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3.9 The Principles of Virtual Work and Power 
 
The principle of virtual work was introduced and discussed in Part I, §5.5.  As mentioned 
there, it is yet another re-statement of the work – energy principle, only it is couched in 
terms of virtual displacements, and the principle of virtual power to be introduced below 
is an equivalent statement based on virtual velocities.   
 
On the one hand, the principle of virtual work/power can be regarded as the fundamental 
law of dynamics for a continuum, and from it can be derived the equations of motion.  On 
the other hand, one can regard the principle of linear momentum as the fundamental law, 
derive the equations of motion, and hence derive the principle of virtual work. 
 
 
3.9.1 Overview of The Principle of Virtual Work 
 
Consider a material under the action of external forces: body forces b and tractions t.  The 
body undergoes a displacement )(xu  due to these forces and now occupies its current 
configuration, Fig. 3.9.1.  The problem is to find this displacement function u . 
 

 
 

Figure 3.9.1: a material displacing to its current configuration under the action of 
body forces and surface forces 

 
Imagine the material to undergo a small displacement u  from the current configuration, 
Fig. 3.9.2, u  not necessarily constant throughout the body; u  is a virtual displacement, 
meaning that it is an imaginary displacement, and in no way is it related to the applied 
external forces – it does not actually occur physically. 
 
As each material particle moves through these virtual displacements, the external forces 
do virtual work W .  If the force b  acts at position x  and this point undergoes a virtual 
displacement )(xu , the virtual work is vW  ub  .  Similarly for the surface 
tractions, and the total external virtual work is 
 

0ext  
sv

dsdvW utub       External Virtual Work        (3.9.1) 
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Figure 3.9.2: a virtual displacement field applied to a material in the current 
configuration 

 
There is also an internal virtual work intW  due to the internal forces as they move through 

virtual displacements and a virtual kinetic energy K .  The principle of virtual work then 
says that 
 

  KWW   intext                                                  (3.9.2) 

 
And this equation is then solved for the actual displacement u.  Expressions for the 
internal virtual work and virtual kinetic energy will be derived below. 
 
 
3.9.2 Derivation of The Principle of Virtual Work 
 
As mentioned above, one can simply write down the principle of virtual work, regarding 
it as the fundamental principle of mechanics, and then from it derive the equations of 
motion.  This will be done further below.  To begin, though, the starting point will be the 
equations of motion, and from it will be derived the principle of virtual work. 
 
Kinematically and Statically Admissible Fields 
 
A kinematically admissible displacement field is defined to be one which satisfies the 
displacement boundary condition 3.7.7c, usonuu   (see Part I, §5.5.1).  Such a 

displacement field would induce some stress field within the body, but this resulting 
stress field might not satisfy the equations of motion 3.7.7a.  In other words, it might not 
be the actual displacement field, but it does not violate the boundary conditions. 
 
A statically admissible stress field is one which satisfies the equations of motion 3.7.7a 
and the traction boundary conditions 3.7.7b, son,tσnt  .  Again, it might not be the 

actual stress field, since it is not specified how this stress field should be related to the 
actual displacement field. 
 
Derivation from the Equations of Motion (Spatial Form) 
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Let σ  be a statically admissible stress field corresponding to a kinematically admissible 
displacement field u , so sontσn  , usonuu   and ubσ div .  Multiplying the 

equations of motion by u  and integrating leads to 
 

  
vv

dvdv ubσuu div                      (3.9.3) 

 
Using the identity 1.14.16b, )grad(trdiv)(div T vAAvAv  , 1.10.10e, 

BABA :)(tr T  , and the symmetry of stress,  
 

   
vv

dvdv ubuσσuuu )(grad:div                       (3.9.4) 

 
and the divergence theorem 1.14.22c and Cauchy’s law lead to 

 

 
vvvs

dvdvdvds uuuσubut grad:                                 (3.9.5) 

 
Splitting the surface integral into one over us  and one over σs  gives 

 

 
vvvss

dvdvdvdsds uuuσubutut
σu

grad:                        (3.9.6) 

 
Next, consider a second kinematically admissible displacement field *u , so uson* uu  , 

which is completely arbitrary, in the sense that it is unrelated to either σ  or u .  This time 
multiplying ubσ div  across by *u , and following the same procedure, one arrives 
at 
 

 
vvvss

dvdvdvdsds **** grad: uuuσubutut
σu

                    (3.9.7) 

 
Let uuu  * , so the difference between *u  and u is infinitesimal, then subtracting 
3.9.6 from 3.9.7 gives the principle of virtual work, 

 

   
vvvs

dvdvdvds uuuσubut
σ

 grad:  

Principle of Virtual Work (spatial form) (3.9.8) 
 
Note that since *, uu , are kinematically admissible, uson* ouuu  .   

 
If one considers the u in 3.9.8 to be the actual displacement of the body, then u  can be 
considered to be a virtual displacement from the current configuration, Fig. 3.9.2.  Again, 
it is emphasized that this virtual displacement leaves the stress, body force and applied 
traction unchanged. 
 
One also has the transformed initial conditions: from 3.7.7d-e, 
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Eqns. 3.9.8 and 3.9.9 together constitute the weak form of the initial BVP 3.7.7. 
 
The principle of virtual work can be grouped into three separate terms: the external virtual 
work:  
 

   
vs

dvdsW ubut
σ

 ext    External Virtual Work    (3.9.10) 

 
the internal virtual work, 
 

  
v

dvW )(grad:int uσ     Internal Virtual Work      (3.9.11) 

 
and the virtual kinetic energy, 
 

   
v

dvK uu        Virtual Kinetic Energy      (3.9.12) 

 
corresponding to the statement 3.9.2. 
 
Derivation from the Equations of Motion (Material Form) 
 
The derivation in the spatial form follows exactly the same lines as for the spatial form. 
 
This time, let P  be a statically admissible stress field corresponding to a kinematically 
admissible displacement field U , so PTPN Son , uUU Son  and UBP 

0div  .  

This time one arrives at 
 

   
VVVS

dVdVdVdS UUUPUBUT
P

 
0Grad:                  (3.9.13) 

 
Again, one can consider U to be the actual displacement of the body, so that U  
represents a virtual displacement from the current configuration.  With 
 

xXxU

XxU

 


                                                 (3.9.14) 

 
the virtual work equation can be expressed in terms of the motion )(Xχx  , 
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   
VVVS

dVdVdVdS χUχPχBχT
P

 
0Grad:  

Principle of Virtual Work (material form) (3.9.15) 
 
 
3.9.3 Principle of Virtual Work in terms of Strain Tensors 
 
The principle of virtual work, in particular the internal virtual work term, can be 
expressed in terms of strain tensors. 
 
Spatial Form 
 
Using the commutative property of the variation 2.13.2, the term  ugrad  in the internal 
virtual work expression 3.9.8 can be written as 

 

     
     

Ωε

uuuu

uuuuu













TT

TT

gradgrad
2

1
gradgrad

2

1

)(grad)(grad
2

1
)(grad)(grad

2

1
)(grad

  (3.9.16) 

 
where ε  is the (symmetric) small strain tensor and Ω  is the (skew-symmetric) small 
rotation tensor, Eqn 2.7.2.  Using the fact that the double contraction of a symmetric 
tensor (σ ) and a skew-symmetric one (Ω ) is zero, 1.10.31c, one has 
 

   
vv

dvdvW εσuσ  :)(grad:int                              (3.9.17) 

 
Thus the stresses do internal virtual work along the virtual strains ε .  One has 
 

 
vvvs

dvdvdvds uuεσubut
σ

 :                       (3.9.18) 

 
Note that, although the small strain has been introduced here, this formulation is not 
restricted to small-strain theory.  It is only the virtual strains that must be infinitesimal – 
there is no restriction on the magnitude of the actual strains. 
 
From 2.13.15, the Lie-variation of the Euler-Almansi strain e is εe  L , so the internal; 
virtual work can be expressed as 
 

  
v

dvW eσ Lint :                                              (3.9.19) 

 
Material Form 
 
From Eqn. 3.9.15 and Eqn. 2.13.9, 
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
V

dVW FP  :int                                              (3.9.20) 

 
so 
 

 
VVVS

dVdVdVdS χUFPχBχT
P

 
0:                  (3.9.21) 

 
Derivation of the Material Form directly from the Spatial Form 
 
To transform the spatial form of the virtual work equation into the material form, first 
note that, with 3.9.14b,  
 

)grad(:)grad(: xσuσ                                           (3.9.22) 
 
Then, using 2.2.8b, 1Gradgrad  FVv , 2.13.9,  uF  Grad , 1.10.3h, 

  BACBCA :)(: T , and 3.5.10, T FσP J , 
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 

 
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)Grad(:)grad(:
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









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J

                                        (3.9.23) 

 
which converts 3.9.17 into 3.9.120. 
 
Also, again comparing 3.9.17 and 3.9.20, using the trace properties 1.10.10, and Eqns. 
3.5.9 and 2.13.11b, 
 

        ESεFFσFFεFσFεσεσFP  ::trtr:: TT11   JJJJ       (3.9.24) 
 
and so the internal work can also be expressed as an integral of ES :  over the reference 
volume. 
 
The Internal Virtual Work and Work Conjugate Tensors 
 
The expressions for stress power 3.8.15, 3.8.29, and internal virtual work are very similar.  
For the material description, the time derivatives in the former are simply replaced with 
the variation to get the latter: 
 

ESFPESFP  ::::                                    (3.9.25) 
 
For spatial tensors, the rate of strain tensor, e.g. d, is replaced with a Lie variation 
2.13.14.  For example, eσdσ bJJ vL::   (see 2.12.41-42) becomes: 

 
eσeσdσ Lv :L:: JJJ b                                      (3.9.26) 
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3.9.4 Derivation of the Strong Form from the Weak Form 
 
Just as the strong form (equations of motion and boundary conditions) was converted into 
the weak form (principle of virtual work), the weak form can be converted back into the 
strong form.  For example, 
 

    

  
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
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uuσut

uuσuσ

uuuσuuεσ

σ

















div

div

divdiv

grad::

                  (3.9.27) 

 
and the last line follows from the fact that ou   on us .  Thus the weak form now reads 

 
    0div  

vs

dvds uubσutt
σ

              (3.9.28) 

 
and, since u  is arbitrary, one finds that the expressions in the parentheses are zero, and 
so 3.7.7 is recovered. 
 
 
3.9.5 Conservative Systems 
 
Thus far, no assumption has been made about the nature of the internal forces acting in 
the material.  Indeed, the principle of virtual work applies to all types of materials. 
 
Now, however, attention is restricted to the special case where the system is conservative, 
in the sense that the work done by the external loads and the internal forces can be written 
in terms of potential energy functions1.  Further, for brevity, assume also that the material 
is in static equilibrium, i.e. the kinetic energy term is zero. 
 
In other words, it is assumed that the internal virtual work term can be expressed in the 
form of a virtual potential energy function: 
 

 
vv

Udvdv  )(grad: uσ                        (3.9.29) 

 
Here, U is considered to be a function of u, and the variation is to be understood as in 
Eqn. 2.13.5,   ][, uuu u  UU  . 

 
If the loads can be regarded as functions of u only then, since they are conservative, they 
may be written as the gradient of a scalar potential: 

                                                 
1 The external loads being conservative would exclude, for example, cases of frictional loading 
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u
t

u
b








 tb UU
,            (3.9.30) 

 
Then, with 
 

u
u

u
u

 







 t
t

b
b

U
U

U
U ,         (3.9.31) 

 
and using the commutative property 2.13.3 of the variational operator, one arrives at  
 

  0












  u
σ

UdvUdsUUdv
v

b

s

t

v

          (3.9.32) 

 
The quantity inside the brackets is the total potential energy of the system.  This statement 
is the principle of stationary potential energy: the value of the quantity inside the 
parentheses, i.e.  uU , is stationary at the true solution u. 
 
Eqn. 3.9.32 is an example of a Variational Principle, that is, a principle expressed in the 
form of a variation of a functional.  Note that the principle of virtual work in the form 
3.9.8 is not a variational principle, since it is not expressed as the variation of one 
functional. 
 
Body Forces 
 
Body forces can usually be expressed in the form 3.9.30.  For example, with gravity 
loading, gb  , where g is the constant acceleration due to gravity.  Then ug  bU   

( ogb    and  ubub   , so dvdv   ubub  ). 

 
Material Form 
 
In the material form, one again has a stationary principle if one can write 

  UUB  /BU ,   UUT  /TU  (or, equivalently, replacing U with the motion χ ).  

In the case of dead loading, §3.7.1,  XTT   is independent of the motion so (similar to 

the case of gravity loading above) uT TU  with oT   and dVdV   χTχT  . 

 
Deformation Dependent Traction 
 
In many practical cases, the traction will depend on not only the motion, but also the 
strain.  In that case, one can write 
 

    
vvsss

dvdvdsdsds uσuσuσuσnunσut
σ

 grad:divdiv  

 
One might be able to then introduce a scalar function   such that 
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 , :
    

  
 

u ε u ε
u ε

    with    σ
ε

σ
u







 

,div                   (3.9.33) 

 
In the material form, one would have NPT   with 

 

  
VS

dVdS FPχPχT
P

:Div   

 
and then one might be able to introduce a scalar function  Fχ,  such that 
 

F
F

χ
χ

 :







   with  P
F

P
χ







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,Div                   (3.9.34) 

 
For example, considering again the fluid pressure example of §3.7.1, one can let pJ  

so that, using 1.15.7, T/  FF pJ .  Then 
1

T /


 
J

p FFP  , 2Div EP g  

and   pJdVdS χT . 

 
 
3.9.6 The Principle of Virtual Power 
 
The principle of virtual power is similar to the principle of virtual work, the only 
difference between them being that a virtual velocity v  is used in the former rather than 
a virtual displacement.  To derive the virtual power equation, multiply the equations of 
motion by the virtual velocity function, and integrate over the current configuration, 
giving 
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:div

)(
:divdiv

         (3.9.35) 

 
These equations are identical to the mechanical balance equations 3.8.16, except that the 

actual velocity is replaced with a virtual velocity.  The term  v
dvdσ :  is called the 

internal virtual power. 
 
Note that here, unlike the virtual displacement function in the work equation, the virtual 
velocity does not have to be infinitesimal.  This can be seen more clearly if one derives 
this equation directly from the virtual work equation.  If the infinitesimal virtual 
displacement u  occurs over an infinitesimal time interval t , the virtual velocity is the 
finite quantity t /u , which here is labelled v .  The virtual power equation can thus be 
obtained by dividing the virtual work equation through by t .  
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Again, supposing that the velocities are specified over that part of the surface vs  and 

tractions over σs , the principle of virtual power can be written for the case of a 

kinematically admissible virtual velocity field: 
 

 
vvvs

dv
dt

d
dvdvds v

v
dσvbvt

σ

 :   Principle of Virtual Power  (3.9.36) 

  
In words, the principle of virtual power states that at any time t, the total virtual power of 
the external, internal and inertia forces is zero in any admissible virtual state of motion. 
 
 
3.9.7 Linearisation of the Internal Virtual Work 
 
In order to solve the virtual work equations in anything but the most simple cases, one 
must apply some approximate numerical method.  This will usually involve linearising 
the non-linear virtual work equations.  To this end, the internal virtual work term will be 
linearised in what follows. 
 
Material Description 
 
In the material description, one has 
 

    
V

dVW uEuES  :int                                           (3.9.37) 

 
in which the Green-Lagrange strain is considered to be a function of the displacement, 
Eqn. 2.2.46, and the PK2 stress is a function of the Green-Lagrange strain; the precise 
functional dependence of S on E will depend on the material under study (see Part IV). 
 
The linearisation of the variation of a function is given by (see §2.13.2) 
 

     uuuuu  ,,L intintint WWW                                 (3.9.38) 
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(3.9.39) 
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The linearization of the variation of the Green-Lagrange strain is given by 2.13.24, 

  uuE  GradGradsym T .  With the PK2 stress symmetric, one has, with 1.10.3h, 
1.10.31c, 
 

          
    

    uESuu

uuuES

uuuESuuEuES






Grad:Grad

GradGrad:

GradGradsym:,:
T

T






                (3.9.40) 

 
For the second term in 3.9.39, from 2.13.22, the variation of E is 
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                                      (3.9.41) 

 
What remains is the calculation of the linearisation of the PK2 stress.  One has using the 
chain rule, 
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                                (3.9.42) 

 
Denote the fourth order tensor   EES  /  by C and assume that it has the minor 
symmetries1.12.10.  Then (see 3.9.41), with 
 

 uFE  Gradsym T                                               (3.9.43) 
 
the linear increments in 3.9.38 become 
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The first term is due to the current stress and is called the (initial) stress contribution.  
The second term depends on the material properties and is called the material 
contribution.  Solution formulations based on 3.9.44 are called total Lagrangian. 
 
Spatial Description 
 
The spatial description can be obtained by pushing forward the material description.  First 
note that the linearization of the Kirchhoff stress is, from 3.5.13, 
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so that, as in the derivation of the material term in 3.9.44, and using 2.4.8, 
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Define the fourth-order spatial tensor c  through 
 

abcdldkcjbiaijkl CFFFFJc 1                                         (3.9.47)   

 
so that 

  uuuτ  grad:, cJ                                           (3.9.48) 
 
Then, from 3.9.39, 
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Solution formulations based on 3.9.49 are called updated-Lagrangian. 
 


