Section 3.10

3.10 Convected Coordinates

Some of the important results from sections 3.1-3.9 are now re-expressed in terms of
convected coordinates. As before, any relations expressed in symbolic form hold also in
the convected coordinate system.

3.10.1 The Stress Tensors

Traction and Stress Components

Consider a differential parallelepiped element in the current configuration bounded by the

coordinate curves as in Fig. 3.10.1 (see Fig. 1.16.2). The bounding vectors are
dO'g,, d®%g, and d®%g,. The surface area dS, of a face of the elemental parallelepiped

on which @, is constant, to which g* is normal, is then given by Eqn. 1.16.35,

dS, =+/ggde2de’ (3.10.1)
and similarly for the other surfaces.
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Figure 3.10.1: vector elements bounding surface elements

The positive side of a face is defined as that whose outward normal is in the direction of

the associated contravariant base vector. The unit normal n' to a positive side is the same
as the unit contravariant base vector; as in Eqn. 1.16.14,

n'=g'=—2_  (nosum) (3.10.2)

Let the force dF' acting on the surface element with normal @' be dS.t" (no sum over

i), Fig. 3.10.2, so that t" is the traction (force per unit area).
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de’g,
Figure 3.10.2: traction acting on a surface element

The components of ¢t along the unit covariant base vectors are denoted by ot

) gl ol 1 (3.10.3)

i \/97”1

with no sum over the j in the /g term; o' are called the physical stress

1

components, Fig. 3.10.3.

Figure 3.10.3: physical stress components

Introduce now a new vector t' defined by
t' =g "t (nosum overi) (3.10.4)

It will be shown that this vector is contravariant, that is, transforms between coordinate

systems according to 1.17.3a (and so t" does not satisfy the vector transformation rule,
hence the superscript in pointed brackets). The components of t' along the covariant base
vectors are denoted by o' :

t'=c'g. (3.10.5)

]

Comparing 3.10.3-5,
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ot = fg—ﬂa“ (no sum) (3.10.6)
g

Cauchy’s Law and the Cauchy Stress Tensor

Cauchy’s law can now be derived in the same way as in §3.3, by considering a small

tetrahedral free-body, Fig. 3.10.4. The physical stress components " shown act on the
negative sides of the surfaces and so act in directions opposite that of the corresponding
components on the positive sides (a consequence of Cauchy’s Lemma). It is required to
determine the traction t in terms of the physical stress components and the unit normal n
to the base area.

Figure 3.10.4: free body diagram of a tetrahedral portion of material

The normal to the base has components
Consider the vector elements da and db shown in Fig. 3.10.5. Define the surface area

element dS to be the vector with magnitude equal to twice the area of the tetrahedron base
and in the direction of the normal to the base, so

1dS=1dSn=1(daxdb)
= 1((do'g, - do’g, )x(d’g, - dO°g, ) 5.108)
= 1(d0'de’g, x g, + dO’dO%g, x g, + dO°dO'g, x g, ) o
= 1(dS, + dS, +dS,)

where dS,, dS,, dS, are the surface element areas of the three coordinate sides of the

parallelepiped of Fig. 3.10.1 (twice the area of the coordinate sides of the tetrahedron);
from 3.10.2,
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dS =ds, +dS, +dS,
dSn=dS, n' (3.10.9)

1
——8
I

:ds_i

with no sum over the i in the 4/g" term, or

ds n4/g"g =dS,g (3.10.10)

Figure 3.10.5: vector element of area for the base of the tetrahedron

The principle of linear momentum, in vector form, is then (cancelling out a factor of %2)
tds—¢"dS, =0 (3.10.11)

From 3.10.4,

tdS =t L_,ds_i =t'dSn, (3.10.12)

Jor

and so
t=t'n, =c’'ng, (3.10.13)

Defining the (symmetric) Cauchy stress tensor ¢ through

c=0'g ® g;| Cauchy Stress Tensor (3.10.14)

one arrives at Cauchy’s law t=on.

The Cauchy stress is naturally a contravariant tensor because the normal vector upon
which it operates to produce the traction is naturally represented in the form of a covariant
vector (see 3.10.2).

Note that the stress can also be expressed in the form
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c=t'®g. (3.10.15)
J

Other Stress Tensors

The PK1, PK2 and Kirchhoff stress tensors are
P=P'G, ®G,
S=5"G, ®G, (3.10.16)
T= rijgi ®g;

By definition, T = Jo, and so 7' = Jo". By definition, S = JF '6F ', and so, from
2.9.8,

S'G,®G; =J0"F'g, ®F'g; =J0"'G,®G,; =7"G, ®G, (3.10.17)
Thus, as seen already, the Kirchhoff stress is the push-forward of the PK2 stress.
Similarly, by definition P = JoF " and so

P'G, ®G, =Jo'g, ®g F™*
=Jo¥g, ®G;
= Jo“FG, ®G; (3.10.18)
- J6Y(FIG,®G" )G, ®G,
= Jo“F,G, ®G,

3.10.2 The Equations of Motion

The Equations of motion have been given in the symbolic form by 3.6.2 and 3.6.9. To
express these in curvilinear coordinates, recall the definition of the divergence of a tensor,
1.18.28,

- 86 i' |
dive = o g“=0"| (gi ®gj)gk =o' |; g (3.10.19)

The spatial and material descriptions of the equations of motion are then

ij i dlv'g,
o' g +b'g :P(Tg)

iy Equations of Motion (3.10.20)
P'|, G, +B'G, =P Gi
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