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5 Non-Linear Differential Equations 
 

Application of the Finite Element Method to the solution of linear differential equations 

leads to a system of linear algebraic equations of the form bAx  ; with non-linear 

differential equations one arrives at a system of non-linear equations, which cannot be 

solved by elementary elimination methods.  Thus, much of the focus here is on methods of 

solving the resulting systems of FE non-linear equations. 

 

 

5.1 Methods for the Solution of Non-Linear Equations 
 

There are a number of basic techniques for solving non-linear equations.  For example, 

there are the 

 

1. Substitution method 

2. Newton-Raphson method 

3. Incremental (step by step) method 

- Initial Stress Method 

- Modified Newton-Raphson method 

 

The Substitution Method is not commonly used, but is given in the Appendix to this 

Chapter.  The Newton-Raphson method is the primary solution scheme for the non-linear 

equations which arise in the FEM and will be discussed in detail. 

 

 

5.1.1 The Newton-Raphson Method 
 

Consider first the one-dimensional case: the non-linear equation 

 
( ) 0R u  ,                             (5.1) 

 

whose exact solution is ( )eu .  Suppose one has an initial estimate of the solution, (0)u .  

Using a Taylor expansion and dropping higher order terms,  
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where ( ) (0)eu u u   .  Using ( )( ) 0eR u   then leads to the approximation 
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which is an expression for the next approximation. 

 

Consider the following one-dimensional example: solve the non-linear equation 
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One has 
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and the algorithm 
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The function ( )R u  is called a residual function, in the sense that the objective is to drive 

this function to zero. 

 

Using an initial estimate of 1u  gives the sequence 

 

  error 
)0(u  1.00000000 0.54858377 
)1(u  2.00000000 0.45141623 
)2(u  1.62500000 0.07641623 
)3(u  1.55163043 0.00304666 
)4(u  1.54858901 0.00000524 
)5(u  1.54858377 0.00000000 

exact 1.54858377  

Table 5.1: Newton-Raphson solution 
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If one had started with an initial estimate of 1 , one would have converged to the other 

root, 21525044.0 . 

 

A geometrical interpretation of the Newton-Raphson method is shown below for this 

example.  In deriving the Newton-Raphson method, the process of linearization has been 

used.  The linearised model is the tangent to the nonlinear residual function (and hence the 

name “tangent matrix”). 

 

 
 

Figure 5.1: Geometric interpretation of the Newton-Raphson Solution Scheme 

 

 

Notes on Convergence and Accuracy 

 

(1) if the derivative uR  /  is continuous in a neighbourhood of the solution, and if )1( iu  

lies in that neighbourhood, then the next iterated solution )(iu  will be closer to the 

solution than )1( iu  and the scheme will converge towards the solution. 

 
(2) if 0/ )1(  iu

uR , the method will fail – geometrically, this occurs when the tangent 

to R is horizontal 

 

(3) The convergence is quadratic, that is, if the error after iteration 1i  is  , the error 

after iteration i  is 2 .  This can be seen as follows: write 
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Let the true solution be )(eu , so that 1
)()1(


  i

ei uu  , where 1i  is the error of 
)1( iu .  By a Taylor series, 
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since 0)( )( euR .  Thus the error in the next estimate is 
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and so the method is of second-order (quadratic) – provided 0)( )(  euR  

 

 

Multi-dimensional Equations 

 

Consider the following system of non-linear equations, 
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whose exact solution is )(eu .  Suppose one has an initial estimate of the solution, )0(u .  

Using a Taylor expansion and dropping higher order terms,  
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where )0()( uuu  e .  Using 0)( )( euR  then leads to 
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Solving this system of linear equations leads to a new approximation (1) (0)  u u u .  An 

algorithm is then 
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Newton-Raphson Algorithm: 
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The matrix TK  is called the tangent matrix. 

 

Tangent Matrix: 
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A Two-Dimensional Problem 

 

Consider the following system of non-linear equations 
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One has 
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and 
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The Newton-Raphson scheme then converges to the exact solutions 
)02477.0,19401.0(),( 21 uu , )90911.1,00541.0( , )659787.2,09001.3(   or 

)508781.4,03474.3( . 

 

 

5.1.2 The Incremental Method (with the Newton-Raphson Method) 
 

Consider the general residual function 

 
0)()(  FuKuR              (5.15) 

 

Here, u is the unknown and F will in general be some known. In a mechanics problem, for 

example, u would be the unknown displacement and F would be due to the known applied 

loads. In a linear problem, one can specify F and one can solve for u., Fig. 5.2a. In a non-

linear problem, however, this is not so straight-forward. As an extreme example, the true 

relationship between F and u might look like that illustrated in Fig. 5.2b; there will in 

general be more than one solution for u corresponding to any given F. Referring to Fig. 

5.2b, it would be unlikely that one could find u  given F , unless one began the algorithm 

close to u . For this reason, in a practical FE problem, one does not try to solve a non-

linear problem “in one hit”. There is a danger that, if the initial prediction )0(u  is 

inaccurate, the solution will not be found.   

 

 
Figure 5.2: Example relationship between F and u in the residual function: (a) linear 

problem, (b) non-linear problem 
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For this reason, the problem is split up into a number of increments: the known “loading” 
function F is split into the increments 0 1 2, , ,F F F  . One first solves the equation 

 

0)( FuK               (5.16) 

 

using the Newton-Raphson method until the solution converges.  Once the solution is 

found, another increment in F is made, and the equation to be solved is 

 

1)( FuK  ,            (5.17) 

 

using the previous found value of u as the new prediction.  F is incremented in this fashion 

until the final value is reached and the solution is obtained. The procedure is illustrated in 

Fig. 5.3. 

 

 
Figure 5.3: Solving non-linear equations using a number of stepped increments in the 

known function F 

 

To be clear, the term increment is used to mean a change in F, whereas an iteration is 

used to mean a step in the Newton-Raphson algorithm (denoted by the “i” of Eqns. 5.10). 

Thus, at each increment, there are a number of iterations to convergence. 

 

Assuming that one has equal increments in F, the algorithm can be written as (letting 

  ˆ1 , 1, 2,F j F j    , with increment j and iteration i) 
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Results are shown below for the one-dimensional example considered earlier, Eqn. 5.4, 

with four equal increments ˆ 1/ 6F   , and three iterations per increment. 

 

 

There are a number of variations of the incremental method: 

 

1. The initial stress method:  here the tangent matrix used at the start of the solution 

process is used throughout the analysis.  The effort required with this method is 
greatly reduced, since only one evaluation of TK  is required.  This reduced effort is 

offset by the fact that the scheme will inevitable converge more slowly (or even 

diverge). 

 

2. The modified Newton-Raphson method:  here the tangent matrix used at the start of 
an increment, )( 0

jT uK , is used for all iterations during that increment – it is an 

approach somewhat in between the initial stress and full Newton-Raphson methods. 

 

Quasi-Newton or matrix update methods, for example the BFGS and DFP schemes, are a 

compromise between the full Newton-Raphson method and the other schemes which use a 

tangent matrix method from a previous configuration.  These schemes often involve 

secants to the curve.  

 

increment Fj iteration a
0 0 0 1.00000000

1 1.50000000
2 1.35000000
3 1.33353659

1 -1/6 0 1.33353659
1 1.39581432
2 1.39315469
3 1.39314982

2 -1/3 0 1.39314982
1 1.45050376
2 1.44840544
3 1.44840263

3 -1/2 0 1.44840263
1 1.50170281
2 1.50000174
3 1.50000000

4 -2/3 0 1.50000000
1 1.55000000
2 1.54858491
3 1.54858377

Initial stress method: use this 

TK  throughout the complete 

Modified Newton-Raphson 

method: use this TK  for all 

iterations during this increment.  

Update TK  at the start of the 
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All the above solution methods have their advantages, whether they be “constant K” or 

“variable K” methods. The precise choice of the optimal methodology is problem 

dependent and although many comparative solution cost studies have been published, the 

differences are often marginal.  There is little doubt, however, that the full Newton-

Raphson process has to be used when convergence is difficult to achieve.  An automatic 

procedure that self-adaptively chooses an effective technique is most attractive. 

 

Note: small increments reduce the total number of iterations required per increment and in 

many finite element software programs automatic guidance on the size of an increment to 

preserve a (nearly) constant number of iterations is provided. 

 

Comparison with a simple explicit solution 

 
The equations   K u F  can also be solved incrementally using a simple explicit 

procedure. In this case one can write 

 
   K u F                                                      (5.19) 

 

or 
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                                                     (5.20) 

 
For example, consider again the one-dimensional equation 2 8

32u u F   . Then 
8
3/ 4TK K u u      , and the algorithm is  T k k kK u u F   . This can now be solved 

by specifying the “step size” kF . The solution is shown in Fig. 5.4 for 0.1kF   and 

0.2kF  . One can observe the drift away from the exact solution with successive steps, 

typical of explicit methods. 
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Figure 5.4: Explicit solution to one-dimensional equation 

 

In contrast to the above explicit method, the Newton-Raphson scheme “pulls” the solution 

back towards the exact solution at each increment. This is illustrated in Fig. 5.5. 

 

 
Figure 5.5: Newton-Raphson method pulling solution back towards exact solution at 

each increment 
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5.2 The FEM for the Solution of Non-Linear ODEs 
 

Here, the FEM solution for non-linear ODEs is outlined by considering again the non-

linear differential equation considered in Chapter 1, Eqn. 1.70, 
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[the exact solution is   2/32/3
3
2 22)( xxu  ] 

 
Formation of the weighted residual, integration by parts, and substituting in the shape 

functions for linear elements gives 
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Converting to local coordinates and evaluating the integrals: 
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leads to the element equations 
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Rather than form the global matrix, and thence derive the tangent matrix through 

differentiation of the global matrix, it is more efficient to form the elemental tangent 

matrix and then from there to form the global tangent matrix.  The element tangent matrix 

is, differentiating the element matrix, 
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Using two elements leads to the system of three non-linear equations (with 2/1L ) 
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Applying the boundary conditions 1)1(,0)0(1  uuu  leads to 
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The equations are now solved using the Newton-Raphson method, for which 

 














32
52

32
1

32
2
22

1

16
12

32
1

328)(
uuuu

uuu
uR      (5.28) 

 













3232

3238)(
uuuu

uuu
T uK      (5.29) 

 
Solving the equations )()( )1()()1(   iii

T uRuuK  iteratively, with the initial conditions 

 T)0( 2.01.00u , results in the solution sequence 
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)0(
2u  0.10000000 

)0(
3u  0.20000000 

)1(
2u  2.23750000 

)1(
3u  3.85000000 

)2(
2u  1.21651536 

)2(
3u  2.11966459 

)3(
2u  0.78807456 

)3(
3u  1.41265492 

)4(
2u  0.67161254 

)4(
3u  1.23407069 

)5(
2u  0.66151490 

)5(
3u  1.22054242 

)6(
2u  0.66143783 

)6(
3u  1.22045483 

)7(
2u  0.66143783 

)7(
3u  1.22045482 

exact 0.66087321 exact 1.21895142 

Table 5.2: Solution of non-linear equations 

 

Using three elements and applying the boundary conditions leads to 

 

09189

0918189

0918

6
72

443
2
3

3
12

44332
2
2

3
12

332







uuuu

uuuuuu

uuu

          (5.30) 

 

so that 
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which can be used to obtain better accuracy. 

 

 

5.3 The FEM for the Solution of Non-Linear PDEs 
 

Here, the FEM solution for non-linear PDEs is outlined by considering again Eqn. 5.21, 

but now with a first order term in t, 
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The formulation of the FE problem is the same as before, only now one has a capacitance 

matrix C: 
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The time-independent part of the element equations can be written as )()( )( elel FuK  , 
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with, as before, 
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Using two elements and applying the boundary conditions leads to 

 
  )()()( ttt FuKuC          (5.37) 

 

where 
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An explicit and an implicit means of solving these equations are discussed next. 
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5.3.1 Explicit formula 
 

In the explicit scheme, the governing equations are written at time t, 
  )()()( ttt FuKuC  , and then the time derivative is replaced by the forward difference 

approximation, leading to  

 
  )()()()( tttttt uKFCuCu            (5.39) 

 

or, in incremental form, 

 

Explicit Algorithm: 
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                  (5.40) 

 

There is little difficulty in implementing this strategy – the only difference between this 

scheme and the corresponding linear one is that the linear equations Ku are replaced by 
the non-linear equations )(uK .  Note that there are no non-linear equations to be solved 

here, so the Newton-Raphson scheme is not necessary. 

 

 

5.3.2 Implicit formula 
 

The governing equations are written at time tt   and then rewritten using the backward 

difference formula as 

 
    )()()()( tttttttt  uKFuuC                        (5.41) 

 

Introduce a residual function  

 
     )()()()()( ttttttttttt  uKFuuCuR         (5.42) 

 
Suppose that one already has an estimate of )( tt u , say )()0( tt u  - one can use the 

value )(tu  as the initial prediction )()0( tt u  - or one could perhaps obtain an initial 

prediction by extrapolation through )(),(, ttt uu  . 
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One has 0))(( )0(  ttuR  and it is required that the expression 0))(( )1(  ttuR  holds.  

Following the Newton-Raphson procedure, expand in a Taylor series (note that the 

following is for fixed time tt  ) 
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where )()( )0()1( tttt  uuu .  Dropping the higher order terms gives the implicit 

algorithm 
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Results using two elements are shown in Fig. 5.6. 

 

 
Figure 5.6: FE Solution to the PDE (5.30) 
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5.4 Problems 
 

1.  Solve the following system of two non-linear equations using the Newton-Raphson 

scheme 

02

0235
2
12

211





aa

aaa
 

 [the exact solution is )1,1(   and )6583.0,1583.1(  ] 
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5.5 Appendix to Chapter 5 
 

 

5.5.1 The Substitution Method 
 

Write the non-linear equation as 

 
  3

2
3
8 )(,2)(,)(  aFaaKFaaKR       (5.A1) 

 

and so the residual for the approximation 
1ia  is  

 
  0)( 11   FaaKR iii       (5.A2) 

 
The next approximation ia  is determined by solving the linear system   FaaK ii  )( 1 , 

where 1ia  is the previous approximate value.  In incremental form, one has, with 
iii aaa  1 , 
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One can now use the following algorithm: 

 

Predict 1ia  

Iterate to correct 
for ...,2,1i  

solve iii RaaK  )( 1  
iii aaa  1  

test convergence 

 

 

 

The convergence test is usually of the form: is  ia  ?, is iR  ?,  is 
i

i

a

a
 ? 

Using an initial estimate of 1a  gives the sequence 

 
)0(a  1.00000000 
)1(a  -1.00000005 
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)2(a  -0.14285715 
)3(a  -0.22580646 
)4(a  -0.21379311 
)5(a  -0.21545320 

exact -0.21525044 

 

A geometrical interpretation of the iteration from )1()0( aa   is shown here.  The method 

applied to this equation cannot locate the root at 549.1a .  Further, the solution may 

diverge for certain functions (which undergo two or more changes in curvature within the 

search area). 

 

 

 

 

 

 

 

-4

-3

-2

-1

0

1

-1 -0.5 0.5 1 1.5
)0(a

)1(a )1(R

)2(R

F

)0()0( )( aaK

)0(a

)1(a


