7 Triangular Elements

Here a number of triangular elements are discussed. Two linear elements, the standard linear element and the nonconforming linear element are discussed in quite some detail. The quadratic triangular element is briefly introduced towards the end.

7.1 The Linear Triangular Element

The most basic type of triangular element is the linear element, with three nodes at the vertices, for which the shape functions vary linearly. The shape functions for this element can be constructed as follows: consider a triangle with vertices

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)
$$

The first shape function, $N_{1}(x, y)$, is a linear function with value 1 at the first node and zero at the other two, so

$$
N_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad \begin{align*}
& a_{1} x_{1}+b_{1} y_{1}+c_{1}=1 \\
& a_{1} x_{2}+b_{1} y_{2}+c_{1}=0 \tag{7.1}\\
& a_{1} x_{3}+b_{1} y_{3}+c_{1}=0
\end{align*}
$$

which can be solved to get

$$
\begin{equation*}
N_{1}(x, y)=\frac{\left(y_{2}-y_{3}\right) x+\left(x_{3}-x_{2}\right) y+\left(x_{2} y_{3}-x_{3} y_{2}\right)}{2 \Delta} \tag{7.2}
\end{equation*}
$$

where Δ is the area of the triangle,

$$
\begin{align*}
2 \Delta & =x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) \\
& =\left(x_{1}-x_{2}\right)\left(y_{2}-y_{3}\right)-\left(x_{2}-x_{3}\right)\left(y_{1}-y_{2}\right) \\
& =\left(x_{2}-x_{3}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{2}-y_{3}\right), \tag{7.3}\\
& =\left(x_{3}-x_{1}\right)\left(y_{1}-y_{2}\right)-\left(x_{1}-x_{2}\right)\left(y_{3}-y_{1}\right)
\end{align*}
$$

and the other two shape functions can be determined similarly. Note that the nodes should be numbered counterclockwise around the triangle, as is done here, so that the area Δ is positive.

These shape functions are also called area coordinates, because they are the ratios of the areas shown in the figure here to the total area of the triangle: for example, $N_{1}=A_{1} / \Delta$ (and clearly
 $\left.N_{1}+N_{2}+N_{3}=1\right)$.

7.1.1 Local Coordinates

The local coordinates appropriate to this triangular element are

$$
\begin{align*}
& \xi=\frac{\left(x-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y-y_{1}\right)\left(x_{3}-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)}=\frac{\left(x-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y-y_{1}\right)\left(x_{3}-x_{1}\right)}{2 \Delta} \\
& \eta=\frac{\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)}=\frac{\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)}{2 \Delta} \tag{7.4}
\end{align*}
$$

global
coordinates

local coordinates

With these definitions, the local coordinates of the three nodes $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are $(0,0),(1,0)$ and $(0,1)$.

The inverse of these relations are

$$
\begin{align*}
& x(\xi, \eta)=\sum_{i=1}^{4} N_{i}(\xi, \eta) x_{i} \tag{7.5}\\
& y(\xi, \eta)=\sum_{i=1}^{4} N_{i}(\xi, \eta) y_{i}
\end{align*}
$$

and the shape functions in terms of the local coordinates are

Shape Functions for the Linear Triangular Element:

$$
\begin{align*}
& N_{1}=1-\xi-\eta \\
& N_{2}=\xi \tag{7.6}\\
& N_{3}=\eta
\end{align*}
$$

7.1.2 Transformation into Local Coordinates

For the transformation from the physical coordinate system into the local coordinate system, one again uses the transformation matrices (6.7). Again, as in (6.9), one can write

$$
\mathbf{J}=\left[\begin{array}{cc}
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} y_{i} \tag{7.7}\\
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]=\mathbf{N}_{d} \mathbf{x}
$$

with the sum now over three nodes, and with

$$
\mathbf{N}_{d}=\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \tag{7.8}\\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & +1 & 0 \\
-1 & 0 & +1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right]
$$

One also has the Jacobian of the transformation $J=|\mathbf{J}|=\left|\mathbf{N}_{d} \mathbf{x}\right|$ and the relation between the derivatives in local and physical coordinates (as in 6.11):

$$
\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right]=\mathbf{J}^{-1}\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right]=\mathbf{J}^{-1} \mathbf{N}_{d}
$$

Because of the simplicity of the element, these quantities can be evaluated in closed form:

$$
\mathbf{J}=\left[\begin{array}{ll}
x_{2}-x_{1} & y_{2}-y_{1} \tag{7.9}\\
x_{3}-x_{1} & y_{3}-y_{1}
\end{array}\right], \quad \mathbf{J}^{-1}=\frac{1}{2 \Delta}\left[\begin{array}{ll}
y_{3}-y_{1} & y_{1}-y_{2} \\
x_{1}-x_{3} & x_{2}-x_{1}
\end{array}\right], \quad J=2 \Delta
$$

and

$$
\left[\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \tag{7.10}\\
\frac{\partial N_{i}}{\partial y}
\end{array}\right]=\frac{1}{2 \Delta}\left[\begin{array}{lll}
y_{2}-y_{3} & y_{3}-y_{1} & y_{1}-y_{2} \\
x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}
\end{array}\right]
$$

7.1.3 Derivatives of the Shape Functions

An interesting property of the linear triangular element is that

$$
\begin{equation*}
\nabla N_{i}=-\frac{L_{i}}{2 \Delta} \mathbf{n}_{i} \tag{7.11}
\end{equation*}
$$

where L_{i} is the length of the element edge opposite node/vertex i and \mathbf{n}_{i} is the unit normal to that edge. This is a constant vector over the element.

For example, from the figure, with

$$
\begin{aligned}
& \mathbf{e}_{x}=\mathbf{n}_{1} \cos \theta-\overline{\mathbf{n}} \sin \theta \\
& \mathbf{e}_{y}=\mathbf{n}_{1} \sin \theta+\overline{\mathbf{n}} \cos \theta
\end{aligned}
$$

where $\overline{\mathbf{n}}$ is perpendicular to \mathbf{n}_{1}, then

$$
\begin{aligned}
\nabla N_{1} & =\frac{\partial N_{1}}{\partial x} \mathbf{e}_{x}+\frac{\partial N_{1}}{\partial y} \mathbf{e}_{y} \\
& =\frac{1}{2 \Delta}\left[\left(y_{2}-y_{3}\right) \mathbf{e}_{x}+\left(x_{3}-x_{2}\right) \mathbf{e}_{y}\right] \\
& =-\frac{L_{1}}{2 \Delta} \mathbf{n}_{1}
\end{aligned}
$$

Once the values of p have been obtained at the three nodes, the gradient can be evaluated through

$$
\begin{align*}
\nabla p & =\sum_{i=1}^{n} p_{i} \nabla N_{i} \\
& =\frac{1}{2 \Delta}\left\{p_{1}\left[\begin{array}{l}
y_{2}-y_{3} \\
x_{3}-x_{2}
\end{array}\right]+p_{2}\left[\begin{array}{c}
y_{3}-y_{1} \\
x_{1}-x_{3}
\end{array}\right]+p_{3}\left[\begin{array}{c}
y_{1}-y_{2} \\
x_{2}-x_{1}
\end{array}\right]\right\} \tag{7.12}
\end{align*}
$$

or

$$
\begin{equation*}
\nabla p=-\frac{1}{2 \Delta}\left\{p_{1} L_{1} \mathbf{n}_{1}+p_{2} L_{2} \mathbf{n}_{2}+p_{3} L_{3} \mathbf{n}_{3}\right\} \tag{7.13}
\end{equation*}
$$

which is a constant vector.

The gradients normal to the element edges are then $\nabla p \cdot \mathbf{n}_{i}$, where

$$
\begin{align*}
& \mathbf{n}_{1}=\frac{1}{L_{1}}\left[\left(y_{3}-y_{2}\right) \mathbf{e}_{x}+\left(x_{2}-x_{3}\right) \mathbf{e}_{y}\right] \\
& \mathbf{n}_{2}=\frac{1}{L_{2}}\left[\left(y_{1}-y_{3}\right) \mathbf{e}_{x}+\left(x_{3}-x_{1}\right) \mathbf{e}_{y}\right] \tag{7.14}\\
& \mathbf{n}_{3}=\frac{1}{L_{3}}\left[\left(y_{2}-y_{1}\right) \mathbf{e}_{x}+\left(x_{1}-x_{2}\right) \mathbf{e}_{y}\right]
\end{align*}
$$

The gradient can also be conveniently written in terms of a shifted global coordinate system, where the vertex 1 is position at position $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$. In terms of these coordinates,

$$
\Delta=\frac{1}{2} x_{2}^{\prime} y_{3}^{\prime}
$$

and

$$
\nabla p=\left[\begin{array}{ccc}
-\frac{1}{x_{2}^{\prime}} & +\frac{1}{x_{2}^{\prime}} & 0 \tag{7.15}\\
-\frac{1}{y_{3}^{\prime}}+\frac{x_{3}^{\prime}}{x_{2}^{\prime} y_{3}^{\prime}} & -\frac{x_{3}^{\prime}}{x_{2}^{\prime} y_{3}^{\prime}} & +\frac{1}{y_{3}^{\prime}}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]
$$

7.1.4 Some Integrals

The integral of a function over an element is given by

$$
\begin{equation*}
\int_{E} f(x, y) d S=J \int_{0}^{1} \int_{0}^{1-\xi} f(\xi, \eta) d \eta d \xi \tag{7.16}
\end{equation*}
$$

Some integrals involving the shape functions are $\{\boldsymbol{\Delta}$ Problem 1\}

$$
\int_{E} N_{j} d S=\frac{\Delta}{3}, \quad j=1,2,3, \quad \int_{E} N_{i} N_{j} d S=\frac{\Delta}{12}\left[\begin{array}{lll}
2 & 1 & 1 \tag{7.17}\\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

7.1.5 The Boundary Integrals

Looking now at the boundary integral, one has

$$
\begin{equation*}
\int_{1-2} d C_{1}=L_{1} \int_{0}^{1} d \xi, \quad \int_{2-3} d C_{2}=L_{2} \int_{0}^{1} d \eta=L_{2} \int_{0}^{1} d \xi, \quad \int_{3-1} d C_{3}=L_{3} \int_{0}^{1} d \eta \tag{7.18}
\end{equation*}
$$

where L_{1} is the length of the line joining nodes 1 and 2 , etc.

The shape functions along the three edges are given in the following table:

	N_{1}	N_{2}	N_{3}
C_{1}	$1-\xi$	ξ	0
C_{2}	0	ξ (or $1-\eta$)	$1-\xi$ (or η)
C_{3}	$1-\eta$	0	η

Table 7.1: Shape Functions for the Linear Element along Element Edges

For natural boundary conditions of the type

$$
\begin{equation*}
\frac{\partial p}{\partial n}=A, \tag{7.19}
\end{equation*}
$$

were A is a constant, one obtains the boundary vectors

$$
\int_{C_{1}} N_{j} d C_{1}=\frac{L_{1}}{2}\left[\begin{array}{l}
1 \tag{7.20}\\
1 \\
0
\end{array}\right], \quad \int_{C_{2}} N_{j} d C_{2}=\frac{L_{2}}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \int_{C_{3}} N_{j} d C_{3}=\frac{L_{3}}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

7.2 Numerical Integration

The numerical integration rule for triangular regions takes the form

$$
\begin{equation*}
\int_{0}^{1-\xi} \int_{0}^{1-\xi} f(\xi, \eta) d \eta d \xi=\sum_{i=1}^{N} W_{i} f\left(\xi_{i}, \eta_{i}\right) \tag{7.21}
\end{equation*}
$$

where the weights W_{i} and integration points s_{i} are given in the table below. The rule integrates polynomials of the order r exactly using an N - point rule.

N	ξ_{i}	η_{i}	W_{i}	r
1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{2}$	1
3	$\frac{1}{2}, \frac{1}{2}, 0$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{6}, \frac{1}{6}, \frac{1}{6}$	2

Table 7.2: Quadrature for triangles

7.3 The Nonconforming Linear Triangle

The non-conforming triangular element has the following shape functions:

$$
\begin{align*}
& N_{1}=-1+2 \xi+2 \eta \\
& N_{2}=1-2 \xi \tag{7.22}\\
& N_{3}=1-2 \eta
\end{align*}
$$

global coordinates
local
coordinates

If the shape functions of the standard, conforming, element are denoted by \bar{N}_{i}, then

$$
\begin{equation*}
N_{i}=1-2 \bar{N}_{i} \tag{7.23}
\end{equation*}
$$

The equations

$$
\begin{align*}
& x(\xi, \eta)=\sum_{i=1}^{3} N_{i}(\xi, \eta) x_{i} \tag{7.24}\\
& y(\xi, \eta)=\sum_{i=1}^{3} N_{i}(\xi, \eta) y_{i}
\end{align*}
$$

still hold only the coordinates x_{i}, y_{i} refer to the nodes which are now mid-way along element edges, not at the vertices.

For this element one has

$$
\mathbf{N}_{d}=\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \tag{7.25}\\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right]=-2\left[\begin{array}{ccc}
-1 & +1 & 0 \\
-1 & 0 & +1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right]
$$

so that \mathbf{N}_{d} is -2 times the \mathbf{N}_{d} of the standard (conforming) triangular element. Also,

$$
\mathbf{J}=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \tag{7.26}\\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} x_{i} & \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \xi} y_{i} \\
\sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} x_{i} & \sum_{i=1}^{3} \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]=\mathbf{N}_{d} \mathbf{x}=-2\left[\begin{array}{cc}
x_{2}-x_{1} & y_{2}-y_{1} \\
x_{3}-x_{1} & y_{3}-y_{1}
\end{array}\right]
$$

which is -2 times the \mathbf{J} matrix of the standard (conforming) triangular element.

The inverse Jacobian matrix is

$$
\mathbf{J}^{-1}=\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \tag{7.27}\\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]=-\frac{1}{2}\left\{\frac{1}{2 \Delta}\left[\begin{array}{cc}
y_{3}-y_{1} & y_{1}-y_{2} \\
x_{1}-x_{3} & x_{2}-x_{1}
\end{array}\right]\right\}
$$

and the Jacobian determinant is

$$
\begin{equation*}
J=|\mathbf{J}|=\left|\mathbf{N}_{d} \mathbf{x}\right|=8 \Delta_{s}=2 \Delta \tag{7.28}
\end{equation*}
$$

where Δ_{s} is the area of the triangle with vertices $\left(x_{i}, y_{i}\right)$ and Δ is the area of the complete triangular element.

Also, using (6.11),

$$
\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \tag{7.29}\\
\frac{\partial N_{i}}{\partial y}
\end{array}\right]=\frac{1}{2 \Delta_{s}}\left[\begin{array}{lll}
y_{2}-y_{3} & y_{3}-y_{1} & y_{1}-y_{2} \\
x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}
\end{array}\right]
$$

which is a similar expression to that of the standard (conforming) triangular element.

7.3.1 Derivatives of the Shape Functions

In this case,

$$
\begin{equation*}
\nabla N_{i}=\frac{L_{i}}{\Delta} \mathbf{n}_{i} \tag{7.30}
\end{equation*}
$$

where L_{i} is the length of he element edge associated with node i and \mathbf{n}_{i} is the unit normal to the edge.

For example, from the figure, with

$$
\begin{aligned}
& \mathbf{e}_{x}=\mathbf{n}_{1} \cos \theta-\overline{\mathbf{n}} \sin \theta \\
& \mathbf{e}_{y}=\mathbf{n}_{1} \sin \theta+\overline{\mathbf{n}} \cos \theta
\end{aligned}
$$

where $\overline{\mathbf{n}}$ is perpendicular to \mathbf{n}_{1}, then

$$
\begin{aligned}
\nabla N_{1} & =\frac{\partial N_{1}}{\partial x} \mathbf{e}_{x}+\frac{\partial N_{2}}{\partial y} \mathbf{e}_{y} \\
& =\frac{1}{2 \Delta_{s}}\left[\left(y_{2}-y_{3}\right) \mathbf{e}_{x}+\left(x_{3}-x_{2}\right) \mathbf{e}_{y}\right] \\
& =\frac{L_{1}}{\Delta} \mathbf{n}_{1}
\end{aligned}
$$

Once the values of p have been obtained, the gradient can be evaluated through

$$
\begin{align*}
\nabla p & =\sum_{i=1}^{n} p_{i} \nabla N_{i} \\
& =\frac{1}{2 \Delta_{s}}\left\{p_{1}\left[\begin{array}{l}
y_{2}-y_{3} \\
x_{3}-x_{2}
\end{array}\right]+p_{2}\left[\begin{array}{l}
y_{3}-y_{1} \\
x_{1}-x_{3}
\end{array}\right]+p_{3}\left[\begin{array}{l}
y_{1}-y_{2} \\
x_{2}-x_{1}
\end{array}\right]\right\} \tag{7.31}
\end{align*}
$$

or

$$
\begin{equation*}
\nabla p=\frac{1}{\Delta}\left\{p_{1} L_{1} \mathbf{n}_{1}+p_{2} L_{2} \mathbf{n}_{2}+p_{3} L_{3} \mathbf{n}_{3}\right\} \tag{7.32}
\end{equation*}
$$

which is a constant vector.

The gradients normal to the element edges are then $\nabla p \cdot \mathbf{n}_{i}$, where

$$
\begin{align*}
& \mathbf{n}_{1}=-\frac{2}{L_{1}}\left[\left(y_{3}-y_{2}\right) \mathbf{e}_{x}+\left(x_{2}-x_{3}\right) \mathbf{e}_{y}\right] \\
& \mathbf{n}_{2}=-\frac{2}{L_{2}}\left[\left(y_{1}-y_{3}\right) \mathbf{e}_{x}+\left(x_{3}-x_{1}\right) \mathbf{e}_{y}\right] \tag{7.33}\\
& \mathbf{n}_{3}=-\frac{2}{L_{3}}\left[\left(y_{2}-y_{1}\right) \mathbf{e}_{x}+\left(x_{1}-x_{2}\right) \mathbf{e}_{y}\right]
\end{align*}
$$

7.3.2 The Boundary Integrals

Looking now at the boundary integral, one has

$$
\begin{equation*}
\int_{1-2} d C_{1}=L_{1} \int_{0}^{1} d \xi, \quad \int_{2-3} d C_{2}=L_{2} \int_{0}^{1} d \eta=L_{2} \int_{0}^{1} d \xi, \quad \int_{3-1} d C_{3}=L_{3} \int_{0}^{1} d \eta \tag{7.34}
\end{equation*}
$$

where L_{1} is the length of the line joining nodes 1 and 2 , etc.

The shape functions along the three edges are given in the following table:

	N_{1}	N_{2}	N_{3}
C_{1-2}	$-1+2 \xi$	$1-2 \xi$	1
C_{2-3}	1	$1-2 \xi$ (or $-1+2 \eta$)	$-1+2 \xi$ (or $1-2 \eta$)
C_{3-1}	$-1+2 \eta$	1	$1-2 \eta$

Table 7.3: Shape Functions for the Nonconforming Element along Element Edges

For natural boundary conditions of the type

$$
\frac{\partial p}{\partial n}=A
$$

were A is a constant, one obtains the boundary vectors

$$
\int_{C_{1-2}} N_{j} d C_{1}=L_{1}\left[\begin{array}{l}
0 \tag{7.35}\\
0 \\
1
\end{array}\right], \quad \int_{C_{2-3}} N_{j} d C_{2}=L_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \int_{C_{3-1}} N_{j} d C_{3}=L_{3}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

7.3.3 Some Integrals

The integrals of the shape functions over an element are

$$
\begin{equation*}
\int_{E} N_{j} d S=\frac{\Delta}{3}, \quad i=1,2,3 \tag{7.36}
\end{equation*}
$$

The shape functions have a useful orthogonality property; when integrated over an element,

$$
\int_{E} N_{i} N_{j} d S= \begin{cases}0 & \text { if } i \neq j \tag{7.37}\\ \frac{\Delta}{3} & \text { if } i=j\end{cases}
$$

7.4 The Quadratic Triangular Element

The quadratic triangular element has midside nodes in addition to those at the vertices, and a function is interpolated as

$$
\begin{equation*}
p=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2} \tag{7.38}
\end{equation*}
$$

The shape functions are

For example, taking $\eta=0$, the non-zero shape functions are

$$
\begin{equation*}
N_{1}=1-3 \xi+2 \xi^{2}, \quad N_{2}=-\xi+2 \xi^{2}, \quad N_{4}=4 \xi-4 \xi^{2} \tag{7.40}
\end{equation*}
$$

The one-dimensional quadratic 3 -noded element is recovered by letting $\xi \rightarrow(\xi+1) / 2$ (so that the interval is now $[-1,+1]$).

7.5 Problems

1. Derive the integral relations (7.17).
