is the boundary of the domain. 

 
Introduce the traction vector T],[ yx ttt  such that 
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Thus 
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and yx tt ,  are the tractions on the surface of the material.  

 

Writing in matrix form and substituting in the constitutive relations now leads to 
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The displacements u and v can be interpolated with the same shape functions iN  of m 

degrees of freedom: 
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These interpolations can be written in terms of a shape function matrix  N , 
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and the strains can then be written in terms of a strain-displacement matrix  B , 
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Substituting back into (9.12), with the integrations now over an element, gives 
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9.2.2 The Galerkin FEM 
 
In the Galerkin FEM, one sets mjN j 1,21   , leading to 
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or 
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FEM Equations for 2D Elasticity: 
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The f here is a force per unit length (normal to the plane).  One can re-formulate the 

problem and explicitly include the thickness, t say, so that 
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in which case f is a force. 

 

 

9.3 Example Problems 
 
Here, some example problems are considered, to illustrate the application of the above 

equations and the effectiveness of various elements. 

 

 

9.3.1 Plate Extension 
 

Consider a plate loaded along one edge by a 
constant stress 0 .  The plate is fixed along 

the opposite edge, but can slide vertically, 

as shown.  Plane stress conditions are 

assumed.  The exact solution to this 

problem is 

 

    




































Ey

Ex
u
u

E
E

y

x

/
/

,
0

/
/

,
0
0

0

0
0

00





εσ                  (9.19) 

 

This is a simple linearly varying displacement field and constant stress and strain field. 
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Linear Triangular Elements 

 

In terms of global coordinates, the displacement field within a linear triangular element is 
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The strains are then 
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and for this reason the linear triangular element is also called the constant strain triangle 

(CST) element when used in the context of plane elasticity.  The linear displacement field 

implies that the straight element edges remain straight after deformation.  Further, because 

the strains are constant, the stresses are constant, so the equilibrium equations are satisfied 

exactly for this element in the absence of a body force.  It can also be seen that 

compatibility is satisfied. 

 

The exact solution to the plate extension problem involves a constant stress and strain field 

and so the CST element gives exact results. 

 
The shape function  N  matrix and the strain-displacement  B  matrix are, in terms of 

local coordinates,  
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The strain-displacement  B  matrix and the material property 

 C  matrix are independent of position, so, transforming the 

stiffness matrix integrals to local coordinates, 
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For a regular triangular mesh which includes the two types of 

element illustrated, A and B, the matrix multiplication leads to 

simple stiffness matrices: 
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Element B 
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Let  the complete plate be modeled with just the two elements illustrated, so that there are 

8 degrees of freedom.  Integrating along the edge 32   of element A leads to the loads 

vector 
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(9.27) 

 

which is equivalent to putting half the total force applied to the 

edge at each of the two edge-nodes. 

 

Assembling the matrices and applying the essential boundary 
conditions 0433  uvu  leads to the global system 
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(9.28) 

 

leading to the exact solution 

 
EbvvvEauu /,0,/ 0421021             (9.29) 

 
Within each element, the strains are obtained from (9.15),    dBε ][ , and the stresses are 

obtained from the strains through (9.6),     eCσ  , leading to the exact solution (9.19). 
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Bilinear Quadrilateral (Q4) Elements 

 

In terms of global coordinates, the displacement field within a bilinear quadrilateral 

element is 

 

xyyxv
xyyxu

4321

4321

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
             (9.30) 

 

and so the strains are 

 
  yxxy xyyyxx 44234342 ,,     (9.31) 

 

The displacement field implies that the straight element edges do not remain straight after 
deformation, unless they are aligned with the global yx   axes.  Compatibility is satisfied 

but the equations of equilibrium are not necessarily satisfied exactly. 

 

For the bilinear quadrilateral element, the displacement vector is 

 
   Tvuvuvuvu 44332211d ,        (9.32) 

 
and the shape function  N  matrix in terms of local coordinates is  
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The strain-displacement  B  matrix must be evaluated using the inverse Jacobian 1J : 
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with 
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Taking a single rectangular element to model the plate, as illustrated below, 
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The single element stiffness matrix is now 

 

     









1

1

1

1

][ ddab T BCBK                    (9.37) 

 

Evaluating the integrals leads to the symmetric matrix 
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where   2/1   .  Applying the essential boundary conditions 0421  uvu  and 

using the loads vector 
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then leads to the exact solution. 

 

 

9.3.2 Beam Bending 
 

Consider next a beam built in at one end and subjected to a pure moment M at the other 

end.  The exact solution to this problem for conditions of plane stress is 
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It is not possible to get an exact solution for the 

displacements; an approximate solution is 
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which when differentiated give the exact strains; they satisfy the condition 
0)0,0()0,0(  vu  but do not satisfy 0

0


x
v  unless 0y . 

 

For the right-angled CST element shown below, the load vector is {▲Problem 1} 
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 Tbyby
h
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0230300
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f            (9.42) 

 
where 2y  is the y coordinate of the bottom right vertex, as 

illustrated.  For a single element, with 2/2 hy  , hb  , this 

gives rise to forces of hM /  at the two end-nodes.  The loads 

vector for the Q4 element is the same (with two extra zero entries at the bottom of the 

vector). 

 

Clearly, from (9.21), the CST element does not give the exact solution, and indeed does 
not perform well.  From (9.31), the Q4 element cannot model the linear variation of the yy  

strain in y.  Further, since 4  in (9.31) needs to be non-zero to model the linear variation of 

xx  in y, it develops a non-zero shear strain xy .  Thus, not only is the bending resisted by 

the flexural stresses xx , it is resisted by shear stresses xy  and the consequence is that the 

Q4 element is overly stiff in bending.  

 

Results for the CST and Q4 elements for the displacement at the lower right hand end of 
the beam are given in the following table.  The geometry is 2,10  hl .  In this table, n 

is the number of nodes, N is the number of elements and dof  is the number of degrees of 

freedom (before application of the essential BC’s).  Results are given for various yx mm   

meshes, these being the number of divisions of the beam in the x and y directions 

respectively; for example, the 210  mesh of CST elements is shown below.  The 

Poisson’s ratio was taken to be 3.0 . 

 

 CST Q4 

Mesh n dof N )2/,( hlxM
E u


 

)2/,( hlyM
E u


 N )2/,( hlxM

E u


 
)2/,( hlyM

E u


 

15  12 24 10 -3.55117 -17.19328 5 -10.11111 -50.55555 

210  33 66 40 -8.18828 -40.45249 20 -13.35359 -66.73442 

220  63 126 80 -9.18705 -45.68630 40 -14.28070 -71.40650 

250  153 306 200 -9.47978 -47.33016 100 -14.56502 -72.84635 

1050  561 1122 1000 -14.46915 -72.45387 500 -14.90095 -74.60057 

20100  2121 4242 4000 -14.84735 -74.33781 2000 -14.96151 -74.89682 

Approx. Solution (Eqn. 9.36) -15.00000 -75.22500  -15.00000 -75.22500 

Table: Performance of CST and Q4 elements for Pure Bending 
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Locking 

 

If the aspect ratio of the Q4 element is allowed to get very 

large, its stiffness becomes very inaccurate.  For example, 

consider the beam bending modelled by a single Q4 

element.  The FE solution for the displacements is then 
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The element deforms as indicated by the dotted lines.  The 

true solution for the angle   indicated is, from the simple 

beam theory, EbaM 3/12 , where M  is the true moment 

required.  Setting this   equal to that obtained from the FE solution gives 
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Thus for large aspect ratio ba / , the moment required in the FE model tends to infinity and 

the model becomes infinitely stiff, a phenomenon known as locking. 

 

 

The Improved Bilinear Quadrilateral (Q6) Element 

 

The Q6 element was introduced in order to overcome the problems associated with the Q4 

element in bending.  It has the same four nodes as the Q4 element, but six degrees of 

freedom.  The displacements within the element are given by 
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where the iN  are the same as the Q4 shape functions. The 65 , uu , 65 , vv , are new degrees 

of freedom termed internal degrees of freedom – they are not nodal displacements.  This 

new interpolation allows straight edges to deform into curves; in fact, considering a 

rectangular element with edges aligned with the global axes, 
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These are constant curvatures within an element, the inverses of the radii of curvature 

shown in the figure below. 

 

 
 

If this element is rectangular with sides aligned with the global axes, then a state of pure 

bending can be represented exactly.  The loads vector for the single element shown is 
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and the corresponding FE solution is 
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which leads to the exact expressions for the 

strains within the element, and the exact 
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expression for the radius of curvature, MEhR 12/3 . 

 

Although the compatibility equation (9.5) is satisfied by (9.45), the 

Q6 element is still incompatible in the sense that the edges of two 

adjacent elements which are initially coincident can deform to two 

separate curves, corresponding to an overlap of material, as 

illustrated here.  This problem dissipates as the mesh is refined and a 

state of constant strain is approached within each element. 

 

 

9.3.3 The Cantilever Beam 
 

Consider now a more challenging problem to model, that of a cantilever beam subjected to 

a shear force F at its end.  The exact solution to this problem for conditions of plane stress 

is 
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It is not possible to get an exact expression for the displacements; they are given by 
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where A  is constant.  These expressions satisfy the strain-displacement relations and 
satisfy 0)0,()0,(  lvlu .  It is not possible to ensure (9.51) satisfy 0 vu  all along the 

right hand end; A  can be determined by enforcing some condition there, for example zero 
slope 0/ 

lx
xv  gives 0A , whereas zero slope 0/ 

lx
yu  gives 

EhFA /)1(3  .  The exact solution is somewhere between these extremes.  The 

displacements at the lower left hand corner are 
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so that, if the beam is slender, 1/ hl , and the first terms here will dominate. 

 

The exact solution involves a stress and strain field 

which vary through the thickness of the beam.  As 

with pure bending, a single CST element in the 

thickness direction is not able to capture this variation 

and in fact a model such as that shown here returns 

very poor results.  No matter how many CST 

elements are used in the horizontal direction, the 

solution is very inaccurate, for example with  10/ hl  and 200 elements, the error in 

)2/,0( h
u


 is about 70%.  Even when the number of elements in the thickness direction is 

increased, the results are not very good, unless many hundreds of elements are used.  The 

results using the Q4 element are better.  Results for both CST and Q4 elements for the 

displacement at the lower left hand end are given in the following table.  Again, 
2,10  hl  and 3.0 . 

 

 CST Q4 

Mesh n dof N )2/,0( hxF
E u


 

)2/,0( hyF
E u


 N )2/,0( hxF

E u


 
)2/,0( hyF

E u


 

15  12 24 10 16.32264 -125.0169 5 50.55555 -346.6667 

210  33 66 40 39.75799 -279.4301 20 66.63406 -455.2244 

220  63 126 80 45.20658 -315.1775 40 71.29923 -487.3444 

250  153 306 200 47.07871 -327.0089 100 72.73698 -497.2866 

1050  561 1122 1000 72.53138 -496.2589 500 74.80125 -511.0163 

20100  2121 4242 4000 74.53338 -509.3301 2000 75.15152 -513.2310 

Approx. Solution (Eqn. 9.52) 75.00000 -500.0000  75.00000 -500.0000 

Table: Performance of CST and Q4 elements for Tip Loading of a Cantilever 

 

As expected, the Q6 element gives better results tan either the CST or Q4. 

 

 

9.4 Problems 
 

1. Derive the loads vector f for the CST triangle in the beam bending problem. 


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