Section 3.6

3.6 The Equations of Motion and Symmetry of Stress

In Part Il, 81.1, the Equations of Motion were derived using Newton’s Law applied to a
differential material element. Here, they are derived using the principle of linear
momentum.

3.6.1 The Equations of Motion (Spatial Form)

Application of Cauchy’s law t = en and the divergence theorem 1.14.21 to 3.2.7 leads
directly to the global form of the equations of motion

0o
dive +bldv = | pvdy, —2 4D, |dv=|pv.dv 3.6.1
Jldive +blav= p¥ ﬂ@xj } Jov (361)
The corresponding local form is then
dive+b = av aGij+b M Equations of Motion (3.6.2)
Pa T, P o

The term on the right is called the inertial, or kinetic, term, representing the change in
momentum. The material time derivative of the spatial velocity field is

8Vl

dV—@+(gradv)v S0 %=—+(avl N,

ov,
—V, +—V, +—V, |, etC.
OX, OX, OX,

dt ot dt ot
and it can be seen that the equations of motion are non-linear in the velocities.
Equations of Equilibrium

When the acceleration is zero, the equations reduce to the equations of equilibrium,

dive+b =0| Equations of Equilibrium (3.6.3)

Flows

A flow is a set of quantities associated with the system of forces t and b, for example the
quantities v,6, o. A flow is steady if the associated spatial quantities are independent of

time. A potential flow is one for which the velocity field can be written as the gradient
of a scalar function, v =grad¢. An irrotational flow is one for which curlv=0.
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3.6.2 The Equations of Motion (Material Form)

In the spatial form, the linear momentum of a mass element is pvdv. In the material
formitis p,VdV . Here, V is the same velocity as v, only it is now expressed in terms of
the material coordinates X, and pdv = p,dV . The linear momentum of a collection of

material particles occupying the volume v in the current configuration can thus be
expressed in terms of an integral over the corresponding volume V in the reference
configuration:

L(t) = '[ Lo (X)V(X, t)dV Linear Momentum (Material Form) (3.6.4)
\Y

and the principle of linear momentum is now, using 3.1.31,
i) j 2,(X)V(X,t)dV = j oy Vv =F@) (3.6.5)

The external forces F to be considered are those acting on the current configuration.
Suppose that the surface force acting on a surface element ds in the current configuration
is df_ . =tds = TdS, where t and T are, respectively, the Cauchy traction vector and the

surf
PK1 traction vector (Egns. 3.5.3-4). Also, just as the PK1 stress measures the actual force
in the current configuration, but per unit surface area in the reference configuration, one
can introduce the reference body force B: this is the actual body force acting in the
current configuration, per unit volume in the reference configuration. Thus if the body
force acting on a volume element dv in the current configuration is df,, , then

df, , =bdv=BdV (3.6.6)

body

The resultant force acting on the body is then

F(t) = [TdS + [BdV, F = [T,ds+[Bdv (36.7)
S Vv S \Y

Using Cauchy’s law, T = PN, where P is the PK1 stress, and the divergence theorem
1.12.21, 3.6.5 and 3.6.7 lead to

[[Dive+Blv = [ p, &Y av (36.8)
\Y \Y d
and the corresponding local form is
: dv oP; av,
DivP+B = p,—, +B, =
TR A X | BT

Equations of Motion (Material Form) (3.6.9)
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Derivation from the Spatial Form

The equations of motion can also be derived directly from the spatial equations. In order
to do this, one must first show that Div(JF‘T) is zero. One finds that (using the
divergence theorem, Nanson’s formula 2.2.59 and the fact that divi=0)

j-DIV JFTHY = .[JF‘TNdS .[nds _jlnds _jdlvldv 0

3.6.10
dev [N < o= [angs [ b0

[/

This result is known as the Piola identity. Thus, with the PK1 stress related to the
Cauchy stress through 3.5.8, P = JoF ", and using identity 1.14.16c,

DivP = Div(e(JF 7))

= 6Div(JF ")+ Grade : (JF ) (3.6.11)
= JGrade : F'

From 2.2.8c,
DivP = Jdive (3.6.12)

Then, with dv =JdV and 3.6.6, the equations of motion in the spatial form can now be
transformed according to

j[diVG+b]dv:Idev - I[DivP+B]dV=jp0VdV
v \ \

v

as before.

3.6.3 Symmetry of the Cauchy Stress

It will now be shown that the principle of angular momentum leads to the requirement
that the Cauchy stress tensor is symmetric. Applying Cauchy’s law to 3.2.11,

Irx (on)ds +Ir xbdv = %Irxpvdv

° ) d ! (3.6.13)
j Eip XjouN dS+jg,kaJb dv = dt-[ ik X OV, dv

The surface integral can be converted into a volume integral using the divergence
theorem. Using the index notation, and concentrating on the integrand of the resulting
volume integral, one has, using 1.3.14 (the permutation symbol is a constant here,
Ogy 0%, =0),
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Nes
Eije—— k')=gijk{x.%Jrakﬁj,}:gijk{xj%+ij}zrxdch+E:cT (3.6.14)
X X

where E is the third-order permutation tensor, Eqn. 1.9.6, E = &, (ei ®e; ®ek). Thus,
with the Reynold’s transport identity 3.1.31,

J.{rxdiV6+E : GT}dV+:|:rxde: .v[p%(rxv)dv (3.6.15)

\'

The material derivative of this cross product is

—(r><v):r><—v+—r><v:r><d—v+v><V:r><ﬁ (3.6.16)
dt dt dt dt dt
and so
[E: onv+Irx{diVG+b—p3—:}dv =0 (3.6.17)

From the equations of motion 2.6.2, the term inside the brackets is zero, so that
E:o' =0, 40 =0 (3.6.18)

It follows, from expansion of this relation, that the matrix of stress components must be
symmetric:

6=0, o; =0;| Symmetry of Stress (3.6.19)

3.6.4 Consequences in the Material Form

Here, the consequences of 3.6.19 on the PK1 and PK2 stresses is examined. Using the
result 6 =¢' and 3.5.8, 6 =J 'PF ",

JPFT =(3PFT) = J'FPT (3.6.20)
so that
PF' =FP', PF, =FP, (3.6.21)

These equations are trivial when i = j, not providing any constraint on P. On the other
hand, when i j one has the three equations
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Pll FZl + P12 F22 + P13 F23 = Fll P21 + F12 P22 + I:13 P23
Pll F31 + I:)12 F32 + I:)13 F33 = Fll P31 + I:12 P32 + I:13 P33 (3622)
I:>21 F3l + P22 F32 + P23 F33 = I:21 P31 + F22 P32 + F23 P33

Thus angular momentum considerations imposes these three constraints on the PK1 stress
(as they imposed the three constraints o,, = 0,,, 0,3 = 04, 0, = 04, onthe Cauchy

stress).
It has already been seen that a consequence of the symmetry of the Cauchy stress is the

symmetry of the PK2 stress S; thus, formally, the symmetry of S is the result of the
angular momentum principle.
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