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3.10 Convected Coordinates 
 
Some of the important results from sections 3.1-3.9 are now re-expressed in terms of 
convected coordinates.  As before, any relations expressed in symbolic form hold also in 
the convected coordinate system. 
 
 
3.10.1 The Stress Tensors 
 
Traction and Stress Components 
 
Consider a differential parallelepiped element in the current configuration bounded by the 
coordinate curves as in Fig. 3.10.1 (see Fig. 1.16.2).  The bounding vectors are 

2
2

1
1 , gg ΘΘ dd  and 3

3gΘd .  The surface area 1Sd  of a face of the elemental parallelepiped 
on which 1Θ  is constant, to which 1g  is normal, is then given by Eqn. 1.16.35, 
 

3211
1 ΘΘ= ddggSd                                                 (3.10.1) 

 
and similarly for the other surfaces. 
 

 
 

Figure 3.10.1: vector elements bounding surface elements 
 

The positive side of a face is defined as that whose outward normal is in the direction of 
the associated contravariant base vector.  The unit normal in  to a positive side is the same 
as the unit contravariant base vector; as in Eqn. 1.16.14, 
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Let the force idF  acting on the surface element with normal in  be i

iSd t  (no sum over 

i), Fig. 3.10.2, so that it  is the traction (force per unit area). 
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Figure 3.10.2: traction acting on a surface element 
 
The components of it  along the unit covariant base vectors are denoted by jiσ : 
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ggt 1ˆ σσ ==                                               (3.10.3) 

 
with no sum over the j in the jjg  term;  jiσ  are called the physical stress 
components, Fig. 3.10.3. 
 

 
 

Figure 3.10.3: physical stress components 
 
Introduce now a new vector it  defined by 

 
    iiii g tt =      (no sum over i)                          (3.10.4) 

 
It will be shown that this vector is contravariant, that is, transforms between coordinate 
systems according to 1.17.3a (and so it  does not satisfy the vector transformation rule, 
hence the superscript in pointed brackets).  The components of it  along the covariant base 
vectors are denoted by jiσ : 
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jii gt σ=                                                        (3.10.5) 

 
Comparing 3.10.3-5, 
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σσ =      (no sum)                                       (3.10.6) 

 
Cauchy’s Law and the Cauchy Stress Tensor 
 
Cauchy’s law can now be derived in the same way as in §3.3, by considering a small 
tetrahedral free-body, Fig. 3.10.4.  The physical stress components ijσ  shown act on the 
negative sides of the surfaces and so act in directions opposite that of the corresponding 
components on the positive sides (a consequence of Cauchy’s Lemma).  It is required to 
determine the traction t in terms of the physical stress components and the unit normal n 
to the base area. 
 

 
 

Figure 3.10.4: free body diagram of a tetrahedral portion of material 
 
The normal to the base has components 
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i nn ggn ==                                                   (3.10.7) 
 

Consider the vector elements ad  and bd  shown in Fig. 3.10.5.  Define the surface area 
element Sd to be the vector with magnitude equal to twice the area of the tetrahedron base 
and in the direction of the normal to the base, so 
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where 321 ,, SSS ddd  are the surface element areas of the three coordinate sides of the 
parallelepiped of Fig. 3.10.1 (twice the area of the coordinate sides of the tetrahedron); 
from 3.10.2, 
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with no sum over the i in the iig  term, or 
 

i
i

iii
i SdgndS gg =                                                   (3.10.10) 

 
 

 
 

Figure 3.10.5: vector element of area for the base of the tetrahedron 
 
The principle of linear momentum, in vector form, is then (cancelling out a factor of ½) 
 

0=− i
i SddS tt                                                   (3.10.11) 

 
From 3.10.4, 
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and so 
 

ji
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Defining the (symmetric) Cauchy stress tensor σ  through 

 
ji

ij ggσ ⊗= σ      Cauchy Stress Tensor         (3.10.14) 
 
one arrives at Cauchy’s law nσt = . 
 
The Cauchy stress is naturally a contravariant tensor because the normal vector upon 
which it operates to produce the traction is naturally represented in the form of a covariant 
vector (see 3.10.2). 
 
Note that the stress can also be expressed in the form 
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j
i gtσ ⊗=                                                   (3.10.15) 

 
 
Other Stress Tensors 
 
The PK1, PK2 and Kirchhoff stress tensors are  
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                                                  (3.10.16) 

 
By definition, στ J= , and so ijij Jστ = .  By definition, T1 −−= σFFS J , and so, from 
2.9.8, 
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Thus, as seen already, the Kirchhoff stress is the push-forward of the PK2 stress. 
 
Similarly, by definition T−= σFP J  and so 
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                      (3.10.18) 

 
 
3.10.2 The Equations of Motion 
 
The Equations of motion have been given in the symbolic form by 3.6.2 and 3.6.9.  To 
express these in curvilinear coordinates, recall the definition of the divergence of a tensor, 
1.18.28, 
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The spatial and material descriptions of the equations of motion are then 
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