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2.2 Thermoelasticity 
 
In this section, thermoelasticity is considered.  By definition, the constitutive relations for 
such a material depend only on the set of field variables { }θθ Grad,,F .  This general case 
will be considered toward the end of this section.  Simpler cases, isothermal { }F , small-
strain { }ε , one-dimensional { }ε , will be considered first. 
 
In what follows, upper case letters will be used to denote the energy potentials per unit 
volume.  As before, lower case denotes per unit mass so, for example, uU ρ=  for 
internal energy. 
 
 
2.2.1 Isothermal Small Strain Elasticity 
 
For isothermal deformations, the basic thermodynamic statement can be written as (see 
Eqn. 1.6.24) 

                    
Φ+Ψ=

+=
&

&& ρφψρεσ :
      (2.2.1) 

 
where 
 
  ψρ && =Ψ  (rate of change of the free energy per unit volume) 

0≥=Φ ρφ  (dissipation per unit volume)   
 
In isothermal elasticity1, Φ= 0, and so one need only specify a free energy function.  
 
One-Dimensional Analysis 
 
Consider a simple one-dimensional extension of material.  The free energy is a function 
of kinematic state variables.  The only state variable is the single strain ε  and the only 
stress is σ  and hence 
 

)(εεσ Ψ= &&           (2.2.2) 
 
i.e. 
 

ε
ε
εεσ &&

d
d )(Ψ

=            (2.2.3) 

        
so that, since ε&  is arbitrary, 
 

ε
εσ

d
d )(Ψ

=                      (2.2.4) 

 
                                                 
1 this is discussed more rigorously in §2.2.2 below 
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which agrees with the general relation 1.6.33d.  This is the stress-strain (constitutive) 
equation.  In the context of elasticity theory, the Helmholtz free energy function is the 
elastic strain energy function (Eqn. 2.2.4 is the same as Part I, Eqn. 5.4.9). 
 
The classical linear elastic material corresponds to choosing a simple quadratic free 
energy function: 
 

( ) 2

2
1 εε E=Ψ                                                  (2.2.5) 

 
so 
 

εσ E= ,  εσ && E=          (2.2.6) 
 
A nonlinear example is 
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                           (2.2.7) 

 
One should ensure that (at least (1)) 
 
   (1) 0)0( =σ  (zero strain at zero stress) which implies that 00 =E  
   (2) ( ) 0/ 0 ≠=εεσ dd  (so one has a non-zero initial modulus) 
   (3) ( ) 0/ 0

22 ==εεσ dd    (so that, with (2), the origin is a point of inflection, ensuring 
similar tensile and compressive strain behaviour) 

 
Note that Ψ has the dimensions of stress, so that the Ei also have the dimensions of stress. 
 
In the rate formulation: εσ && D= , D is the instantaneous elastic modulus (or stiffness) 

ded /σ  or 22 / εdd Ψ .  D is a constant in the linear model, but is, in general, a function of 
strain, as in the above example, where 2

321 32 εε EEED ++= . 
 
Three-dimensional Analysis 
 
Generalising the above to three dimensions, the free energy function is 

 
)( ijεΨ    )(εΨ         (2.2.8) 

 
so that the basic thermomechanical identity becomes 
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Since this again holds for all strain rates one can deduce that 
 

ij
ij ε

σ
∂
Ψ∂

=  
ε

σ
d
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=           (2.2.10) 

 
Again, for the linear elastic material, the free energy function is assumed to be a quadratic 
function of the strain: 
 

            klijijklD εε2
1=Ψ             εDε ::2

1=Ψ                   (2.2.11) 
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  (2.2.12) 

 
provided the fourth order stiffness tensor D possesses the major symmetry: 
 

      klijijkl DD =                 (2.2.13)    
 
(D satisfies the minor symmetries jiklijkl DD =  and ijlkijkl DD =  by virtue of the symmetry 
of the stress and strain.) 
 
Eqn. 2.1.12  is the stress-strain equation for an anisotropic linear elastic material.  The 
rate form is formally 
 

           klijklij D εσ && =        (2.2.14) 
 
For a nonlinear material Ψ is no longer quadratic, and the instantaneous modulus tensor 
is a function of the strains. 
 
If one starts by proposing the rate form of the elastic law, with a given modulus function 
( )εD , then in general one cannot integrate Eqn. 2.2.14 to find a free energy function 

(although one can achieve this in one-dimension).  Such a model is termed hypoelastic.  
A model in which Ψ does exist is called hyperelastic.  Hyperelastic models 
automatically satisfy the laws of thermomechanics, hypoelastic ones do not. 
 
Note that the strain energy must be positive, 0>Ψ .  From 2.2.11, this implies that 
 

            0>klijijklD εε             0:: >εDε                   (2.2.15) 
 
for all strain tensors, that is, the stiffness tensor must be positive definite. 
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Isotropic Elasticity 
 
The theory of isotropic elasticity with small strains is a special case of that for large 
strains discussed in Part III, §4.4.  The theory discussed there applies here, only now with 
the left Cauchy Green strain replaced by the small strain tensor.  Thus, the free energy 
function must be a function of a set of three invariants of the strain tensor ε , 

),,( 321 EEEΨ , which here are taken to be 
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The stress-strain relation is hence given by: 
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       (2.2.17) 

 
It is readily verified that {▲Problem 1} 
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so that 
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which is a quadratic polynomial in the strain tensor.  If the free energy function does not 
depend on the third strain invariant 3E , the tensor relation is actually linear, though it 
should be appreciated that the coefficients kE∂Ψ∂ / ,  k = 1,2,3, will in general depend in 
a nonlinear manner on the strain invariants. 
 
The classical linear model is recovered by choosing 
 

              2
2

12
1 EE μλ +=Ψ        ( ) 22

2
1 trtr εε μλ +=Ψ                   (2.2.20)        

 
for then  
 

ijijkkij μεδλεσ 2+=       ( ) εIε μλ 2trσ +=        (2.2.21) 
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The Gibbs Function and the Complementary Energy 
 
From section 1.3, the Helmholtz free energy and the Gibbs energy functions are related 
by a Legendre transformation.  Formally, consider again the one-dimensional stress-strain 
relation 2.2.4: 
 

ε
εσ

d
d )(Ψ

=                       (2.2.22) 

 
To invert this expression and express the strain as a function of stress, first partially 
integrate the equation with respect to strain to obtain 
 

)()( σεσε C+Ψ=              (2.2.23) 
 
where )(σC  is an arbitrary function of integration, dependent only on stress.  
Differentiating with respect to σ  leads to 
 

σ
σε

d
dC )(

=              (2.2.24) 

 
which is the inverse of the original equation.  From Table 1.3.1, it is clear that the 
function C is the negative of the Gibbs energy function (per unit volume).  In this context, 
C is the complementary energy discussed in Part I, §5.4.  One says that the free energy is 
the dual of the complementary energy, and vice versa. 
   
For example, if 
 

 3εK=Ψ ,  23 εσ K=         (2.2.25) 
 
then {▲Problem 2} 
 

2
3)3/(2)( KKC σσ = .                                      (2.2.26) 

 
This theory readily extends to the general three dimensional situation. The original stress 
strain equation is given by 2.2.10 so that 
 
             )()( ijijijij C σεεσ +Ψ=      )()(: σεεσ C+Ψ=                      (2.2.27)  

 
and the strains are now 
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For the linear material, εDε ::2

1=Ψ , σDε :1−=  and the dual Complementary function 
is  C = σDσ :: 1

2
1 − .  The fact that D in the linear case is positive definite ensures that it is 

invertible.  The inverse 1−D  is called the elastic flexibility tensor C (see 2.2.11): 
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            klijijklCC σσ2
1=           σCσ ::2

1=C                            (2.2.29)  
 
 
2.2.2 Large Strain Thermoelasticity 
 
In the general large strain thermoelastic case, the constitutive relations are of the form 
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uu                                                   (2.2.30) 

 
Here, for convenience, the material gradient of 2.1.13 has been replaced with the spatial 
gradient θ∇  (through θθ Grad1−=∇ F ).  
 
The dissipation inequality 1.6.20 is 
 

01:1
≥∇⋅−+−−= θ

ρθρ
ψθφ qdσ&&s                              (2.2.31) 

 
Using the relation Part III, 3.7.25, FσFdσ &:: T−= , this can be expressed as 
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one has 
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For any given { }θθ ∇,,F , this inequality must hold for any arbitrary values of θ&& ,F  and 

⋅

∇θ .  Thus the coefficients must be zero: 
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The third of these implies that the free energy is independent of the temperature gradient: 
 

( )θψψ ,F=                                                 (2.2.36) 
 
and so the entropy and stress are also; further, the internal energy is 
 

θ
ψθψ
∂
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−=u                                               (2.2.37) 

 
 
Stress-Strain Relation 
 
The stress-deformation relation 2.2.35b can be expressed in a number of different ways, 
for example, in terms of the PK1 stress T−= σFP J  and the PK2 stress T1 −−= FσFS J  (the 
first of these follows from the symmetry of the Cauchy stress) 
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Introducing the free energy per unit reference volume, Ψ , these read as 

 

F
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F
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F
σ
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=
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Ψ∂

=
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Ψ∂

= −− 1T1 ,,J                          (2.2.39) 

 
In the case of material symmetries, they take reduced forms as discussed in Part III, 
Chapter 4.  For example, for isotropic materials the Cauchy stress is a function of the left 
Cauchy-Green strain only: 

 

b
b

σ
∂
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= −12J                                                    (2.2.40) 

 
 
Gibbs Relations 
 
One also has the useful Gibbs relations {▲Problem 3} 
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Isothermal Elasticity 
 
For isothermal materials, the free energy becomes the strain energy W per unit reference 
volume, e.g. in terms of the PK1 stress, the stress and stress power can be expressed as 
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F
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WWW                           (2.2.42) 

 
Since there are no temperature gradients, the entropy inequality 2.2.34 becomes an 
equality and any process is completely reversible.  For a reversible process, the 
dissipation is 0== s&θφ  and so, as mentioned in §1.6.4, such a process is also isentropic. 
 
Adiabatic Elasticity 
 
For adiabatic conditions, the heat flux is zero, so again the entropy inequality 2.2.34 
becomes an equality and any process is reversible and isentropic.  Working with the 
internal energy, from 2.2.41b, with its canonical variables, ),( suu F= , one has 

 

FPFσF &&& :1:1

0

T

ρρ
== −u                                             (2.2.43) 

 
The internal energy thus becomes the strain energy and one again has 2.2.42. 
 
Energy Potentials and Canonical Variables 
 
Following on from §1.3, the thermodynamic potentials (per unit reference volume) in 
terms of canonical variables take the form 
 

( ) ( ) ( ) ( )sHHGGsUU ,,,,,,, PPFF ===Ψ=Ψ θθ                 (2.2.44) 
 
The various relationships for these potentials are given in Table 2.2.1, which is a 
reproduction of Table 1.3.1 for finite strain reversible processes. 
 
The fourth column contains the Gibbs relations 2.2.41. 
 
Thermo-
dynamic 

Symbol 
and Definition Rate-form relationship Maxwell relation 
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Table 2.2.1: Thermodynamic Potentials (per unit reference volume) 

 
 
The Gibbs Relation and Classical Thermodynamics 
 
In increment form, the second of the Gibbs relations 2.2.41 can be expressed as  
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                                     (2.2.45) 

 
Consider an elastic (inviscid) fluid, for which by definition the stress is a function of F 
only through the density ρ :  
 

( )Iσ θρ,p−=                                                    (2.2.46) 
 
where p is the hydrostatic pressure.  Using {▲Problem 4} 
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relation 2.2.45 reduces to the classical thermodynamics Gibbs relation 
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Heat Flux 
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The first law is 
 

qdσ

QFP
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                                         (2.2.49) 

 
Recall that, in this expression, the divergence of the (Cauchy) heat flux represents the 
heat entering a material element, Eqn. 1.6.4, 
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Q

v
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For a homogeneous material, ( )( ) qdiv/1/ −=vdtQδ . 
 
Using 2.2.41b, one has the useful relation between the rate of entropy and the heat flux 
vector for a thermoelastic material: 
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Heat Conduction 
 
From 2.2.34, the dissipation inequality reads 

 
( ) 0,, ≤∇⋅∇ θθθFq                                         (2.2.52) 

 
This is Fourier’s inequality and merely states that heat flows from a hot region to a cold 
region.  One usually assumes Fourier’s law of heat conduction: 

 
( ) θθ ∇−= ,FKq                                            (2.2.53) 

 
where K is the thermal conductivity tensor.  This constitutive law is sometimes referred 
to as Duhamel’s law of heat conduction, to distinguish it from the case of a thermally 
isotropic material, for which IK k= , which is then referred to as Fourier’s law. 
 
If one considers the left hand side of Eqn. 2.2.52 to be a function of θ∇ , this function 
attains a maximum (of zero) when 0=∇θ .  Thus 

 

( ) ( ) 00Fqqqq ==+∇⎟
⎠
⎞

⎜
⎝
⎛
∂∇
∂

=∇⋅
∂∇
∂

=∇=∇

,,
0

T

0

θθ
θ

θ
θ

θθ

                (2.2.54) 

 
This implies that, without a temperature gradient, there is no heat flow.  Since it is a 
maximum, 
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must be negative semi-definite.  This implies that the symmetric part of the thermal 
conductivity tensor K in 2.2.53 must be positive semi-definite.     
 
Consider next the quantity 22 /: xK ∂∂ θ .  Since ( ) ( ) ijji xxxx ∂∂∂∂=∂∂∂∂ //// θθ , 

22 / x∂∂ θ  is symmetric.  Further, the double contraction of a symmetric tensor and a skew 
tensor is zero.  Thus 2222 /:sym/: xKxK ∂∂=∂∂ θθ .  The heat flux appears in the first 
law only as qdiv .  Evaluating this gives, with Fourier’s law, 
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For a homogeneous material, 0/ =∂∂ iij xK , and so 
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Thus, for homogeneous materials, it is only the symmetric part of the thermal 
conductivity tensor which enters the energy balance.  In fact, it is almost universally 
accepted that K is symmetric, whether the material is homogeneous or not. 
 
Heat Capacity and Latent Heat 
 
The specific heat capacity is the heat required to raise the temperature of a body by unit 
temperature (per unit mass).  From the first law, 2.2.49, when there is no deformation 
( 0F =& ), all the heat absorbed is transferred to internal energy.  The specific heat 
capacity at constant deformation is then by definition (see Eqn. 1.1.15) 
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The heat capacity can also be expressed in terms of the free energy {▲Problem 5}: 
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From 2.2.51, one then has the equation of heat conduction {▲Problem 6} 
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Some of the heat energy results in a temperature change, the first term, which is the heat 
capacity term.  The second term represents a thermoelastic coupling effect whereby a 
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deformation induces a temperature change; this term is often neglected as it is usually 
small in applications.  This second term can be interpreted as a latent heat term, whereby 
heat can be absorbed without a change in temperature.  
 
In terms of the enthalpy, the first law 2.2.49 can be expressed as 
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00 ρρ
−= &&h                                          (2.2.61) 

 
At constant stress, the heat energy now results in an increase in enthalpy.  The specific 
heat capacity at constant stress is then by definition 
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The heat capacity can also be expressed in terms of the Gibbs energy (using the relations 
in Table 2.2.1): 
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For isotropic engineering materials, e.g. metals, concrete, which undergo small strains, 

IF εcc = , with Kkg/mN103≈εc  and IP σcc = , with σc  being slightly greater than εc  
(by a few percent). 
 
 
2.2.3 Small Strain Thermoelasticity 
 
The Free Energy and Thermal Strains 
 
In the linear theory, the free energy is a function of the small-strain and the temperature, 
( )θψ ,ε , and, as with the strains, temperature changes are assumed to be small.  Assume 

that in the reference state the temperature is 0θ  and the material is strain-free.  Then, 
expanding the free energy in a Taylor series and retaining only terms up to second order, 
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            (2.2.64) 

 
where the notation 

0
 means that the quantity is evaluated at the reference state.  Note 

that the specific heat at constant deformation (strain) occurs in the last term here (see Eqn. 
2.2.59). 
 
The stress is now 
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σ                       (2.2.65) 

 
Assuming the material is stress-free in the reference state, 0ε = , 0θθ = , then 
( ) 0ε =∂∂

0
/ψ , and 2.2.65 can be expressed as 

 
( ) ( )00 : θθθθβεσ −−=−−= βεDσijklijklij D                    (2.2.66) 

 
where the stiffness tensor is 
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and 
 

θ
ψρ

θε
ψρβ

∂∂
∂

−=
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−=

ε
β

22

ij
ij                                   (2.2.68) 

 
It was seen earlier that D is positive definite and so is always invertible.  Define then the 
tensor α  through βαD =:  (so βCα := , where C is the flexibility tensor) so that 
 

( )[ ] ( )[ ]00 : θθθθαεσ −−=−−= αεDσklklijklij D                       (2.2.69) 
 
The quantity ( )0θθ −α  is called the thermal strain and α  is the tensor of thermal 
expansion coefficients.  For isotropic engineering materials, Iα α= , with 15 K10 −−≈α . 
 
Note that, from 2.2.67-8, with the derivatives evaluated at the reference configuration, D 
and α  are constant tensors.  One can generalize to a theory with temperature-dependent 
properties, by expressing 2.2.64 in the form 
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The Gibbs Energy 
 
The temperature dependence of a thermoelastic material can be conveniently expressed 
using the Gibbs free energy, ( )θ,σgg = : 
 

σ
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Then, immediately, 
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θθασε &&&&&& ασCε +=+= :ijklijklij C           (2.2.72) 

 
where now 
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                     (2.2.73) 

 
To complete the set of second derivatives of the Gibbs function, one also has the heat 
capacity at constant stress (see Eqn. 2.2.63): 
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2

σ                                                   (2.2.74) 

 
 
Heat Capacity 
 
Just as the stress, Eqn. 2.2.65, was expressed in terms of the free energy 2.2.64, the 
entropy can be expressed as the linear function 
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The first term on the right represents the reference entropy, at the reference state, and can 
be omitted.  The last term involves the specific heat at constant strain.  The second term 
involves the tensor β  (see Eqn. 2.2.68).  Thus 
 

εεDα cs
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For an isotropic material, the stiffness tensor is given by Part III, Eqn. 4.1.12, 
 

( ) ( )jminjnimmnijijmnD δδδδμδλδμλ ++=++⊗= ,IIIID            (2.2.77) 
 
in which case  
 

( ) ( ) kkkkijkkijijklijklij KαεαεεαεDα εμλμλδδ 3232 =+=+=                    (2.2.78) 
 
where K is the bulk modulus.  With ( ) ( ) 000 // θθθθθθ −≈− , the entropy is now 
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With Fourier’s law, θgradk−=q , the equation of heat conduction, 2.2.60, can be 
expressed as (with 0θθ ≈ ) 
 

( )θ
ρρ

αθθ graddivtr3
0

kKc =+ εε &&                                 (2.2.80) 

 
In order to express these relations in terms of stress, from 2.2.69, the isotropic stiffness 
tensor 2.2.77 and Part III, 4.1.20, 
 

( )IIεεσ 03)tr(dev2 θθαμ −−+= KK                           (2.2.81) 
 
Then, with the trace of a deviator zero, 
 

( )09)tr(3tr θθα −−= KK εσ                                 (2.2.82) 
 
Thus 2.2.79 can be expressed as 
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The specific heat capacity at constant stress is then, from 2.2.63,  
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leading to the relation 
 

ρ
αθ Kcc

2

0
9

=− εσ                                             (2.2.85) 

 
In terms of stress, the equation of heat conduction 2.2.80 reads 
 

( )θ
ρρ

αθθ graddivtr0
kc =+ σσ &&                                    (2.2.86) 

 
 
2.2.4 Problems 
 
1. Differentiate the invariants 2.2.16 to derive relations 2.2.18. 
 
2. Derive the complementary function 2.2.26. 
 
3. Derive the Gibbs relations 2.2.41 for an elastic material. 
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4. Use the conservation of mass relation ρρ J=0  and the relation Part III, 2.5.19, 
FF && :T−= JJ , to derive the relation 2.2.47, FF :/ T−−=ρρ& . 

 
5. Show that the heat capacity is proportional to the second derivative of the free 

energy, Eqn. 2.2.59. 
 
6. By taking the entropy s to be a function of the variables ( )θ,F , use the relation 

2.2.51, QDiv0 −=s&θρ , and the relation between entropy and free energy, Eqn. 
2.2.35a, to derive the equation of heat conduction 2.2.60, 

QF
F

Div1:
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22

ρθ
ψθθ

θθ
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∂∂
∂

−
∂∂

∂
− &&  

 
7. Derive the equation of heat conduction 2.2.86. 


