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2 The (Galerkin) Finite Element Method 
 

 

2.1 Approximate Solution and Nodal Values 
 

In order to obtain a numerical solution to a differential equation using the Galerkin Finite 

Element Method (GFEM), the domain is subdivided into finite elements.  The function is 

approximated by piecewise trial functions over each of these elements.  This is illustrated 

below for the one-dimensional case, with linear functions used over each element, p being 

the dependent variable. 

 

 
 

Figure 2.1:  A mesh of N one dimensional Finite Elements 
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The unknowns of the problem are the nodal values of p, ip  11  Ni  , at the element 

boundaries (which in the 1D case are simply points).  The (approximate) solution within 

each element can then be constructed once these nodal values are known.  

 

 

2.2 Trial Functions 
 

2.2.1 Lagrange and Hermite Elements 
 

There are an endless number of different trial functions which one can use.  In practice, 

these trial functions can be grouped into two broad types.  The first consists of the 

Lagrange or 0C  trial functions (and corresponding Lagrange or 0C  element).  These are 

trial functions which are continuous across element boundaries, but whose first derivatives 

are not continuous across boundaries.  The elements in Fig. 2.1 are 0C  linear elements – 

there is a clear jump in the first derivative of the trial functions at the element boundaries 

(nodes) – the first derivative is piecewise continuous. 

 

The second group consists of the Hermite or 1C  trial functions (elements).  These are 

functions which are not only continuous across element boundaries, but whose first 

derivatives are also continuous across boundaries. 

 

In general, a nC  element is one for which the trial functions are continuous up to the thn  

derivative, but elements with 1n  are rarely used.  In fact, three of the most commonly 

encountered types of element are those with a 

(1) linear Lagrange trial function ( 0C ) 

(2) quadratic Lagrange trial function ( 0C ) 

(3) cubic Hermite trial function ( 1C ) 

These three trial functions / elements will be discussed in what follows. 

 

Obviously, the higher the order and the higher the continuity of the element, the better the 

accuracy one would expect, but the more computation which is required. 

 

2.2.2 The C0 Linear Element 
 

The 0C  linear element is by far the most commonly used finite element.  Consider one 
typical element of the domain, with end-points 21, xx , Fig. 2.2.  Assuming a linear 

interpolation, 
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bxaxp )(~ .     (2.1) 

 
Let the (unknown) end-point values be 2211

~)(~,~)(~ pxppxp  . This gives two algebraic 

equations in two unknowns a and b, 
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Solving the equations gives 
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so that, after some algebra, one can write ( )p x  in terms of the two unknowns 1 2,p p   

(instead of in the form of Eqn. 2.1, which is in terms of the two values a and b) 

 

Linear Trial Function: 
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where L is the length of the element, 12 xxL  . 

 

 

 
 

Figure 2.2:  Linear trial function approximation over an element 

 

1x 2x

linear trial 

function 

22
~)(~ pxp 

11
~)(~ pxp 

true 

solution

 

nodal points 



Chapter 2 

The Finite Element Method  Kelly 34

 
The function )(xp  can now be approximated over each interval through 

 

1121

323221

212211

,~)(~)(

,~)(~)(
,~)(~)(

)(~

 






NNNN xxxpxNpxN

xxxpxNpxN
xxxpxNpxN

xp            (2.5) 

 
Here, the shape (or basis) functions 21 , NN  are the same over each interval (although 

they don’t have to be – they could be interspersed with, for example, quadratic shape 

functions – see later). 

 

Structure of the Linear Shape Functions 

 

The shape functions, Eqns. 2.4, have a number of interesting properties.  Most importantly, 

they have a value of either 0 or 1 at a node - the variation of the shape functions over an 

element is shown in Fig. 2.3.  A second property of the shape functions is that they sum to 

1, 1
2

1
 i iN . 

 

 
 

Figure 2.3:  Shape functions for the linear trial function 

 

 

2.3 The Standard Galerkin FEM 
 

The Galerkin FEM for the solution of a differential equation consists of the following 

steps: 

 
(1) multiply the differential equation by a weight function )(x  and form the integral 

over the whole domain 

(2) if necessary, integrate by parts to reduce the order of the highest order term 
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(3) choose the order of interpolation (e.g. linear, quadratic, etc.) and corresponding 

shape functions miNi 1,  , with trial function  


m

i ii pxNxpp
1

)()(~  

(4) evaluate all integrals over each element, either exactly or numerically, to set up a 
system of equations in the unknown ip ’s 

(5) solve the system of equations for the ip ’s. 

 

The linear 0C  element will be used in what follows.  Quadratic and cubic elements will be 

considered later. 

 

2.3.1 A Single-Element Example 
 

Consider the following problem: solve the following differential equation using one linear 

element:  
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2

2

 pp
dx

pd
        (2.6) 

[the exact solution is 2)(  xxp ] 

 
First, multiply the equation across by )(x  and integrating over  2,0  to get the weighted 

residual integral 
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Integrating by parts (and multiplying across by 1 ) leads to the weak form 
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This step is crucial to the FEM when linear trial functions are used, since if the trial 
function p~  is linear, then 0~ p , and one cannot work with (2.7).  However, by first 

integrating by parts, there is no longer any second derivative and (2.8) is no longer the 

trivial 00  . 
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Choose the linear trial function1 and, from Eqn. 2.4, 
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Now in the Galerkin FEM, one lets the weight functions simply be equal to the shape 
functions, i.e. ii N , so that2 ii pp  /~ .  Thus one has two equations in two 

unknowns, one equation for each weight function.  Note also that the boundary term is not 
discretised using (2.9), it is left as dxdp / , so that boundary conditions can be applied (see 

below), 
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As mentioned, the shape functions have the following property: 
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i.e. they are zero or one at one of the end-points, and so the boundary terms simplify to 
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Substituting in the shape functions and evaluating the integrals leads to the equations 
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1 this example is similar to the Galerkin examples of Chapter 1, the only difference being that here the 

unknowns in the trial function are the end-point values, rather than the a, b of (2.1) 
2 this is by far the most commonly used version of the FEM.  However, there are some problems which are 

not well solved using the Galerkin FEM; in these cases other variations of the FEM can be used in which the 

weight functions chosen are not simply the shape functions 



Chapter 2 

The Finite Element Method  Kelly 37

 
Applying the essential boundary condition 0)2( p , the first equation with the natural BC 

(0) 1p   gives 21)0( 112
1  ppp .  From the second equation, one finds that 

1)2( p .  The full solution is 

 
  2)2/(2/1 21  xpxpxp           (2.14) 

 

Note that the solution is exact – because the solution was assumed to be linear, and it is. 

 

Consider now the general ordinary differential equation with constant coefficients: 
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The weighted residual integral is 
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Using the linear trial function, and after some algebra, one arrives at the system of two 

equations 

 

Equations for Linear Trial Function: 
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As an example, let 1,2,1  dcba  and 1,1,0 21  Lxx .  The exact solution for 

the boundary conditions 2)(,1~)( 211  xuuxu  is 11)(  xxexu .  Putting these values 

directly into the linear equations Eqn. 2.17 immediately yields 2.2~
2 u  and 2.0)( 1  xu  

(compared with the exact solutions 2 and 0.368 respectively) so 

 
  xxuxuxu 2.11~1~)(~

21                   (2.18) 

 

This solution is compared with the exact solution in Fig. 2.4. 
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Figure 2.4:  Single Linear C0  Element Solution to Eqn. 2.15 

 

 

2.3.2 Global and Local Formulations of the FEM 
 

There are two ways in which the FEM can be formulated – the global and local 

formulations.  In what follows, a simple example will be examined using both 

formulations; the emphasis here is on how the global stiffness matrix is formed, and how 

the boundary conditions are applied. 

 

Consider the differential equation  
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The weighted residual, after an integration by parts, is     
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This equation will now be solved using two finite elements. 
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Solution: The Global Formulation 

 

In the global formulation, one uses a single trial function which extends over the complete 

domain3, 
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and these shape functions are shown below. 

 

 
Figure 2.5:  Linear shape functions 
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Three weighted residuals are now formed, one for each shape function, leading to  
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and the system of equations 
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Solution: The Local Formulation 

 

The local or element viewpoint is the traditional approach in engineering and is the more 

useful one when it comes to coding equations. Here, the calculations are done for each 

element separately: 
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Global Stiffness Matrix 

the full global matrix is constructed from the individual 

element matrices – from the global formulation, it can be 

seen that one must sum the contributions for common nodes 



Chapter 2 

The Finite Element Method  Kelly 41

 



























































)2(

1

)0(

110

121

011

2
1

2
1

3

2

1

p

p

p

p

p

 

 

Boundary Conditions 

 
Apply now the BC’s 1)2(,1)0(  pp  to get 
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which can be solved for 

 
3)0(,5, 32

7
2  ppp             (2.27) 

 

The solution here happens to be exact at the nodes – this will be the case for problems of 
the form )(xfp  . 

 

Returning now to the trial functions (2.21) or (2.25), the full solution, graphed in Fig. 2.6,  

is 

 
 Element 1: xp 2

5)1( 1~   

 Element 2: xp 2
3)2( 2~    

 

Note that, when programming the FE, it is best if rows and columns of the coefficient 

matrix are not eliminated as in going from (2.24) to (2.26), when applying boundary 

conditions.  The essential BC corresponds to node 1, so we replace the first row with the 

essential BC. If one wants to preserve a symmetric coefficient matrix, one can also then 

replace the first column with zeros (and a 1). In this way, application of the boundary 

conditions to the above system of 3 equations would lead to (note how the “ 1 ” in the first 

column, second row, of the original coefficient matrix, is brought over to the right hand 

side, changing the 1 to a 2) 
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Figure 2.6:  Two (Linear C0)  Element Solution to the ODE (2.19)  

 

 

The First Derivative 

 

The solution for the primary variable p is more accurate than the solution for the derivative 
p ;  p was approximated by a linear 0C  function, so here p  can only be approximated as 

constant over each element, and will be discontinuous at element boundaries: 

 
 Element 1: 2

5)1(~ p  

 Element 2: 2
3)2(~ p  

 

The amount of discontinuity can be used as a guide to the inaccuracy of the overall FE 

solution. 

 

A smoothed solution for the first derivative, plotted in Fig. 2.7, can be obtained as 

follows: take the average of the two solutions at the boundary point, so set 
 5 3

2 2(1) / 2 2p    , and also use the values at the end points, 1)2( p  (specified) and 

3)0( p  (evaluated from the FE equations 2.24), then join them up linearly.  In this 

simple example, the smoothed solution actually equals the exact solution.  Note that 

although the smoothed solution looks good, it tends to hide the inaccuracy of the solution.  

FE software typically outputs smoothed results by default – one should remove this option 

if one is interested in examining the accuracy/reliability of FE software solutions. 
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Figure 2.7:  FEM solution for the Derivative using Linear Elements  

 

Note the following: 

(1) the solution can be made more accurate by either (or both) 

(i) dividing the domain into more elements (the h-method) 

(ii) selecting higher order elements (e.g. quadratic elements) (the p-method) 

(2) This mesh has three degrees of freedom: there are three nodes, and each node has 

a single degree of freedom (there is only one variable, p, associated with each 

node).  The final system of equations to be solved will be of size nn , where n is 

the number of degrees of freedom.  

(3) It is not difficult to reformulate the problem with elements of unequal length 

(4) The coefficient (Global Stiffness) matrix for this problem, in (2.24), is singular.  

Thus if one puts two natural boundary conditions into the system of equations one 

cannot obtain a solution. 

 

 

2.4 Adaptive Meshing 
 
The difference between the discontinuous FE solution for p  and the smoothed solution 

allows many FE softwares to automatically refine the mesh in regions where the accuracy 
is not good4.  The FE and smoothed solutions are first obtained:    FE smoothed

,p p  . The 

“error” is then    FE smoothed
p p  .  Measures of these over each element can be 

determined by integrating over the element, say   2

FE
iL

p dx   ,   2

smoothed
iL

p dx    and the 

                                                 
4 that is supposing that the first derivative shouldn’t be discontinuous – it may well be discontinuous, in 

certain problems, for example where a stress field is discontinuous at the interface between different 

materials 
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element error (squared)     2

FE smoothed
i

i L
e p p dx     . An example of a global relative 

error   would then be 

 

  2

FE
i

i

iL

e

p dx e
 

   


 

      (2.29) 

 
  is a global parameter – it doesn’t measure error at a particular point/element (element 

mesh-adaptation parameters might be unreliable, since they would be large simply if 

  2

FE
iL

p dx    were small).  An algorithm might then be: evaluate  ; if 05.0  

terminate, otherwise refine the mesh in regions where ie  is large; stop after, say, 5 

iterations.  Note that neither   nor e can reveal the percentage error in the analysis, since 

the true solution is unknown. 

 

 

2.5 Local Coordinate Systems 
 

It is convenient to rewrite the FE expressions in terms of a local (or natural) coordinate 
system  .  Here, all elements will be normalised over the interval ]1,1[  5.  To this 

end, let 

 

 

Change of Variable to Local Coordinates: 

 

     
2

,1
2

,1
2

1
1

2

1
1

L

d

dx
J

L

xx
xxx i

ii 


  
  (2.30) 

 

 

 
 

Figure 2.8:  Local coordinates over an element  

                                                 
5 here, the coordinate system used is  1,1  .  Note that the interval  1,0   is sometimes used 

L

1
ix 1ix

x
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From Eqn. 2.4, 

 

 

Linear Shape Functions (Local Coordinates) 

 

         1
2

1
,1

2

1
21 NN         (2.31) 

 

This change of coordinates results in integrals which appear again and again in different 

FE problems, and they only have to be evaluated on a once-and-for-all basis.  A number of 

this type of important integral are evaluated in the Appendix to this chapter.  In higher 

dimensional problems (2-D and 3-D), this normalisation allows one to obtain approximate 

solutions to the integrals using numerical integration rules. 

 

As an example of using the local coordinate system, consider this problem: solve the 

following differential equation using two linear elements of equal length: 

 

2,1)1(,1
22

2


xdx

dpp
dx

dp

dx

pd
                  (2.32) 

[the exact solution is xexexp  2)( ] 

 

One has 
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In the global coordinate system, 
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with 2,1j .  Changing to local coordinates, note first the shape functions, 
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with 2

1L . Using the chain rule,   / / /dN dx dN d d dx   and, from Eqn. 2.30, 

/ 2 /d dx L  , this leads to 
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The square bracketed terms/integrals are evaluated in the Appendix to this Chapter so that 
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and the following system of three equations is obtained: 
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The essential boundary condition is applied at 1 and the natural boundary condition at 2, 

which leads to 
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This can be compared to the exact solution, which is 7183.3,5696.2 32  pp .  The 

complete solution (plotted in Fig. 2.9) is then 

 
   Element 1:      xpxpxp 9

29
9
20

21
)1( 2223         

 Element 2:      xpxpxp 9
21

9
8

32
)2( 3224       

 

 

Figure 2.9:  FEM solution for the ODE in (2.32) – left: p, right: dp/dx 

 

Note that the error at 2x  reduces as more elements are taken.  The error is shown here: 

 

L N Error 

1 1 0.28172 

0.5 2 0.05949 

0.25 4 0.01433 

 

When the element size is halved, the error is reduced by a factor of approximately 4.  This 

general convergence behaviour occurs for linear differential equations and is explained in 

section 2.6.1 below. 

 

Finally, consider the following general differential equation with constant coefficients 
using n linear elements of length iL , ni 1 , Fig. 2.10: 
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Figure 2.10:  a 1-D FE mesh 

 

The weighted residual integral for element i is 

 

0
1

1

1

1

1

1












 




nnn x

x

x

x

x

x dx

dp
adxdwdxcpw

dx

dp
b

dx

d

dx

dp
aI 

. (2.40) 

 

The integral is subdivided into two separate integrals: the first will give rise to matrices, 

the second to column vectors.  Changing to local coordinates leads to 
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 (2.41) 

 

for element i and weight j, with (see the Appendix to this Chapter)  
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The final system of equations are therefore as shown here. 
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 (2.43) 

 

Note that the system matrix is tridiagonal meaning only the diagonal and adjacent 

elements are non-zero.  Special efficient sparse-matrix algorithms can be used to solve 

such systems of equations. 

 

The complete system 2.43 of equations is of the form  

 
K u F                                                         (2.44) 

 

As mentioned earlier, the coefficient matrix K is called the global stiffness matrix; the 

right-hand side F is usually called the force vector. This terminology arises from the 

formulation of structural mechanics problems in which the unknown variables are the 

nodal displacements u. 

 

 

2.6 Approximation Error in the Finite Element Method 
 

The first step in solving real world problems with FEM is to construct a mathematical 

model to represent a physical system. The question as to how well the ideal mathematical 

model represents reality is the domain of physics and validation. Errors associated with the 

FEM are those which arise when one constructs a computational model/representation of 

1st element - 1st weight 

2nd element - 1st weight 

1st element – 2nd weight 

2nd element – 2nd weight 
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the mathematical model and solve that computational model. Apart from bugs in software 

and “mistakes” made by the user, the main sources of error in the FEM are discretization 

error and solution error. 

 

The discretization error arises when the mathematical model is converted into a discrete 

computational model. It is the error introduced when representing a function of a 

continuous variable by its values at a discrete set of nodes; or, equivalently, when 

representing a differential equation by its FEM matrix equations. This error will depend on 

the element order (linear, quadratic, etc.) and also on the number of elements used to 

represent the domain of interest. One would expect that the discretization error will tend to 

zero as the mesh of elements is made smaller by reducing element size. 

 

The discretization error is associated with the complete problem and so is a global 

measure. The discretization error itself depends on the more local element level on the 

interpolation error. This is the error which arises when a function is approximated using 

shape functions over a particular element, and is discussed further below6. 

 

Other errors which can arise are those associated with numerical integration (all integrals 

are evaluated exactly in this chapter, but only approximate values can be obtained in higher 

dimensions), and numerical/rounding errors, for example in inverting the stiffness K 

matrix. 

 

 

2.6.1 Interpolation Error 
 

The interpolation error is usually the largest source of error in the FEM.  It can be 

calculated for any typical element; for example, with the linear element, one can proceed 

as follows: 

 

The FE approximation is given by 

 

2211 )()()(~ pNpNp            (2.45) 

 

                                                 
6 One is most often interested in the interpolation error for functions; one can also examine the interpolation 

errors associated with the gradients of functions 
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With the linear element, the shape functions are 1
2 (1 ) .  Expand the true solution in a 

Taylor series, 
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Where the last term is the error associated with the Taylor series approximation, with   

lying somewhere in the interval. Then, letting  1h , 
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When determining the interpolation error, we can assume that the nodal values 21 , pp  are 

the exact values, since interpolation error is only associated with the approximation of the 

true function with a linear function, not with any error which might arise at the nodes. 
Thus, from (2.45), and assuming that 21 , pp  are the exact nodal values, 
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The term inside the first curly bracket is 1, and that inside the second curly brackets is 

zero, so that the interpolation error is, using the change of coordinates (2.30),  
     / / / / 2 /p p x x L p x           , 
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The maximum error in the element is then 
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                     (2.50) 

 

Thus as the length of the element is decreased, the error decreases as the square of the 

element length.  One says that the linear element is second-order accurate: 

 
2Le                                  (2.51) 

 

In general, the error of an element is proportional to 1kL , where L is the length, or a 

characteristic length, of the element, and k is the order of the interpolating polynomial.  

The error in the first derivative is proportional to kL . 

 

The same applies, to a certain extent, for higher dimensions.  For example, the error for a 

linear 2-D triangular element is proportional to 2l , where l is a characteristic length of the 

element. 

 

 

2.7 Quadratic C0 Elements 
 

Here the 0C  quadratic trial function is examined. 

 

2.7.1 Quadratic Trial Function 
 
A quadratic trial function is of the form 2)(~ cxbxaxu  , and one needs to choose three 

nodal points to evaluate the unknown coefficients.  The obvious ones to take are the two 

end-points and the centre-point7.  Assume then that the values at these nodal points are 

322111
~)(~,~)2/(~,~)(~ uxuuLxuuxu  , Fig. 2.11.  There are then three equations to 

determine the three nodal values and one finds that {▲Problem 7} 

 

 

                                                 
7 the third node does not have to be central; in some applications, e.g. fracture mechanics, it helps to place 

nodes one-quarter the way along elements  
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Quadratic Trial Function: 
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Figure 2.11:  the quadratic trial function 

 

Structure of the Weight Functions 

 

As with the linear trial functions, the shape functions are either 0 or 1 at a node, Fig. 2.12,  

and they sum to 1. 

 

 
 

Figure 2.12: shape functions for the quadratic trial function 
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Looking again at the general ODE problem of Eqn. 2.15, with a single quadratic element 

one arrives at the system of three equations 

 

Equations for Quadratic Trial Function: 
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          (2.53) 

 
Again looking at the example 1,2,1  dcba  and 1,1,0 21  Lxx , application 

of the boundary conditions 2)(,1~)( 211  xuuxu  leads to two equations in two 

unknowns, which yield 993.1,290.1 32  uu  (compared with the exact solutions 1.303 

and 2 respectively).  The complete quadratic solution is, Fig. 2.13,  
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xx

xxuxxuxxuxu
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           (2.54) 

 

 

Figure 2.13:  FEM solution for the ODE in (2.15) using Quadratic Elements 

 

The quadratic shape functions can be expressed in terms of the local coordinates: from 

(2.30) 
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Quadratic Shape Functions (Local Coordinates) 
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2
21   NNN        (2.55) 

 

 

Note that with a quadratic trial function, one does not need to integrate the higher order 

term by parts in order to obtain a solution.  However, integration by parts will ensure that 

the resulting coefficient matrix is symmetric8, and is done here. 

 

Consider next the following differential equation, to be solved using two quadratic 

elements of equal length: 
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pp
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[the exact solution is 1sincos)(  xxxp ] 

 

The weighted residual integral is   01
0

  dxppI 


, leading to 
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I               (2.57) 

 

The finite element mesh consists of two elements and five nodes: 

 

 
 

Figure 2.14:  FEM solution for the ODE in (2.15) using Quadratic Elements 

 

                                                 
8 if the DE to be solved is of the self-adjoint type, as discussed in Chapter 1 
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  Element 1: 3
)1(

32
)1(

21
)1(

1
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One now has the expressions: 
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Substituting the shape functions into these six integrals, changing to the local variables, 

and making use of the integrals in the Appendix to this Chapter, leads to 
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Summing the last equation for element 1 and the first equation for element 2, one arrives at 

the five equations (one for each degree of freedom) 
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Applying the natural boundary condition at 0x , 1)0( p , and eliminating the last row 

by applying the essential boundary condition 0)( 5  pp   leaves 
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Solving the equations, with 2/L , gives 
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The full solution is 
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which is very accurate. 

 

 

2.8 Cubic Hermite Finite Elements 
 

Here the 1C  cubic Hermite trial function is examined. 

 

 

2.8.1 Cubic Hermite Trial Function 
 

The purpose of introducing the cubic Hermite element is to ensure that the first derivatives 

of the trial function are continuous at the nodes.  To this end, consider four unknowns, the 
two values of p at the element ends and the two values of p  at the element ends.  With 

four unknowns, one can use the cubic trial function 

 
32)( dxcxbxaxp               (2.62) 

 

Using the four equations 

 

22112211 )(,)(,)(,)( pxppxppxppxp                    (2.63) 

 

to re-write the trial function in terms of the unknown nodal values, one arrives at (after 

some lengthy algebra) 
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Cubic Hermite Trial Function: 
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(2.64) 

 

The cubic Hermite shape functions can be expressed in terms of the local coordinates: from 

(2.30), 

 

 

Cubic Hermite Trial Function (Local Coordinates): 
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  (2.65) 

 

Note that the third and fourth shape functions depend on the element length.  Also, 

although these are zero at the nodes, their derivatives are one or zero there, as required. 
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Consider the following differential equation, to be solved using a single cubic Hermite 

element: 
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[the exact solution is 1)( 2
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The weighted residual integral is   01
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Using the interpolation (2.64), re-labelling 4231 , pppp  , and using the integrals in the 

Appendix (Eqns. 2A.13, 2A.14), leads to the system of equations 
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       (2.68) 

 
The boundary conditions then lead to the exact solution, 1,2/5 12  pp . 

 

The second derivatives of the shape functions are non-zero for the cubic Hermite trial 

function, and so the solution can be obtained using the weighted residual without the 

integration by parts, using the integrals in (2A.15), but the coefficient matrix will not be 

symmetric.  In this case, when one is changing to local coordinates, one must use 

 

2

2

22 2

2 2

i i

i i

i i

i i

dN dN d

dx d dx

dN dNd d d

dx dx dx d dx

dN dNd d d

dx d dx d dx

d N dNd d

d dx d dx







 
 

 
 



      
   

 
  

 

   
 

                                (2.69) 



Chapter 2 

The Finite Element Method  Kelly 61

   

 

2.9 Finite Differences 
 

Finite Differences (FD) is an alternative method of obtaining a numerical solution to 

differential equations.  Here, FD and its relation to FE is described.  Focusing on a simple 

second order problem,  

 

2)1(,1)0(,1
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p
            (2.70) 

[exact solution: 12
2
1  xx ] 

 

the FD approach is to approximate derivatives of functions using truncated Taylor series.  

For example, consider the expansions 

 

 

 
00

00

2

2
2

00

2

2
2

00

2

1
)()(

2

1
)()(

xx

xx

dx

pd
x

dx

dp
xxpxxp

dx

pd
x

dx

dp
xxpxxp





            (2.71) 

 

Adding these leads to the approximation 
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Using a grid 9 with 1N  nodes, so that Nx /1 , and for the natural boundary condition 

using the approximation 

 

                                                 
9 the mesh of Finite Elements is usually called a grid in Finite Differences 
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the ODE (2.70) is transformed into the system of equations 
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This leads to the exact solution with 3 (or more) nodes. 

 

Now consider a quadratic finite element.  The interpolation can be written as 

 
)()()()( 030201 xxpNxpNxxpNxp    (2.75) 

 
where 0x  is the central node, the shape functions are given by (2.52), and x  is the semi-

element length.  Forming the weighted residual of (2.70) and taking the weight function to 
be unity, 1)( x  (or a constant), and integrating the shape functions over the element, but 

not integrating by parts, leads to 

 

 
  1)()(2)(

1
0002




xxpxpxxp
x

       (2.76) 

 

This scheme provides a single equation for this central node, exactly the same as the Finite 

Difference equation.  Thus this FD scheme can be considered to be a FE scheme with a 

constant weight function. 
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2.10 Application: Static Elasticity (Structural Mechanics) 
 

The FE methodology described in this Chapter is here used to analyse the problem of an 

elastic material subject to arbitrary loading conditions.  The geometry of the problem is as 
shown below, a (one dimensional) rod of length l, possibly varying cross section )(xA  and 

Young’s modulus )(xE , subjected to a given displacement or stress/force at its ends. 

 

 
 

Figure 2.15:  an elastic rod 

 

This problem is discussed in detail in Solid Mechanics, Part II, section 2.1. 

 

2.10.1 Governing Differential Equation 
 

The equations governing the response of the rod are: 

 

Governing Equations for Elastostatics: 

 

 Equation of Equilibrium: 

 

  0 AbA
dx

d       (2.77) 

 

 Strain-Displacement Relation: 

 

dx

du
           (2.78) 

 

 Constitutive Relation: 

 

   E             (2.79) 
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x
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The first two of these are derived in the Appendix to this Chapter, §2.12.2.  The third is 

Hooke’s experimental law, which is valid for elastic materials undergoing small strains.  

 

In these equations,   is the stress,   is the small strain (change in length per original 

length) and u is the displacement.  The constant of proportionality in the linear elastic 

constitutive law is E, the Young’s modulus of the material; b is a body force (per unit 

volume), for example the force of gravity, and A is the cross-sectional area. 

 

The strain-displacement relation and the constitutive equation can be substituted into the 

equation of equilibrium to obtain 

 

1D Governing Equation for Static Elasticity: 
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
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f
dx
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d
         (2.80) 

 
where )(xf  is the product of the body force (per unit volume) and the cross-sectional area, 

and so is a force per unit length. 

 

Note the significance of the term inside the brackets in Eqn. 2.80: from Eqn. 2.78, the 

stresses acting on any cross-section of the rod are 

 

dx

du
Ex )(                 (2.81) 

 

and so the forces acting on any cross section are 

 

  du
F x AE
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                 (2.82) 

 

An Exact Solution 

 
When EA,  and f are constant, the exact solution is obtained by integrating twice the 

governing differential equation to obtain 
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where A  and B  are constants to be determined from the boundary conditions.  

 

 

2.10.2 FEM Formulation 
 

Formally applying the Galerkin method to the one dimensional static elasticity problem 

and integrating by parts leads to 
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      (2.84) 

 

Trial Function & Boundary Conditions 

 

The trial function for the GFEM is of the form 
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      (2.85) 

 
where n is the number of nodes in the element, the iu  are the unknown nodal values and 

the i  are the weighting functions. With the shape functions iN  as the weights, 

substituting into Eqn. 2.84 gives 
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The boundary conditions can involve the displacement u and its derivative dxdu / .  

Boundary conditions on u are of the essential type and boundary conditions on dxdu /  are 

of the natural type. It can be seen that the natural boundary condition in effect involve a 

condition on the forces F acting at the ends of the rod: 
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Boundary conditions for Static Elasticity: 
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The Stiffness Matrix and Force Vector 

 

The FE equations corresponding to (2.84) take the form 

 

FfKu               (2.88) 

 

where f is the distributed body force vector and F is the concentrated force vector.  These 

two vectors represent the external loads acting on the rod, and together are called the loads 

vector.  For example, taking A and E to be constant over an element, and neglecting the 

body force term, the element equations for a linear element of length L are 
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The dimensions of each term here is one of force.  The coefficient matrix K, including the 
LAE /  term, is called the stiffness matrix.  Note that the force )0(F  is positive when 

directed in the negative x direction (tension positive; see Fig. 2.15). 

 

The formulation used here allows one to apply concentrated forces at internal nodes, i.e. 

within the rod.  This can be achieved by having non-zero entries other than at the first and 

last nodes in the global force vector.  

 

More generally, the form of the FE equations for an arbitrary linear element is, from the 

above, 

 

essential 

boundary conditions 
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boundary conditions 
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The stiffness matrix K is singular.  This means that if no essential BC is applied (so that a 

row can be eliminated), then no solution can be obtained.  Physically, an absence of an 

essential BC means that there is only an application of forces at the rod-ends (natural BCs), 

but no applied displacement.  A singular matrix occurs when a structure is not adequately 

supported, in this case the rod can undergo an arbitrary rigid body translation – this must 

be prevented by at least one essential BC. 

 
The diagonal terms of K must be positive.  To see this, suppose that 01 iu .  Then, 

neglecting the body force term, 11 i iK u F  . iF  is defined positive in the negative x 

direction, and one must have the displacement iu  directed the same way as the force (so 

0iu    if 1 0iu   ), and hence 011 K , and similarly for other diagonal terms. 

 

It can also be proved that the elasticity stiffness matrix K is positive definite, i.e. 

0T Kxx , for any arbitrary vector x. For example, in the example given above, Eqn. 2.89, 
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Example 

 
Consider a rod with varying cross section )1()( 0 xAxA  , constant E and f, and boundary 

conditions FlFu  )(,0)0( .  The exact solution to this problem is seen to be 
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For a quadratic element, the element equations are, assuming A to be constant, 
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Here, A can be taken to be the average cross-sectional area in the element10.  Taking the 
data cm1,m1N/m,5001kN,Pa,10 0

9  AlfFE , the one and two-element 

solutions are as shown below. 

 

 
Figure 2.16:  FEM solution for the Elastic Rod Example Problem 

 

 

Work Equivalence of Distributed Loads 

 
Consider now the term involving the body force load  f x .  In the real mathematical 

model (2.80), this force is distributed along the rod.  In the FE model, forces cannot be 

represented at every material particle, only at the nodes; the Galerkin procedure distributes 

the load according to (see the integral on the right-hand side of Eqn. 2.84) 

 

 
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L

jf x N dx      … node j                                    (2.94) 

 

and this integral results in the distributed body force vector.  For example, consider a 

constant force (per unit length) f distributed over an element of length L, so that the total 
force acting on the element is f L .  For linear and quadratic elements, this force is 

distributed amongst the nodes as shown in Fig. 2.17. 

  

                                                 
10 for greater accuracy, one could have used the explicit expression for )(xA  in (2.82) and carry out the 

integration to obtain a different stiffness matrix 
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Figure 2.17:  FEM distribution of loads at the nodes 

 

In fact, the total force acting over an element in the real model is  
0

L

extF f x dx  . The 

total force acting over an element in the FE model is (see Eqn. 2.90) 
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which is seen to be the same as extF , since   1jj

N x  . Thus the forces in the FE model 

are the same as in the real model; they are statically equivalent.  Not only that, the loads 

in both models are work equivalent.  This is explained in what follows:  

 

The small increment in work done by the body forces over an element in the real model as 

it undergoes a small displacement increment (over the length of the element) is 

   
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L

extW f x u x dx   . Approximating the actual displacement by the FEM 

interpolation (which introduces some discretisation error), 
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The equivalent work in the FE model is  
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which is the same as that in the real model.  Thus the work done by the external loads is 

the same in the FE model as it is in the real model.  From a mechanics point of view, if the 

work done in both is the same, the FE model produces the “correct” results.  Clearly, if the 
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forces were distributed in some other way, the work done in the FE model would not be the 

true work done, and the FE model would give spurious results. 

 

Internal Forces and Internal Work 

 

Internal forces arise within the elastic material to equilibrate the externally applied forces. 

Whereas the external forces are due to some external agency, for example gravity, or an 

applied load, the internal forces are a result of the stresses which arise within the deformed 

material. As the external forces perform work, so do the internal forces: the internal work 

is a result of the internal forces moving through some displacement. 

 

As with the external forces, the internal forces are distributed amongst the nodes in the FE 

model. Since the FE equations are FfKu  , and the right-hand side represents the 

externally applied forces, Ku  must represent the equilibrating internal forces.  For 
example, consider four linear elements, with 0)0( u , a constant cross-section and 

concentrated forces 32 , FF  applied at nodes 2 and 3.  The FE equations are 
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The internal forces at the nodes in this FE model are then as shown in Fig. 2.15. 

 

 
 

Figure 2.15:  Internal forces in the FE model 

 

The internal nodal forces in the FE model, also called the element nodal point forces, 

balance the external nodal forces at each node. 

 

Since the internal forces equilibrate the external forces at each node, and the external 

forces are work equivalent to those in the real model, the internal forces are also work 
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equivalent to those in the real model. This point is better illustrated in the context of the 

potential energy of the deforming system, discussed in the following section.  

 

 

2.10.3 Variational Formulation 
 

The variational approach was introduced in Chapter 1, section 1.3.  (See also the detailed 

discussion of the variational approach in sections 8.5 and 8.6 of Solid Mechanics, Part I.) 

Following that procedure, beginning again, the governing equation of static elasticity, Eqn. 

2.80, is 
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Multiplying the equation across by a small displacement  u x ,  
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Recall that each term in Eqn. 2.99 has units of force (per unit length), and so the terms in 

Eqn 2.100 have units of work (per unit length). Integrating over the element gives the total 

work due to the change in displacement: 
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Integrating by parts and using the results from the Calculus of Variations derived and given 

in section 1.3, this can now be re-expressed as 
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It will be recognised that the term  21
20

/
l

AE du dx dx  is the strain energy in the bar (see, 

for example, Eqn. 8.2.3 in Solid Mechanics, Part I, with the force given by Eqn. 2.82).  

Thus Eqn. 2.102 can be expressed as 
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0                                                         (2.103) 

 

where   is the potential (strain) energy. Taking the potential energy to be a function of the 

displacement, Eqn. 2.103 can be expressed as 
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                                              (2.104) 

 

which is an expression of the principle of minimum potential energy: the solution to the 

structural mechanics problem is that which causes the potential energy to be stationary, 

/ 0d du  . 

 
Using now the displacement interpolation i iu N u ,  

 
2

00

1

2

ll l
i

i i i i i

o

dN du
AE u dx AE N u f N u dx

dx dx

               
              (2.105) 

 

Introducing row vectors for the shape functions: 

 

       1 2 1 2, / /N N dN dx dN dx N B                             (2.106) 

 

and the column vector of unknown nodal displacements 

 

  1

2

u

u

 
  
 

u                                                   (2.107) 

Eqn. 2.105 can be expressed as (for linear elements, but this can be generalised in the same 

way for other elements): 

 

            
00

1

2

ll l
TT

o

du
AE dx AE f dx

dx

        u B B u N u N u            (2.108) 

 

The stationary value of the energy can now be obtained by differentiating this expression 

with respect to the vector u. For the purposes of differentiation with respect to 

matrices/vectors, note the following rules: 
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Consider the scalar function of a vector u:      1 1 2 2N u N u   u N u . Differentiation of 

a scalar with respect to a vector produces a vector: 

 

   1 1

2 2

/

/
Tu N

u N



     

          

u
N

u
                                  (2.109) 

 

Consider next the scalar function           2

1 1 2 2

TT
B u B u   u u B B u . Differentiation 

gives: 

 

   
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2 1 1 2 22

2/
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TB B u B uu

B B u B uu



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          

u
B B u

u
              (2.110) 

 

Thus the stationary point of Eqn. 2.108 is given by 
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            (2.111) 

 

Setting this to zero then gives 

 

        
00

ll l
T

o

du
AE dx AE f dx

dx
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T T

B B u N N                   (2.112) 

 

which is exactly the same as Eqn. 2.90 derived earlier directly from the governing 

differential equation. 

 

Thus the FE equations can be derived either directly from the governing differential 

equation or through the variational approach. When using the variational approach, the 

potential (strain) energy of the system enters directly, and in that sense one says that the 

finite element model is energy or work equivalent to the real model. 

 

 

2.11 Problems 
 

1. Solve the following problem using two linear elements of equal length: 

3)2(,1)0(,6
2

2

 uux
dx

ud
  [exact sln. 13)( 3  xxxu ] 
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To deal with the non-homogeneous term, you might proceed in one of two ways: 
(i) use the linear interpolation  1 1 26 6 i ix x N x N   - which is in this case of course 

exact since the function x6  is linear 

(ii) after converting to local coordinates, evaluate the resulting integrals dNx j6  

exactly using the relation (2.A6) 

  













 13

13

3

11

1 A

A
dANi   

Evaluate also the FE solution for p .  Sketch the exact, FE and smoothed solutions 

for p .   

2. Re-solve the ODE of Problem 1, only now with a natural boundary condition at 
2x :   6/ 2 xdxdp  [the exact solution is 16)( 3  xxxp ] 

3. Solve the problem 0)3(,1)0(,0  ppxp  with two linear elements of 

lengths 1 and 2 respectively.  Work through the problem in detail, using local 
coordinates.  Derive an expression for p  in each element.   

[answer: element 1 - 3
13p , element 2 - 3

7p ] 

4. What is a 1C  element? 

5. What is adaptive meshing?  How might an adaptive meshing procedure be 

implemented with 0C  elements (briefly explain)? 

6. What are the sources of error in the FEM (explain any terminology you might use)? 

7. Derive Eqns. 2.52, the shape functions for the quadratic element. 
8. Consider the equation )(xfp  .  Write down, as quick as you can, the global 

stiffness matrix for (consult the notes) 

a) a mesh of 5 linear 1-d elements, each of length 2. 
b) a mesh of 3 quadratic 1-d elements, each of length 3

1 . 

9. For the (Galerkin) FEM, in a 2nd-order problem, why does one integrate by parts to 

reduce the order of the highest derivative to 1?  Is this always necessary? 

10. Note that, in the coefficient matrices encountered in this Chapter, e.g. Eqns. 2.24, 

2.27, 2.53, 2.60, the entries of any row or column sum to zero.  Using the properties 

of the shape functions, explain why this is so, and why it is not so for the matrix 

(2.68) of the cubic Hermite element. 
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2.12 Appendix to Chapter 2 
 

2.12.1 Integrals involving the 1D Shape Functions 
 
In the following, L is the length of the element,   is a local coordinate and A is a constant. 

 

Linear Shape Functions 

 

The shape functions for the standard linear element are 
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The integrals are 
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Quadratic Shape Functions 

 

The shape functions for the standard quadratic element are 
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The integrals are 
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Cubic Hermite Shape Functions 

 

The shape functions for the standard quadratic element are given by (2.64).  The integrals 

are 
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2.12.2 Derivation of the Governing Equations for Elasticity 
 

The following are discussed in more detail in Solid Mechanics, Part II, Sections 1.1, 1.2. 

 

Force Balance 

 

Consider a one-dimensional differential element of length x .  The element has varying 
cross secton, with )()()( xOxAxxA  .  Let a body force (per unit volume) b, e.g. 

the force of gravity, act on the element, again, with )()()( xOxbxxb  .  Denote  the 

acceleration and density of the element be a and  .  Stresses   act on the element. 

 

 
 
The surface forces acting are 

xxx
AA  


.  The force due to b is 2)()()( xOxxbxA  .  

Applying Newton’s second law, 
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    (2A.16) 

 

so that, by the definition of the derivative, in the limit as 0x , one has the equation of 

motion 

 

  aAAbA
dx

d              (2A.17) 

 

If the material is static, or if the accelerations are so low that they can be neglected, this 

equation reduces to the equation of equilibrium: 

 

  0 AbA
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d             (2A.18) 

 

)(xA

x

)(x

)( xx 

x xx 

ab,

)( xxA 



Chapter 2 

The Finite Element Method  Kelly 79

Kinematics 

 
When a material is subjected to a stress/force, it deforms.  Define the strain  x  to be the 

change in length per unit length that a small line element positioned at x undergoes.   

 

To derive a relationship between the stress and the displacement of material particles, 

consider one such line element of length x  and emanating from position x.  During the 
deformation, the end at x undergoes a displacement )(xu  and the other end undergoes a 

displacement )( xxu  .  From the definition then, the strain is 
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)(                      (2A.19) 

 

In the limit as 0x  then, this reduces to the relation 
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