Section 3.9

3.9 The Principles of Virtual Work and Power

The principle of virtual work was introduced and discussed in Part I, 85.5. As mentioned
there, it is yet another re-statement of the work — energy principle, only it is couched in
terms of virtual displacements, and the principle of virtual power to be introduced below
is an equivalent statement based on virtual velocities.

On the one hand, the principle of virtual work/power can be regarded as the fundamental
law of dynamics for a continuum, and from it can be derived the equations of motion. On
the other hand, one can regard the principle of linear momentum as the fundamental law,
derive the equations of motion, and hence derive the principle of virtual work.

3.9.1 Overview of The Principle of Virtual Work

Consider a material under the action of external forces: body forces b and tractions t. The
body undergoes a displacement u(x) due to these forces and now occupies its current

configuration, Fig. 3.9.1. The problem is to find this displacement function u.

b,

reference configuration current configuration

Figure 3.9.1: a material displacing to its current configuration under the action of
body forces and surface forces

Imagine the material to undergo a small displacement su from the current configuration,
Fig. 3.9.2, su not necessarily constant throughout the body; du is a virtual displacement,
meaning that it is an imaginary displacement, and in no way is it related to the applied
external forces — it does not actually occur physically.

As each material particle moves through these virtual displacements, the external forces
do virtual work oW . If the force b acts at position x and this point undergoes a virtual
displacement du(x), the virtual work is W =b-ouAv. Similarly for the surface

tractions, and the total external virtual work is

oW, = J.b -oudv+ J.t -ouds=0[ External Virtual Work (3.9.1)
\ S
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true position/solution

material moved an amount du

Figure 3.9.2: a virtual displacement field applied to a material in the current
configuration

There is also an internal virtual work W, , due to the internal forces as they move through

virtual displacements and a virtual kinetic energy oK . The principle of virtual work then
says that

W, + W, =K (3.9.2)

ext

And this equation is then solved for the actual displacement u. Expressions for the
internal virtual work and virtual kinetic energy will be derived below.

3.9.2 Derivation of The Principle of Virtual Work

As mentioned above, one can simply write down the principle of virtual work, regarding
it as the fundamental principle of mechanics, and then from it derive the equations of
motion. This will be done further below. To begin, though, the starting point will be the
equations of motion, and from it will be derived the principle of virtual work.

Kinematically and Statically Admissible Fields

A kinematically admissible displacement field is defined to be one which satisfies the
displacement boundary condition 3.7.7c, u =u on s, (see Part I, 85.5.1). Such a

displacement field would induce some stress field within the body, but this resulting
stress field might not satisfy the equations of motion 3.7.7a. In other words, it might not
be the actual displacement field, but it does not violate the boundary conditions.

A statically admissible stress field is one which satisfies the equations of motion 3.7.7a
and the traction boundary conditions 3.7.7b, t =6n =t, on s_. Again, it might not be the

actual stress field, since it is not specified how this stress field should be related to the
actual displacement field.

Derivation from the Equations of Motion (Spatial Form)
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Let o be a statically admissible stress field corresponding to a kinematically admissible
displacement field u,so on=tons_, u=uons, and dive +b = pii. Multiplying the
equations of motion by u and integrating leads to

ini -udv = I(diva +b)-udv (3.9.3)

Using the identity 1.14.16b, div(Av) = v-divA™ +tr(Agradv), 1.10.10e,
tr(A"B) = A : B, and the symmetry of stress,

j pii - udv = j {div(ou)—o : grad(u) + b - udv (3.9.4)

and the divergence theorem 1.14.22c and Cauchy’s law lead to

J't~uds+J.b~udv=J'c:gradudv+J.pﬁ'udv (3.9.5)

Splitting the surface integral into one over s, and one over s gives

jt.ﬁds+jf.uds+jb.udv=jc:gradudv+jpﬁ.udv (3.9.6)

¢

Next, consider a second kinematically admissible displacement field u™, so u” =uon s,
which is completely arbitrary, in the sense that it is unrelated to either ¢ or u. This time
multiplying dive +b = pii across by u”, and following the same procedure, one arrives
at

jt -uds + IE -uds + jb udv= J'o - gradu”dv + Ipii -udv (3.9.7)

u ¢

Let su=u" —u, so the difference between u™ and u is infinitesimal, then subtracting
3.9.6 from 3.9.7 gives the principle of virtual work,

J'E - Suds + J'b -dudv = J.c ; grad(5u)dv+J'pii - sudv

o

Principle of Virtual Work (spatial form) (3.9.8)
Note that since u, u’, are kinematically admissible, su=u" —u=o00ns,.

If one considers the u in 3.9.8 to be the actual displacement of the body, then su can be
considered to be a virtual displacement from the current configuration, Fig. 3.9.2. Again,
it is emphasized that this virtual displacement leaves the stress, body force and applied
traction unchanged.

One also has the transformed initial conditions: from 3.7.7d-e,
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Ju(x, 1),y - dudv = [u,(x)- Sudv

\

(3.9.9)
j u(x, t),_, - Sudv = j i, (x) - sudv

\

Egns. 3.9.8 and 3.9.9 together constitute the weak form of the initial BVP 3.7.7.

The principle of virtual work can be grouped into three separate terms: the external virtual
work:

W, = [€-Suds+ [b-sudv| External Virtual Work (3.9.10)

¢

the internal virtual work,

oW, , =—J.6:grad(5u)dv Internal Virtual Work  (3.9.11)

and the virtual kinetic energy,

K = J. pii-oudv| Virtual Kinetic Energy  (3.9.12)

corresponding to the statement 3.9.2.
Derivation from the Equations of Motion (Material Form)
The derivation in the spatial form follows exactly the same lines as for the spatial form.

This time, let P be a statically admissible stress field corresponding to a kinematically

admissible displacement field U,so PN=TonS,, U=Uon S, and divP+B = p,U.
This time one arrives at

[T-5Uds + [B-oUdV = [P:Grad(oU)dV + [ p,U - sUdV (3.9.13)
Sp % % %

Again, one can consider U to be the actual displacement of the body, so that U
represents a virtual displacement from the current configuration. With

U=x-X

(3.9.14)
U=0kx-0X=0&

the virtual work equation can be expressed in terms of the motion x = % (X)),
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jT-gxds +IB-5)(dV =jP:Grad(5x)dv +jpotj-(5xdv

Principle of Virtual Work (material form) (3.9.15)

3.9.3  Principle of Virtual Work in terms of Strain Tensors

The principle of virtual work, in particular the internal virtual work term, can be
expressed in terms of strain tensors.

Spatial Form

Using the commutative property of the variation 2.13.2, the term grad(du) in the internal
virtual work expression 3.9.8 can be written as

grad(u) = %(grad(&u) +(grad(cu))" )+ %(grad(éu) - (grad(5u))T)
= 5%(gradu +(gradu)’ )+ 5% (gradu - (gradu)T) (3.9.16)
=0e+0Q
where ¢ is the (Symmetric) small strain tensor and € is the (skew-symmetric) small

rotation tensor, Eqn 2.7.2. Using the fact that the double contraction of a symmetric
tensor (o) and a skew-symmetric one (Q) is zero, 1.10.31c, one has

W, =—[o:grad(Su)dv = —[ o : & dv (3.9.17)

Thus the stresses do internal virtual work along the virtual strains de. One has

t-ouds+ |b-oudv = | o : ddv + | pii - Sudv (3.9.18)
R e

Note that, although the small strain has been introduced here, this formulation is not
restricted to small-strain theory. It is only the virtual strains that must be infinitesimal —
there is no restriction on the magnitude of the actual strains.

From 2.13.15, the Lie-variation of the Euler-Almansi strain e is o, e = ¢, so the internal;
virtual work can be expressed as

MW, =[5 edv (3.9.19)

Material Form

From Egn. 3.9.15 and Eqn. 2.13.9,
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W, =—[P:oFdv (3.9.20)

int —
\%

SO

[T-5yds + [B-dV = [P: oFdV + [ pU - GxdV (3.9.21)

Sp
Derivation of the Material Form directly from the Spatial Form

To transform the spatial form of the virtual work equation into the material form, first
note that, with 3.9.14b,

6 grad(ou) = 6 : grad(ox) (3.9.22)

Then, using 2.2.8b, gradv = GradVF™, 2.13.9, &F = Grad(su), 1.10.3h,
A:(BC)=(ACT):B,and35.10, P=J6F T,

¢:grad(cx) =o: (Grad(éx)F‘l)
=0 (éFF’l)
:(GF_T):éF
—(3p): oF

(3.9.23)

which converts 3.9.17 into 3.9.120.

Also, again comparing 3.9.17 and 3.9.20, using the trace properties 1.10.10, and Eqns.
3.5.9and 2.13.11b,

P:OF = Jo: & = Jtr(cde) = Jtr(F 'oceF )= J(F'oF 7 ): (FTGeF)=S: o€ (3.9.24)

and so the internal work can also be expressed as an integral of S: 5E over the reference
volume.

The Internal Virtual Work and Work Conjugate Tensors
The expressions for stress power 3.8.15, 3.8.29, and internal virtual work are very similar.

For the material description, the time derivatives in the former are simply replaced with
the variation to get the latter:

P:F=S:E — P:SF=S:0E (3.9.25)

For spatial tensors, the rate of strain tensor, e.g. d, is replaced with a Lie variation
2.13.14. For example, Jo:d = Jo: L°e (see 2.12.41-42) becomes:

Jo:d=Jo:L%¢ — Jo:d.e (3.9.26)
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3.9.4  Derivation of the Strong Form from the Weak Form

Just as the strong form (equations of motion and boundary conditions) was converted into
the weak form (principle of virtual work), the weak form can be converted back into the
strong form. For example,

Ic:&dv+jpii-5udv=]c:5gradudv+jpii-5udv

_ j{div(o -6u) - (dive — pii)- Gujdv
= [ t-suds - [ {(dive - pii)- Sujdv (39:27)

= [ t-duds — [ {(dive — pii)- Gujdv

J

and the last line follows from the fact that ou =0 on s,. Thus the weak form now reads

j(t—i)-5uds—j(div<s+b—pﬁ)-5udv=o (3.9.28)

S

o

and, since ou is arbitrary, one finds that the expressions in the parentheses are zero, and
s0 3.7.7 is recovered.

3.9.5 Conservative Systems

Thus far, no assumption has been made about the nature of the internal forces acting in
the material. Indeed, the principle of virtual work applies to all types of materials.

Now, however, attention is restricted to the special case where the system is conservative,
in the sense that the work done by the external loads and the internal forces can be written
in terms of potential energy functions!. Further, for brevity, assume also that the material
is in static equilibrium, i.e. the kinetic energy term is zero.

In other words, it is assumed that the internal virtual work term can be expressed in the
form of a virtual potential energy function:

j o : grad(u)dv = j SUdv (3.9.29)

Here, U is considered to be a function of u, and the variation is to be understood as in
Eqn. 2.13.5, U (u,u)=0,U[du].

If the loads can be regarded as functions of u only then, since they are conservative, they
may be written as the gradient of a scalar potential:

! The external loads being conservative would exclude, for example, cases of frictional loading
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b=- . t= (3.9.30)
Ju Ju
Then, with
oU, = U, -ou, oU, = Y, -ou (3.9.31)
ou Ju

and using the commutative property 2.13.3 of the variational operator, one arrives at

5{_[Udv+jUtds+IUbdv}=5U(u)=0 (3.9.32)

c

The quantity inside the brackets is the total potential energy of the system. This statement
is the principle of stationary potential energy: the value of the quantity inside the

parentheses, i.e. U (u), is stationary at the true solution u.

Egn. 3.9.32 is an example of a Variational Principle, that is, a principle expressed in the
form of a variation of a functional. Note that the principle of virtual work in the form
3.9.8 is not a variational principle, since it is not expressed as the variation of one
functional.

Body Forces

Body forces can usually be expressed in the form 3.9.30. For example, with gravity
loading, b = pg, where g is the constant acceleration due to gravity. Then U, =—pg-u

(b=cg=o0and b-su=5b-u),so J'b-c?udv=§.[b-udv).

Material Form

In the material form, one again has a stationary principle if one can write

B =-0U,(U)/oU, T =-0U,(U)/0U (or, equivalently, replacing U with the motion ).
In the case of dead loading, §3.7.1, T = T(X) is independent of the motion so (similar to

the case of gravity loading above) U; =T -u with T = o and IT -oqdV = 5'[T-xdv :

Deformation Dependent Traction

In many practical cases, the traction will depend on not only the motion, but also the
strain. In that case, one can write

[€-duds = [on - suds = [ g suds = [div(csu)dv = [ (dive - du+5 : gradsu)v

S S v

o

One might be able to then introduce a scalar function ¢ such that
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9 su+2.5e with 22 _divs, 2 _3 (3.9.33)
ou os ou os

5p(u,g)=
In the material form, one would have T = PN with

[T-oxds = [(DivP- s+ P:Flav
Sp %
and then one might be able to introduce a scalar function ¢(x, F) such that

o = 99 5+ 55 with 22 = DivP, % _p (3.9.34)
ox " oF ox, OF

For example, considering again the fluid pressure example of §3.7.1, one can let ¢ = —pJ
so that, using 1.15.7, 8¢/0F =—pJF~". Then P =—pF " =0¢/0F| _, DivP = pgE,

J=1’
and [T &ds = -5[ pJdv .

3.9.6 The Principle of Virtual Power

The principle of virtual power is similar to the principle of virtual work, the only
difference between them being that a virtual velocity 6v is used in the former rather than
a virtual displacement. To derive the virtual power equation, multiply the equations of
motion by the virtual velocity function, and integrate over the current configuration,

giving

pd—v Svav = Jlec+b) Svdv {dlv(cé’v) 6: 9 p. é’v}dv
v dt v Ox
= | {div(a&v)—c : 5?+b : &}dv (3.9.35)
X
Jyt ovds — jc 5ddv+jb ovav

These equations are identical to the mechanical balance equations 3.8.16, except that the
actual velocity is replaced with a virtual velocity. The term — jc »oddv is called the
v

internal virtual power.

Note that here, unlike the virtual displacement function in the work equation, the virtual
velocity does not have to be infinitesimal. This can be seen more clearly if one derives
this equation directly from the virtual work equation. If the infinitesimal virtual
displacement ou occurs over an infinitesimal time interval &t , the virtual velocity is the
finite quantity ou/dt, which here is labelled ov. The virtual power equation can thus be
obtained by dividing the virtual work equation through by 6t .
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Again, supposing that the velocities are specified over that part of the surface s, and
tractions over s_, the principle of virtual power can be written for the case of a
kinematically admissible virtual velocity field:

J t-ovds + jb -ovav = Ic s oddv + J pi—:’ -6vdv| Principle of Virtual Power (3.9.36)

In words, the principle of virtual power states that at any time t, the total virtual power of
the external, internal and inertia forces is zero in any admissible virtual state of motion.

3.9.7 Linearisation of the Internal Virtual Work

In order to solve the virtual work equations in anything but the most simple cases, one
must apply some approximate numerical method. This will usually involve linearising
the non-linear virtual work equations. To this end, the internal virtual work term will be
linearised in what follows.

Material Description

In the material description, one has

MWy, = [S(E()): SE(u)dv (3.9.37)

in which the Green-Lagrange strain is considered to be a function of the displacement,
Eqgn. 2.2.46, and the PK2 stress is a function of the Green-Lagrange strain; the precise
functional dependence of S on E will depend on the material under study (see Part V).

The linearisation of the variation of a function is given by (see §2.13.2)

L oW,

int

(u,Au)= oW, (u)+ AW, (u, Au) (3.9.38)
where

AW, (u, Au) =0,0W,, [Au]
d

T de
d

T de

oW

=0

(u+ sAu)

int

IS(E(u +&Au)): OE(u + gAu )dV

e=0V

_ Vj{s(E(u)):;'_g

= j {S(E(u)): ASE(u, Au)+ AS(E(u, Au)i : OB (u)}dV

oxu-+ctu)+ S(E(u+gAu)):éE(u)}dV

=0 ‘950

(3.9.39)
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The linearization of the variation of the Green-Lagrange strain is given by 2.13.24,
ASE = sym((GradAu)TGradﬁu). With the PK2 stress symmetric, one has, with 1.10.3h,
1.10.31c,

S(E(u)): AGE(u, Au) = S(E(u)): sym((GradAu)” Gradsu)
= S(E(u)): (GradAu)' Gradsu (3.9.40)
= Gradou : (GradAu )S(E(u))

For the second term in 3.9.39, from 2.13.22, the variation of E is

OE = 1|(Gradsu)" F + F" Gradsu|
- %[(FTGradéu)T +FTGrad5u] (3.9.42)
= sym(F " Gradsu)

What remains is the calculation of the linearisation of the PK2 stress. One has using the
chain rule,

AS(E(u, Au)) = 8,S[Au]

4 S(E(u+ zau))
de|,_,

_S(E) ) d
OE de

= a(sa—iz) ; AE(u,Au)

E (s c80) (3.9.42)

Denote the fourth order tensor 6S(E)/E by C and assume that it has the minor
symmetries1.12.10. Then (see 3.9.41), with

AE = sym(F " GradAu) (3.9.43)

the linear increments in 3.9.38 become

AW, (u, Au)= .[{Gradéu : (GradAu)S(E(u))

\

+F"Gradsu : C: FTGradAu/dV
(3.9.44)

+F, —*CyuFi.—
ax ax bd ka axb abed © jc axd

}% dv

d

OAU
AGW,.(u, Au) = {aa‘u oAU, adu ,} 4V

{53 +F,F,C

ia' jc™~abcd

Q)
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The first term is due to the current stress and is called the (initial) stress contribution.

The second term depends on the material properties and is called the material

contribution. Solution formulations based on 3.9.44 are called total Lagrangian.

Spatial Description

The spatial description can be obtained by pushing forward the material description. First

note that the linearization of the Kirchhoff stress is, from 3.5.13,

L t(u, Au)

2-(L S(u, Au)y
2-(8(u, Aw)) + 7. (A S(u, Au))’
‘r(u)+ FAS(u,Au)F"

so that, as in the derivation of the material term in 3.9.44, and using 2.4.8,

At(u, Au)= F(C: F gradAuF F"

OAU
At(u,Au)= F F F_F, c:abcd?k

ia’ jb
|

Define the fourth-order spatial tensor ¢ through
Cija = J R, F Fe FiuCobe

ia' jb

so that
At(u,Au)= J c:gradAu

Then, from 3.9.39,

(3.9.45)

(3.9.46)

(3.9.47)

(3.9.48)

 2(AGEP + £.(AS) : 4.(E) jav

II’]'(

uAu =J.
\%

I
<)

FAC
fr:s
{o : (gradAu)" gradsu +c : gradAu : gradéu}dv

Il
< —

'[ {gradéu : gradAu e + gradsu :c : gradAu Jdv

T ym((gradAu)Tgradéu)Jr Jc:gradAu: sym(grad5u)}dv

odu, OAu, oou OAU
AW, u Au g+ % Coped € v
OXy, OX4
OAU
OacOhy + Capeg }—C dv
:'I. a C axd
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Solution formulations based on 3.9.49 are called updated-Lagrangian.
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