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8 2-D FEM: Poisson’s Equation 
 

Here, the FEM solution to the 2D Poisson equation is considered. 

 

Poisson’s Equations: 
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and the special case of Laplace’s equation. 

 

Laplace’s Equations: 
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8.1 Solution using Q4 elements 
 

 

8.1.1 Example 1: Laplace’s Equation with One Element 
 

Consider Laplace’s equation over the 

rectangular region axa  , 
byb  , with boundary conditions 
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The exact solution is the linear function 
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byp   and thus the problem can be solved exactly using just one Q4 element, the one 

shown here. 

 

The weighted residual integral equation is 

 
  0 dSp

S

      (8.3) 

 

and the weak form is (this is one of Green’s identities – the two dimensional “integration by 

parts” – see the Appendix to this Chapter) 
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Here np  is the normal component of the vector p , and this quantity multiplied by   is 

integrated around the boundary C of the element.  The normal is taken outward from the 

boundary, so for example if one is integrating along the edge 1-2, n points in the negative y 
direction.  The notation np  /  is often used for this scalar np .  Thus 
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Using the linear interpolation 
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one has 
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In terms of base vectors yx ee , , the gradients can be written as 
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and the integrals result in a symmetric matrix: 

 

  rectK 








dxdyNN
b

b

a

a

ji               (8.8) 

 

where 

 




























22

2222

222222

22222222

rect

22

222

222

2222

6

1

ba

baba

bababa

babababa

ab





K       (8.9) 

 

Examining the boundary integrals, 
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where 1C  is the first edge, joining nodes 1 and 2 of the element, etc.  As discussed in Chapter 

6, two of these integrals on the right hand side will be zero for any given shape function jN .  

The right hand side boundary vector is thus 
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Homogeneous natural boundary conditions are applied along 2-3 and 4-1 and so these 

boundary integrals are zero.  For the non-homogeneous natural boundary condition one needs 

to evaluate 
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leading to the system of equations 
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Finally, applying the essential boundary condition 0),( bxp  leads to 
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which is the exact solution.  Note that, computationally, one would not reduce the order of the 

matrix as done above; it is easier to amend the 44  matrix to include the essential boundary 

conditions, as shown here: 
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and then to solve.  Putting the obtained values of p back into the un-amended system of 

equations leads to expressions for line integrals along edge 3-4: 
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from which one can see that 
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which is again the exact solution. 
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which is also the exact solution. 

 

Different boundary conditions can be taken, for example the set 
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has the exact solution axp   and the single Q4 element FE equations are, with  
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and 
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where rectK  is as before.  Applying the essential boundary condition then leads to 
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which is the exact solution. 

 

 

8.1.2 Example 2: Poisson’s Equation with Local Coordinates 
 
Consider Poisson’s equation, with 1f  in (8.1), over the same rectangular region as for 

Example 1.  The weak form of the weighted integral is now 
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Using the linear interpolation  
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Transforming the surface integrals into integrals over the local coordinates, one has 
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where J is the Jacobian of the transformation, xNJ dJ  . 

 

To write the integrands in local coordinates, note that 
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When the element edges are aligned with the global x, y axis, these can be evaluated exactly: 
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Carrying out the integration leads to  
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where rectK  is the same coefficient matrix as encountered in Example 1. 

 

 

8.1.3 Example 3: A Two-element Problem 
 

As a further example, consider again the Poisson’s equation of Example 2 over the rectangular 
region axa  , byb  , with boundary conditions 
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The exact solution is the quadratic function )1()1( 2
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2
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The problem will be solved using one element 

spanning the x direction and two elements 

spanning the y direction, as shown. 

 

The complete symmetric system of equations for 

this two-element mesh is (note that in what 

follows, the b, the element “half-height” is now 
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fKp   

 
where  T654321 ppppppp  and 

 

),( ba  







1 2

3 4

),( ba 

),( ba 

),( ba 

x

y

 

1

2

5 6

1 2

34

1 2

34



 207





































22

2222

222222

22222222

222222

22222222

22

222

244

24244

00222

002222

6

1

ba

baba

bababa

babababa

bababa

babababa

ba









K  

(8.31) 





































































































































































































































1

1

2

2

1

1

2 elem

4

14

43

43

4

2 elem

3

43

32

32

3

2 elem

2

32

21

21

2

1 elem

3

43

32

32

3

2 elem

4

14

11

21

1

1 elem

4

14

43

43

4

1 elem

2

32

21

21

2

1 elem

4

14

11

21

1

ba

dCN
n

p
dCN

n

p

dCN
n

p
dCN

n

p

dCN
n

p
dCN

n

p
dCN

n

p
dCN

n

p

dCN
n

p
dCN

n

p
dCN

n

p
dCN

n

p

dCN
n

p
dCN

n

p

dCN
n

p
dCN

n

p

f
  (8.32) 

 

From the above, with the normal derivatives constant, the boundary integrals for both 

elements are given by 
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The homogeneous natural boundary conditions imply that the line integrals along edges 2-3 

and 4-1 are zero for both elements.  The non-homogeneous natural boundary condition, 
1/
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yp , so 1/
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np , leads to the right hand side vector  T00aa  .   

 

Note that the integrals over the internal edge cancel out:  
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The remaining boundary integral leads to 
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Applying the essential boundary conditions finally leads to the system 
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which has the solution 
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which are the exact values at the nodes (although the FE solution is linear between the nodes 

and the exact solution is quadratic). 

 

With the p’s now known, the normal derivative between nodes 5 and 6 can be determined, 

giving 
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which is also the exact solution. 

 
The exact gradient is linear: yybp e)1(     The FE gradients are constant (the subscripts 

on the p’s here are local element numbering) 
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Element 2:  
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These gradients are the average of the exact linear gradients over each element, they are exact 

at the element-centres and they are not continuous across the element boundary. 

 

 

8.2 Solution using Rotated Nonconforming Q1 elements 
 
First, re-consider the example 1 with exact solution byp  .  Again using one element with 

the element edges aligned with the global x, y axis, one has 
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where now the symmetric coefficient matrix is 
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Finally, applying the essential boundary condition 0),( bxp  leads to 



 211

 
















































































b
b
b

p
p
p

ap
p
p

bababa
bababa
bababa

ab

2

2
0
0

376537373737
37376537937
37379376537

28

1

4

3

1

4

3

1

222222

222222

222222

      (8.43) 

 

which is the exact solution.  The solution is exact between the nodes; although the 

interpolation functions are not linear, due to cancellation of terms one arrives at 
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which is also exact. 
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Applying the essential boundary condition 07 p  finally leads to the system 
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which has the solution (compared to the exact solution) 
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With the p’s now known, the normal derivative between nodes 5 and 6 can be determined, 

giving 
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which is the exact solution (even though the inexact 5p  and 6p  are used to calculate it). 

 
The exact gradient is linear: yybp e)1(     The FE gradients are  
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These gradients are exact at the element-centres and they are not continuous across the 

element boundary. 
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8.3 Solution using Linear Triangular Elements 
 

 

8.3.1 Example 4: Laplace’s Equation 
 

Consider Laplace’s equation, as in Example 1 only now over the rectangular region ax 0 , 

bx 0 , with boundary conditions 
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whose exact solution is again the linear function byp  , with 1/  yp .  Using the linear 

interpolation  
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Since the elements are linear, this integrand is constant for any given element: 
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Using the two elements shown below, with 2/1
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and the assembled global matrix is 
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The natural boundary condition leads to the right hand side 
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Applying the essential boundary condition, 043  pp , leads to the solution bpp  21  

and   1/ ),(  bxyp  which is the exact solution. 

 
Consider now the evaluation of the gradient p  throughout both elements.  One has (the 

subscripts are now local node numbers) 
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Which is the exact solution.  The gradient is a constant vector and, in this simple example, the 

gradient is continuous across the element boundary. 
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Consider here Poisson’s equation over the rectangular region byax  0,0 .  The 

element equations are  
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Consider the boundary conditions 
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which give the exact solution (a quadratic in x) 

 

   xaAxafyxp  22

2

1
),( ,     Afxyxp  ),(          (8.60) 

 

Using the same two-element mesh as in Example 4, and so 

with the same element and global matrices, but with the 
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and with 042  pp , the pressures can be obtained: 
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which approaches the exact solution as 0/ ab ; the average pressure along the left-hand 
edge is, though, the exact solution 2/),0( 2fayp  .  The 2nd and 4th equations yield different 

values for the right-hand edge flux, but their average is the exact solution, Afa  . 

 
The exact gradient p  is linear:   xAfx e .  The FE solution is constant within each element, 
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The component of p  normal to the edge common to both elements can be obtained by taking 

the dot product of these gradients with the normal vector 22/)( baab yx  een , leading 

to 
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Element 2: 
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showing that the normal component is not continuous across the element boundary, for any 

value of ab / .  The exact solution at the centre of the square is   22
2
1 / baAfabp  n . 

 

Suppose now that one has a long mesh of 2N triangles, with each “box” of  equal height and 

width l, equal to b and Na /  respectively, as illustrated.   
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With this mesh, the FE solution converges to the exact solution as N increases.  For example, 
with 1N  (the example considered above), the FE solution at 0x  is aAfa  2444.0  

(upper node) and aAfa  2556.0  (lower node); for 4N , the solution is aAfa  2496.0  

(upper node) and aAfa  2504.0  (lower node); again, the average is the exact solution. 

 

 

Non-constant f 

 
Consider the case of varying f, in particular the problem with xf  , subject to the same 

boundary conditions (8.59), which has the exact solution 
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In this problem one needs to evaluate 
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Using the same two-element mesh as in Example 4, the right hand side vector becomes 
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With 042  pp , one obtains: 

1 2 j N
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The average value of p along the left-hand edge is the exact solution 6/),0( 3ayp  .  The 

2nd and 4th equations yield different values for the right-hand edge flux, but their average is the 

exact solution, Aa 2/2 . 

 
Again, it can be shown that the component of p  normal to the edge common to both 

elements is not continuous across that boundary. 

 
Finally, consider the problem with  222),( yxyxf   subject to 
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which has the exact solution 
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This problem involves the evaluation of the integrals 
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The problem was solved for 2 ba , with the square region 

divided into N right-sided triangles of equal size.  The pressure at 

the mid-point is shown in the table below for different mesh 

refinements (the 200 element mesh is shown). 

 

 

N )1,1(p  

8 0.83333 
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32 0.95313 

72 0.97863 

128 0.98787 

200 0.99220 

Exact 1.00000 

 

 

8.4 Solution using Nonconforming Triangular Element 
 

 

8.4.1 Example 6: Laplace’s Eqn. 
 

Consider again Example 4, Laplace’s equation with the boundary conditions (8.51).  With the 

non-conforming element, because of the different Jacobian, (8.52) now reads 
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Again, the integrand is a constant for any given element and is given by (8.53), only with the 

ii yx ,  now being the non-conforming (mid-side) nodal coordinates and   is replaced by s . 

Using the two elements shown, with 2/1
1
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0
 








dd , the local element matrices are 
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and the assembled global matrix is 
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The natural boundary condition leads to the right hand side vector 
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Applying the essential boundary condition, 05 p  then leads to the solution 

2/, 4321 bpppbp  .  The final equation then gives   1/ ),(  bxyp . 

 

The gradient is (the subscripts here are local node numbers) 

 

Element 1: yyx b

pp

a

pp
p eee 







2/2/
3221  

 

Element 2: yyx b
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Again, in this simple example, the gradient is continuous across the element boundary. 

 

 

8.4.2 Example 7: Poisson’s Eqn. 
 
Consider again Poisson’s equation over the rectangular region byax  0,0 . 
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Constant f 

 

Consider again the problem with constant f considered in §8.3.2, Example 5.  Using the same 

two-element mesh as in Example 6, shown here, and so with the same element and global 

matrices, but with the right-hand side vector 
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and using 04 p , leads to the exact pressure at node 2.  The FE solution is (compared with 

the exact solution) 
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Using (the inexact) 3p , the 4th equation yields the exact solution for the flux at node 4, 

Afa  . 

 
The exact gradient p  is linear:   xAfx e .  The FE solution is constant within each element 

(the subscripts here are local node numbers) 
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The component of p  normal to the edge common to both elements can be obtained by taking 

the dot product of these gradients with the normal vector 22/)( baab yx  een , leading 

to 

 

Element 1: 
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Element 2: 
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showing that the normal component is not continuous across the element boundary, for any 

value of ab / .  The exact solution at the centre of the square is   22
2
1 / baAfabp  n , 

which is the average of the two FE values. 

 

The solution converges to the exact solution as the mesh is made finer.  For example, the FE 
solution for the centre of the region is Aafa 2

123750.0  .  With the above two-element 

mesh, the FE solution is Aafa 2
124167.0  .  With the 6-element mesh shown below it is 

Aafa 2
123796.0   (at node 7).  The solution is exact at nodes 4, 6, 8 and 10.  

 

 
The full solution for this mesh is 

 

b 

a

    













1 2 3

4 5 6 7 8 9 10

11 12 13



 224

FE: 
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8.5 Appendix to Chapter 8 
 

 

8.5.1 Green’s Identity for two dimensional integrals 
 

Consider the weighted residual integral equation 
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Consider the first term and write it as 
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Here, 21 , yy  are the minimum and maximum values of y in the domain S and 21, xx  are the 

minimum and maximum values of x for the strip of height dy  as it moves from 1y  to 2y , as 

shown in the figure below. 

 

 
 Integrating by parts with respect to x leads to 
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  (8A.3) 

 

The first term can be re-written in terms of normals in the x and y directions, as indicated in 

the figure: 

 
  dCndCdCdy xx  encos          (8A.4) 

 
where xn  is the component of the outward normal n in the x direction, so that 
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where C is the complete boundary, and 21,CC  are as shown in the figure. 

 

Similarly, the second term, involving y, can be expressed as 
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Combining both parts leads to 
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     (8A.7) 

 

This can be written in vector notation: 
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