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3.6 The Equations of Motion and Symmetry of Stress 
 
In Part II, §1.1, the Equations of Motion were derived using Newton’s Law applied to a 
differential material element.  Here, they are derived using the principle of linear 
momentum. 
 
 
3.6.1 The Equations of Motion (Spatial Form) 
 
Application of Cauchy’s law σnt =  and the divergence theorem 1.14.21 to 3.2.7 leads 
directly to the global form of the equations of motion 
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The corresponding local form is then 
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The term on the right is called the inertial, or kinetic, term, representing the change in 
momentum.  The material time derivative of the spatial velocity field is 
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and it can be seen that the equations of motion are non-linear in the velocities. 
 
Equations of Equilibrium 
 
When the acceleration is zero, the equations reduce to the equations of equilibrium, 
 

0div =+ bσ      Equations of Equilibrium        (3.6.3) 
 
Flows 
 
A flow is a set of quantities associated with the system of forces t and b, for example the 
quantities ρ,,σv .  A flow is steady if the associated spatial quantities are independent of 
time.  A potential flow is one for which the velocity field can be written as the gradient 
of a scalar function, φgrad=v .  An irrotational flow is one for which 0curl =v . 
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3.6.2 The Equations of Motion (Material Form) 
 
In the spatial form, the linear momentum of a mass element is dvvρ .  In the material 
form it is dVV0ρ .  Here, V is the same velocity as v, only it is now expressed in terms of 
the material coordinates X, and dVdv 0ρρ = .  The linear momentum of a collection of 
material particles occupying the volume v in the current configuration can thus be 
expressed in terms of an integral over the corresponding volume V in the reference 
configuration: 
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and the principle of linear momentum is now, using 3.1.31, 
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The external forces F to be considered are those acting on the current configuration.  
Suppose that the surface force acting on a surface element ds  in the current configuration 
is dSdsd Ttf ==surf , where t and T are, respectively, the Cauchy traction vector and the 
PK1 traction vector (Eqns. 3.5.3-4).  Also, just as the PK1 stress measures the actual force 
in the current configuration, but per unit surface area in the reference configuration, one 
can introduce the reference body force B: this is the actual body force acting in the 
current configuration, per unit volume in the reference configuration.  Thus if the body 
force acting on a volume element dv  in the current configuration is bodyfd , then  

 
dVdvd Bbf ==body                       (3.6.6) 

 
The resultant force acting on the body is then 
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Using Cauchy’s law, PNT = , where P is the PK1 stress, and the divergence theorem 
1.12.21, 3.6.5 and 3.6.7 lead to 
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and the corresponding local form is 
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Derivation from the Spatial Form 
 
The equations of motion can also be derived directly from the spatial equations.  In order 
to do this, one must first show that ( )TDiv −FJ  is zero.  One finds that (using the 
divergence theorem, Nanson’s formula 2.2.59 and the fact that 0div =I ) 
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This result is known as the Piola identity.  Thus, with the PK1 stress related to the 
Cauchy stress through 3.5.8, T−= σFP J , and using identity 1.14.16c, 
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From 2.2.8c, 
 

σP divDiv J=                  (3.6.12) 
 
Then, with JdVdv =  and 3.6.6, the equations of motion in the spatial form can now be 
transformed according to 
 

[ ] [ ] ∫∫∫∫ =+→=+
VVvv

dVdVdvdv VBPvbσ && 0Divdiv ρρ  

 
as before.  
 
 
3.6.3 Symmetry of the Cauchy Stress 
 
It will now be shown that the principle of angular momentum leads to the requirement 
that the Cauchy stress tensor is symmetric.  Applying Cauchy’s law to 3.2.11,  
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The surface integral can be converted into a volume integral using the divergence 
theorem.  Using the index notation, and concentrating on the integrand of the resulting 
volume integral, one has, using 1.3.14 (the permutation symbol is a constant here, 

0/ =∂∂ lijk xε ), 
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where E  is the third-order permutation tensor, Eqn. 1.9.6, ( )kjiijk eee ⊗⊗= εE .  Thus, 
with the Reynold’s transport identity 3.1.31, 
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The material derivative of this cross product is  
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and so 
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From the equations of motion 2.6.2, the term inside the brackets is zero, so that 

 
0,0T == kjijkσεσ:E                    (3.6.18) 

 
It follows, from expansion of this relation, that the matrix of stress components must be 
symmetric: 

 
jiij σσ == ,Tσσ      Symmetry of Stress                  (3.6.19) 

 
 
3.6.4 Consequences in the Material Form 
 
Here, the consequences of 3.6.19 on the PK1 and PK2 stresses is examined.  Using the 
result Tσσ =  and 3.5.8, T1PFσ −= J , 
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so that 
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These equations are trivial when ji = , not providing any constraint on P.  On the other 
hand, when ji ≠  one has the three equations 
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Thus angular momentum considerations imposes these three constraints on the PK1 stress 
(as they imposed the three constraints 2112 σσ = , 3113 σσ = , 3223 σσ =  on the Cauchy 
stress). 
 
It has already been seen that a consequence of the symmetry of the Cauchy stress is the 
symmetry of the PK2 stress S; thus, formally, the symmetry of S is the result of the 
angular momentum principle. 
 


