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6 Quadrilateral Elements 
 

Two dimensional domains are meshed using quadrilateral (4-sided) and/or triangular (3-sided) 

elements.  Quadrilateral elements are discussed here. 

 

 

6.1 The (Q4) Bilinear Element 
 

The most basic quadrilateral element is the bilinear element, so-called because it is 

interpolated using the product of two linear polynomials (see below).  It has four nodes, at the 

corners, and is called the “Q4” element for brevity.  Considering here the simple geometry of a 
rectangular element with sides of lengths a2  and b2 , with nodes at ),(),( bayx  , the 

shape functions are 
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It can be seen by inspection that each of these shape functions takes the value 1 at one of the 

four nodes and 0 at the other three nodes.  With the nodes labeled as shown - it is conventional 
to label the nodes 41  counterclockwise - shape function iN  is 1 at node i. 

 

Another important property follows from this: each shape function is zero along two of the 

element edges: 

 
  along edge 1-2: 043  NN  
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along edge 2-3: 041  NN            (6.2) 

   along edge 3-4: 021  NN  

   along edge 4-1: 032  NN  

 

In these cases, along the edges, the bilinear shape functions reduce to the one-dimensional 

linear shape functions, for example, 
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The shape functions can be derived formally by writing them as the product of two linear 

functions 

 
))((),( 2211   yxyxN             (6.4) 

 
and solving for the constants ii  ,  using the conditions 0N  or 1 at the nodes {▲Problem 

1}. 

 

6.1.1 Local Coordinates 
 

In simple problems involving rectangular regions, it is possible to use a mesh of 

rectangular/square Q4 elements and use the above shape functions.  In more general problems, 

where the elements are irregular, it is convenient (necessary) to use the local/natural 
coordinates   , , such that the four nodes of each element are located at    1,1,  .  In 

terms of these local coordinates, the shape functions are 
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and again, shape function iN  is 1 at node i. 

 
Any Q4 element of arbitrary geometry with nodes at ),( ii yx , 41i , can be mapped onto 

this square element in local coordinates through the transformation (see illustration below) 

 













4

1

4

1

),(),(

),(),(

i
ii

i
ii

yNy

xNx




    (6.6) 

 

 

6.1.2 Transformation into Local Coordinates 
 

To enable transformation of integrals from the global coordinate system into integrals 

involving the local coordinates, introduce the Jacobian matrices 

 

IJJJJ 































































































 



















 11 ,,

yy

xx
yx

yx

            (6.7) 

 

and I is the identity matrix.  These matrices relate physical derivatives (with respect to x and y) 
and local derivatives (with respect to   and  ): 
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The Jacobian matrix can be written as the product of two other matrices: 
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where dN  is the 42  matrix of the derivatives of the shape functions, and x is the 24  

matrix of nodal coordinates {▲Problem 2}: 
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From (6.8), the derivatives with respect to the global coordinates are then 
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 or11 NJJ     (6.11) 

 
The Jacobian determinant JJ  is then {▲Problem 4} 
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Example: An Irregular Two-element Mesh 

 

Consider the irregular two-element mesh illustrated here. 

 

The necessary calculations for an implementation in terms of 

local coordinates are given below for element 1. 

 

 

 

 

The Jacobian matrix is 
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with 
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6.1.3 Distorted Elements 
 

Consider the element shown to the right, with 
0,,, dX ccYX .  From (6.12), the Jacobian determinant is 
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The Jacobian can be zero or negative for certain values of   

and  , for certain values of YX cc , .  For example, although it is positive at nodes 1, 2 and 4, at 

node 3 it is negative for 
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which happens when node 3 crosses “inside” the dotted line.  Elements with such distortions 

should be avoided, since one cannot work with singular Jacobian matrices. 

 

 

6.1.4 Element Edges aligned with the Global Axes 
 

The above equations simplify for the useful case where all elements have edges parallel to the 
yx   axes.  Taking the lengths of the element sides to be a2  and b2 , and the lower left hand 

corner at ),( 11 yx , one has 
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6.1.5 Boundary Integrals 
 

In 1-D, the boundary term for natural boundary conditions involved 

simply the value of a derivative at a boundary node.  In 2-D, the 

boundary terms will involve an integration over a line (an element 
edge).  For example, consider a portion 1dC  along the edge 1-2 of a 

Q4 element.  Transforming into local coordinates, 

 

  






d

Lyx
ddydxdC

d 2
)( 1

1

22

0

22
1 



























      (6.19) 

 
where 1L  is the length of the edge, 
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and similarly for the other edges, summarised as follows: 
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The shape functions along the four edges are given in the following table: 

 

 1N  2N  3N  
4N  

1C   12
1   12

1  0  0  

2C  0   12
1   12

1  0  

3C  0  0   12
1   12

1  

4C   12
1  0  0   12

1  

Table 6.1: Q4 Shape Functions on Element Edges 
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The most commonly encountered natural boundary condition is one of the form 
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were A is a constant.  In this case, the boundary integrals are 
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Another commonly encountered natural boundary condition is one of the form 
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were A is a constant.  In this case, the boundary integrals lead to matrices {▲Problem 7} 
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6.1.6 Internal Element Edges 
 

The boundary integrals over internal edges of elements are taken to cancel each other out for 

the standard Galerkin FEM in 2-D –  one only needs to be concerned with the line integrals 

along edges at the boundary of the mesh. 
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6.2 Numerical Integration 
 

It is not possible to evaluate (surface) integrals over the local coordinates exactly (except in a 

few simple cases) and one must use a numerical approximation.  First, consider the Gauss-

Legendre one-dimensional numerical integration rule; here, an integral is approximated by a 

series of N terms: 
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where the iW  are called weights and the function is evaluated at a set of N integration points 

i .  It is straight forward to calculate these weights and integration points.  For example, 

consider the 1-point rule, 1N .  This involves two unknowns and so the rule should integrate 

exactly a linear function: 

 

  0

1

1 10

1

1
2)( adaadf  








                    (6.27) 

 
Setting this to equal )( 11 fW  and equating the coefficients of 10 , aa , leads to 0,1 11  W .  

This 1-point rule will only give an approximate solution to higher order polynomials. 

 

The 1 to 4 – point rules are given in the table below. The rule integrates polynomials of the 

order 12  Nr  exactly using an N – point rule. 
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940508611363115.0

848603399810435.0

848603399810435.0

940508611363115.0






 

374503478548451.0

625506521451548.0

625506521451548.0

374503478548451.0

 

Table 6.2:  One dimensional gauss quadrature 
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Extending this to two dimensional integrals, one has the rule 
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with the integration points and weights W as given in the 1-d table.  Again, the rule integrates 

polynomials of the order 12 N  exactly using an N – point rule.  For example, to evaluate the 
integral of 42 , one would use 412,212 )()(   NN , giving 5.2,5.1 )()(   NN .  

Taking the next higher integer, one would choose 3,2 )()(   NN . 

 

As examples, here follow two numerical quadrature rules obtained directly from (6.28), 

{▲Problem 9} the 22  rule and the 33  rule: 
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This rule integrates exactly functions of the third order in  , , for example terms of the form 
323 ,  , etc., or of a lower order. 

 

Nine-Point Rule: 
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where     
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6.0,0,6.0
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        (6.32) 

 
This rule integrates exactly functions of the fifth order in  , . 

 

 

 

 

6.2.1 Computational Aspects 
 

The values of the shape functions and their derivatives are required only at the set of 

integration points.  These can be evaluated in the pre-processing stage, on a once and for all 

basis, or extracted from a database, before input of the actual mesh geometry.  The Jacobian, 

on the other hand, depends on the global coordinates of the element, and must be evaluated for 

each element.   

 

 

6.3 The Q6 Bilinear Element 
 

The Q4 element is a stable low-order element which performs well in many applications.  

However, when used to model plate bending, it can tend to respond in an overly stiff manner.  

The Q6 bilinear element is often used in these cases.  Its first four shape functions are as for 

the Q4 element; the other two are given by 
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A function interpolated with (6.33) then has six unknowns, the four nodal values and two 

internal degrees of freedom.  This element is used in Chapter 9 to model plane elasticity. 

 

 

6.4 Higher Order Quadrilateral Elements 
 

Other popular quadrilateral elements are the 8-noded and 9-noded  elements. 

 

 

6.4.1 The 8-noded Quadrilateral 
 

The Q8 elements consists of the following polynomial representation of an unknown function: 
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In terms of local coordinates, the shape functions are then found to be 
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Along any one edge, the variation is quadratic.  For example, along 1 , the non-zero 

shape functions are 
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which are the shape functions for the one dimensional 3-noded quadratic element. 

 

 

6.4.2  The 9-noded Quadrilateral 
 

The shape functions for this element are 
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(6.37) 

 
with shape function iN  is 1 at node i. 

 

 

6.5 Problems 
 

1. Use the general relation for a bilinear polynomial, Eqn. 6.4, to derive the shape functions 

(6.1). 
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2. Show that a differentiation of (6.5) leads to (6.10). 

3. Consider the derivatives of the shape functions with respect to the global coordinates.  

Show that their values at the four nodes are given by 
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 where ijk  is the area of the triangle with nodes kji ,, . 

4. Use (6.7-6.10) to derive the closed-form expression (6.12) for the Jacobian determinant. 

5. Show that the values of the Jacobian determinant (6.12) at the four nodes of the Q4 

element are 

413342231124 2
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6. Consider the irregular two-element mesh discussed above.  Derive the expressions 

analogous to (6.13–6.15) for element 2. 

7. Derive the matrix (6.25) for the natural boundary condition (6.24). 

8. Derive the 2-point one-dimensional integration rule for Table 6.2.  

9. Use Table 6.2 and the 2-D Gaussian rule (6.28) to derive the 4-point integration rule 

(6.29–6.30). 

 

 

 

 

 


