
 151

5 Non-Linear Differential Equations

Application of the Finite Element Method to the solution of linear differential equations

leads to a system of linear algebraic equations of the form bAx  ; with non-linear

differential equations one arrives at a system of non-linear equations, which cannot be

solved by elementary elimination methods. Thus, much of the focus here is on methods of

solving the resulting systems of FE non-linear equations.

5.1 Methods for the Solution of Non-Linear Equations

There are a number of basic techniques for solving non-linear equations. For example,

there are the

1. Substitution method

2. Newton-Raphson method

3. Incremental (step by step) method

- Initial Stress Method

- Modified Newton-Raphson method

The Substitution Method is not commonly used, but is given in the Appendix to this

Chapter. The Newton-Raphson method is the primary solution scheme for the non-linear

equations which arise in the FEM and will be discussed in detail.

5.1.1 The Newton-Raphson Method

Consider first the one-dimensional case: the non-linear equation

() 0R u  , (5.1)

whose exact solution is ()eu . Suppose one has an initial estimate of the solution, (0)u .

Using a Taylor expansion and dropping higher order terms,

(0)

() (0)() ()e

u

R
R u R u u

u


  


, (5.2)

 152

where () (0)eu u u   . Using ()() 0eR u  then leads to the approximation

)0(/

)()0(
)0()(

u

e

uR

uR
uu


 (5.3)

which is an expression for the next approximation.

Consider the following one-dimensional example: solve the non-linear equation

3
2

3
822  uu (5.4)

One has

2 8 82

3 3 3() 2 , 4
R

R u u u u
u


      


 (5.5)

and the algorithm

 
1

1

1,
/

i

i

i i i iu

u

R
u u u u

R u





     
 

 (5.6)

The function ()R u is called a residual function, in the sense that the objective is to drive

this function to zero.

Using an initial estimate of 1u gives the sequence

 error
)0(u 1.00000000 0.54858377
)1(u 2.00000000 0.45141623
)2(u 1.62500000 0.07641623
)3(u 1.55163043 0.00304666
)4(u 1.54858901 0.00000524
)5(u 1.54858377 0.00000000

exact 1.54858377

Table 5.1: Newton-Raphson solution

 153

If one had started with an initial estimate of 1 , one would have converged to the other

root, 21525044.0 .

A geometrical interpretation of the Newton-Raphson method is shown below for this

example. In deriving the Newton-Raphson method, the process of linearization has been

used. The linearised model is the tangent to the nonlinear residual function (and hence the

name “tangent matrix”).

Figure 5.1: Geometric interpretation of the Newton-Raphson Solution Scheme

Notes on Convergence and Accuracy

(1) if the derivative uR  / is continuous in a neighbourhood of the solution, and if)1(iu

lies in that neighbourhood, then the next iterated solution)(iu will be closer to the

solution than)1(iu and the scheme will converge towards the solution.

(2) if 0/)1( iu

uR , the method will fail – geometrically, this occurs when the tangent

to R is horizontal

(3) The convergence is quadratic, that is, if the error after iteration 1i is  , the error

after iteration i is 2 . This can be seen as follows: write

)(
)(

)()1(
)1(

)1(
)1()(




 


 i

i

i
ii ug

uR

uR
uu

)0(u
)1(u

)2(u

)(uR

 154

Let the true solution be)(eu , so that 1
)()1(


  i

ei uu  , where 1i is the error of
)1(iu . By a Taylor series,

  
)()()()()()(2

12
1)(

1
)(

1
)()1()(e

i
e

i
e

i
eii ugugugugugu 

Now

   0
)(

)(
)(,0

)(

)()(
)(,)(

)(

)(
)(

2)(

)()(
)()()(










e

e
e

e

ee
eee

uR

uR
ug

uR

uRuR
uguug ,

since 0)()(euR . Thus the error in the next estimate is

)()(2
12

1)()(e
i

ie
i uguu  

and so the method is of second-order (quadratic) – provided 0)()( euR

Multi-dimensional Equations

Consider the following system of non-linear equations,





















































nn u

u
u

R

R
R


2

1

2

1

,

0

0
0

)(

)(
)(

)(u

u

u
u

uR , (5.7)

whose exact solution is)(eu . Suppose one has an initial estimate of the solution,)0(u .

Using a Taylor expansion and dropping higher order terms,

)0(

)()()0()(

uu

R
uuRuR



e , (5.8)

where)0()(uuu  e . Using 0)()(euR then leads to

)()0(

)0(

uRu
u

R

u





 (5.9)

Solving this system of linear equations leads to a new approximation (1) (0)  u u u . An

algorithm is then

 155

Newton-Raphson Algorithm:

 
iii

i
T

iii
T

i

uuu

u

R
uKuRuuK

u














1

111

)1(

)(),()(
 (5.10)

The matrix TK is called the tangent matrix.

Tangent Matrix:






















































n

n

n

n

T

u

R

u

R

u

R

u

R
u

R

u

R

u

R








2

2

2

1

2

1

2

1

1

1

u

R
K (5.11)

A Two-Dimensional Problem

Consider the following system of non-linear equations

0
02

2
235

47
215

142
15

8
215

34
13

7
12
7

2
25

7
215

162
123

7
13

8
3
2




uuuuuu
uuuuuu (5.12)

One has
















 2

235
47

215
142

15
8

215
34

13
7

12
7

2
25

7
215

162
123

7
13

8
3
2

2

1 2
)(
)(

)(
uuuuuu
uuuuuu

uR
uR

uR (5.13)

and















































235

94
15

14
15
34

25
14

15
16

3
7

25
14

15
16

3
7

25
16

13
8

2

2

1

2

2

1

1

1

4
uuuu
uuuu

u

R

u

R
u

R

u

R

T u

R
K (5.14)

 156

The Newton-Raphson scheme then converges to the exact solutions
)02477.0,19401.0(),(21 uu ,)90911.1,00541.0(,)659787.2,09001.3( or

)508781.4,03474.3( .

5.1.2 The Incremental Method (with the Newton-Raphson Method)

Consider the general residual function

0)()( FuKuR (5.15)

Here, u is the unknown and F will in general be some known. In a mechanics problem, for

example, u would be the unknown displacement and F would be due to the known applied

loads. In a linear problem, one can specify F and one can solve for u., Fig. 5.2a. In a non-

linear problem, however, this is not so straight-forward. As an extreme example, the true

relationship between F and u might look like that illustrated in Fig. 5.2b; there will in

general be more than one solution for u corresponding to any given F. Referring to Fig.

5.2b, it would be unlikely that one could find u given F , unless one began the algorithm

close to u . For this reason, in a practical FE problem, one does not try to solve a non-

linear problem “in one hit”. There is a danger that, if the initial prediction)0(u is

inaccurate, the solution will not be found.

Figure 5.2: Example relationship between F and u in the residual function: (a) linear

problem, (b) non-linear problem

)(uF

u
u

FF

u

)(uF

(a) (b)

 157

For this reason, the problem is split up into a number of increments: the known “loading”
function F is split into the increments 0 1 2, , ,F F F  . One first solves the equation

0)(FuK  (5.16)

using the Newton-Raphson method until the solution converges. Once the solution is

found, another increment in F is made, and the equation to be solved is

1)(FuK  , (5.17)

using the previous found value of u as the new prediction. F is incremented in this fashion

until the final value is reached and the solution is obtained. The procedure is illustrated in

Fig. 5.3.

Figure 5.3: Solving non-linear equations using a number of stepped increments in the

known function F

To be clear, the term increment is used to mean a change in F, whereas an iteration is

used to mean a step in the Newton-Raphson algorithm (denoted by the “i” of Eqns. 5.10).

Thus, at each increment, there are a number of iterations to convergence.

Assuming that one has equal increments in F, the algorithm can be written as (letting

  ˆ1 , 1, 2,F j F j    , with increment j and iteration i)

 1 1 1 1

1

ˆ() () () () 1i i i i i
T j j j j j

i i i
j j j

K a a R a R a K a j F

a a a

   



        
  

 (5.18)

 158

Results are shown below for the one-dimensional example considered earlier, Eqn. 5.4,

with four equal increments ˆ 1/ 6F   , and three iterations per increment.

There are a number of variations of the incremental method:

1. The initial stress method: here the tangent matrix used at the start of the solution

process is used throughout the analysis. The effort required with this method is
greatly reduced, since only one evaluation of TK is required. This reduced effort is

offset by the fact that the scheme will inevitable converge more slowly (or even

diverge).

2. The modified Newton-Raphson method: here the tangent matrix used at the start of
an increment,)(0

jT uK , is used for all iterations during that increment – it is an

approach somewhat in between the initial stress and full Newton-Raphson methods.

Quasi-Newton or matrix update methods, for example the BFGS and DFP schemes, are a

compromise between the full Newton-Raphson method and the other schemes which use a

tangent matrix method from a previous configuration. These schemes often involve

secants to the curve.

increment Fj iteration a
0 0 0 1.00000000

1 1.50000000
2 1.35000000
3 1.33353659

1 -1/6 0 1.33353659
1 1.39581432
2 1.39315469
3 1.39314982

2 -1/3 0 1.39314982
1 1.45050376
2 1.44840544
3 1.44840263

3 -1/2 0 1.44840263
1 1.50170281
2 1.50000174
3 1.50000000

4 -2/3 0 1.50000000
1 1.55000000
2 1.54858491
3 1.54858377

Initial stress method: use this

TK throughout the complete

Modified Newton-Raphson

method: use this TK for all

iterations during this increment.

Update TK at the start of the

 159

All the above solution methods have their advantages, whether they be “constant K” or

“variable K” methods. The precise choice of the optimal methodology is problem

dependent and although many comparative solution cost studies have been published, the

differences are often marginal. There is little doubt, however, that the full Newton-

Raphson process has to be used when convergence is difficult to achieve. An automatic

procedure that self-adaptively chooses an effective technique is most attractive.

Note: small increments reduce the total number of iterations required per increment and in

many finite element software programs automatic guidance on the size of an increment to

preserve a (nearly) constant number of iterations is provided.

Comparison with a simple explicit solution

The equations   K u F can also be solved incrementally using a simple explicit

procedure. In this case one can write

   K u F (5.19)

or



  

K

u F
u

 (5.20)

For example, consider again the one-dimensional equation 2 8

32u u F   . Then
8
3/ 4TK K u u      , and the algorithm is  T k k kK u u F   . This can now be solved

by specifying the “step size” kF . The solution is shown in Fig. 5.4 for 0.1kF  and

0.2kF  . One can observe the drift away from the exact solution with successive steps,

typical of explicit methods.

 160

Figure 5.4: Explicit solution to one-dimensional equation

In contrast to the above explicit method, the Newton-Raphson scheme “pulls” the solution

back towards the exact solution at each increment. This is illustrated in Fig. 5.5.

Figure 5.5: Newton-Raphson method pulling solution back towards exact solution at

each increment

 161

5.2 The FEM for the Solution of Non-Linear ODEs

Here, the FEM solution for non-linear ODEs is outlined by considering again the non-

linear differential equation considered in Chapter 1, Eqn. 1.70,

1,0)0(,012
12

2





xx

uu
dx

ud

dx

du
 (5.21)

[the exact solution is   2/32/3
3
2 22)(xxu ]

Formation of the weighted residual, integration by parts, and substituting in the shape

functions for linear elements gives

1

0

21

0

1

0

2

22
2

1

0

21
21

1

0

2

12
1 2
































  

dx

du
dxNdx

dx

dN

dx

dN
udx

dx

dN

dx

dN

dx

dN
uudx

dx

dN

dx

dN
u j

jjj

(5.22)

Converting to local coordinates and evaluating the integrals:





































































4
1

4
1

2

1

1

21

2

21

4
1

4
1

4
1

4
1

2

1

1

222

4

4

1

1

L
d

d

dN

d

dN

d

dN

dx

d
dx

dx

dN

dx

dN

dx

dN

L
d

d

dN

d

dN

dx

d
dx

dx

dN

dx

dN

j
x

x

j

ji
x

x

ji

i

i

i

i











 (5.23)

leads to the element equations

1

2

2
2
22212

2
1

2

2
2
22212

2
1

2

11
2

1

2

11
2

1



















i

i

x

x

dx

duL

L
u

L
uu

L
u

dx

duL

L
u

L
uu

L
u

 (5.24)

Rather than form the global matrix, and thence derive the tangent matrix through

differentiation of the global matrix, it is more efficient to form the elemental tangent

matrix and then from there to form the global tangent matrix. The element tangent matrix

is, differentiating the element matrix,

 162













2121

2121

2
)(2

uuuu

uuuu

L
el

TK (5.25)

Using two elements leads to the system of three non-linear equations (with 2/1L)

1

2
2
332

2
2

2
33221

2
1

0

2
2
221

2
1

4

1
484

0
2

1
4884

4

1
484



















dx

du
uuuu

uuuuuu

dx

du
uuuu

 (5.26)

Applying the boundary conditions 1)1(,0)0(1  uuu leads to

0484

048

4
52

332
2
2

2
12

332





uuuu

uuu
 (5.27)

The equations are now solved using the Newton-Raphson method, for which














32
52

32
1

32
2
22

1

16
12

32
1

328)(
uuuu

uuu
uR (5.28)













3232

3238)(
uuuu

uuu
T uK (5.29)

Solving the equations)()()1()()1(  iii

T uRuuK iteratively, with the initial conditions

 T)0(2.01.00u , results in the solution sequence

 163

)0(
2u 0.10000000

)0(
3u 0.20000000

)1(
2u 2.23750000

)1(
3u 3.85000000

)2(
2u 1.21651536

)2(
3u 2.11966459

)3(
2u 0.78807456

)3(
3u 1.41265492

)4(
2u 0.67161254

)4(
3u 1.23407069

)5(
2u 0.66151490

)5(
3u 1.22054242

)6(
2u 0.66143783

)6(
3u 1.22045483

)7(
2u 0.66143783

)7(
3u 1.22045482

exact 0.66087321 exact 1.21895142

Table 5.2: Solution of non-linear equations

Using three elements and applying the boundary conditions leads to

09189

0918189

0918

6
72

443
2
3

3
12

44332
2
2

3
12

332







uuuu

uuuuuu

uuu

 (5.30)

so that























108
72

42
1

43
2
32

1

54
12

42
1

4332
2
22

1

54
12

32
1

32

18)(

uuuu

uuuuuu

uuu

uR (5.31)























4343

434232

323

0

0

18)(

uuuu

uuuuuu

uuu

T uK (5.32)

which can be used to obtain better accuracy.

5.3 The FEM for the Solution of Non-Linear PDEs

Here, the FEM solution for non-linear PDEs is outlined by considering again Eqn. 5.21,

but now with a first order term in t,

 164

)074.2sin()0,(,1),1(,0),0(,012
2

2

xxuttu
x

u

x

u

t

u
x
u 












 (5.33)

The formulation of the FE problem is the same as before, only now one has a capacitance

matrix C:

















21

12

6
)(

2211

111 L
dxNNudxNNudx

t

u el
j

x

x

j

x

x

j

x

x

i

i

i

i

i

i

C (5.34)

The time-independent part of the element equations can be written as)()()(elel FuK  ,

 

  

































1

2

2

)(

2
221

2
1

2
221

2
1

2
)(

2

2,
2

21
)(

i

i

x

xelel

u
L

u
L

uuuu

uuuu

L
FuK (5.35)

with, as before,













2121

2121

2
)(2

uuuu

uuuu

L
el

TK (5.36)

Using two elements and applying the boundary conditions leads to

 )()()(ttt FuKuC  (5.37)

where











































3

2

4
5

2
1

2
332

2
2

2
332 ,,

2

2
4))((,

21

14

12

1

u

u

uuuu

uuu
t uFuKC (5.38)

An explicit and an implicit means of solving these equations are discussed next.

 165

5.3.1 Explicit formula

In the explicit scheme, the governing equations are written at time t,
 )()()(ttt FuKuC  , and then the time derivative is replaced by the forward difference

approximation, leading to

  )()()()(tttttt uKFCuCu  (5.39)

or, in incremental form,

Explicit Algorithm:

  
uuu

uKFR

RuC






)()(

)()()(where

)(

ttt

tttt

t

 (5.40)

There is little difficulty in implementing this strategy – the only difference between this

scheme and the corresponding linear one is that the linear equations Ku are replaced by
the non-linear equations)(uK . Note that there are no non-linear equations to be solved

here, so the Newton-Raphson scheme is not necessary.

5.3.2 Implicit formula

The governing equations are written at time tt  and then rewritten using the backward

difference formula as

    )()()()(tttttttt  uKFuuC (5.41)

Introduce a residual function

     )()()()()(ttttttttttt  uKFuuCuR (5.42)

Suppose that one already has an estimate of)(tt u , say)()0(tt u - one can use the

value)(tu as the initial prediction)()0(tt u - or one could perhaps obtain an initial

prediction by extrapolation through)(),(, ttt uu  .

 166

One has 0))(()0( ttuR and it is required that the expression 0))(()1( ttuR holds.

Following the Newton-Raphson procedure, expand in a Taylor series (note that the

following is for fixed time tt )

    0
u

R
uuRuR

u









)(

)0()1(

)0(

)()(
tt

tttt (5.43)

where)()()0()1(tttt  uuu . Dropping the higher order terms gives the implicit

algorithm

Implicit Algorithm:

      
     

)(

111
)(

11

1

1

)()()()()(

,)()(

tt
T

iii
tt

T
iii

T

i

i

t

ttttttttttt

tttttt























u

u

u

K
CK

uKFuuCuR
u

R
KuRuuK

 (5.44)

Results using two elements are shown in Fig. 5.6.

Figure 5.6: FE Solution to the PDE (5.30)

0 0.01 0.02
-1.1

-1

-0.9

-0.8

-0.7

implicit
explicit

Δt = 0.001

u(0.5)

u(1)

implicit

explicit

t

u

 167

5.4 Problems

1. Solve the following system of two non-linear equations using the Newton-Raphson

scheme

02

0235
2
12

211





aa

aaa

 [the exact solution is)1,1( and)6583.0,1583.1(]

 168

 169

5.5 Appendix to Chapter 5

5.5.1 The Substitution Method

Write the non-linear equation as

  3

2
3
8)(,2)(,)( aFaaKFaaKR (5.A1)

and so the residual for the approximation
1ia is

  0)(11   FaaKR iii (5.A2)

The next approximation ia is determined by solving the linear system   FaaK ii )(1 ,

where 1ia is the previous approximate value. In incremental form, one has, with
iii aaa  1 ,

   

iii

iiiiii

aaa

FaaKRRaaK








1

111)(,)(
 (5.A3)

One can now use the following algorithm:

Predict 1ia

Iterate to correct
for ...,2,1i

solve iii RaaK )(1
iii aaa  1

test convergence

The convergence test is usually of the form: is  ia ?, is iR ?, is 
i

i

a

a
 ?

Using an initial estimate of 1a gives the sequence

)0(a 1.00000000
)1(a -1.00000005

 170

)2(a -0.14285715
)3(a -0.22580646
)4(a -0.21379311
)5(a -0.21545320

exact -0.21525044

A geometrical interpretation of the iteration from)1()0(aa  is shown here. The method

applied to this equation cannot locate the root at 549.1a . Further, the solution may

diverge for certain functions (which undergo two or more changes in curvature within the

search area).

-4

-3

-2

-1

0

1

-1 -0.5 0.5 1 1.5
)0(a

)1(a)1(R

)2(R

F

)0()0()(aaK

)0(a

)1(a

