
Section 3.4 

Solid Mechanics Part III            Kelly 335

3.4 Properties of the Stress Tensor 
 
 
3.4.1 Stress Transformation 
 
Let the components of the Cauchy stress tensor in a coordinate system with base vectors 

ie  be ijσ .  The components in a second coordinate system with base vectors je′ , ijσ ′ , are 
given by the tensor transformation rule 1.10.5: 
 

pqqjpiij QQ σσ =′                                                     (3.4.1) 
 
where ijQ  are the direction cosines, jiijQ ee ′⋅= . 
 
Isotropic State of Stress 
 
Suppose the state of stress in a body is 
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One finds that the application of the tensor transformation rule yields the very same 
components no matter what the coordinate system.  This is termed an isotropic state of 
stress, or a spherical state of stress (see §1.13.3).  One example of isotropic stress is the 
stress arising in fluid at rest, which cannot support shear stress, in which case 
 

Iσ p−=                                                            (3.4.2) 
 
where the scalar p is the fluid hydrostatic pressure.  For this reason, an isotropic state of 
stress is also referred to as a hydrostatic state of stress. 
 
A note on the Transformation Formula 
 
Using the vector transformation rule 1.5.5, the traction and normal transform according to 
[ ] [ ][ ] [ ] [ ][ ]nQntQt TT , =′=′ .  Also, Cauchy’s law transforms according to [ ] [ ][ ]nσt ′′=′  
which can be written as [ ][ ] [ ][ ][ ]nQσtQ TT ′= , so that, pre-multiplying by [ ]Q , and since 
[ ]Q  is orthogonal, [ ] [ ][ ][ ]{ }[ ]nQσQt T′= , so [ ] [ ][ ][ ]TQσQσ ′= , which is the inverse tensor 
transformation rule 1.13.6a, showing the internal consistency of the theory. 
 
In Part I, Newton’s law was applied to a material element to derive the two-dimensional 
stress transformation equations, Eqn. 3.4.7 of Part I.  Cauchy’s law was proved in a 
similar way, using the principle of momentum.  In fact, Cauchy’s law and the stress 
transformation equations are equivalent.  Given the stress components in one coordinate 
system, the stress transformation equations give the components in a new coordinate 
system; particularising this, they give the stress components, and thus the traction vector, 
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acting on new surfaces, oriented in some way with respect to the original axes, which is 
what Cauchy’s law does. 
 
 
3.4.2 Principal Stresses 
 
Since the stress σ  is a symmetric tensor, it has three real eigenvalues 321 ,, σσσ , called 
principal stresses, and three corresponding orthonormal eigenvectors called principal 
directions.  The eigenvalue problem can be written as 
 

nnσt n σ==)(                (3.4.3) 
 
where n is a principal direction and σ  is a scalar principal stress.  Since the traction 
vector is a multiple of the unit normal, σ  is a normal stress component.  Thus a principal 
stress is a stress which acts on a plane of zero shear stress, Fig. 3.4.1. 

 
 

Figure 3.4.1: traction acting on a plane of zero shear stress 
 
The principal stresses are the roots of the characteristic equation 1.11.5, 
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where, Eqn. 1.11.6-7, 1.11.17, 
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The principal stresses and principal directions are properties of the stress tensor, and do 
not depend on the particular axes chosen to describe the state of stress., and the stress 
invariants 321 ,, III  are invariant under coordinate transformation. c.f. §1.11.1.   
 
If one chooses a coordinate system to coincide with the three eigenvectors, one has the 
spectral decomposition 1.11.11 and the stress matrix takes the simple form 1.11.12, 
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Note that when two of the principal stresses are equal, one of the principal directions will 
be unique, but the other two will be arbitrary – one can choose any two principal 
directions in the plane perpendicular to the uniquely determined direction, so that the 
three form an orthonormal set.  This stress state is called axi-symmetric.  When all three 
principal stresses are equal, one has an isotropic state of stress, and all directions are 
principal directions. 
 
 
3.4.3 Maximum Stresses 
 
Directly from §1.11.3, the three principal stresses include the maximum and minimum 
normal stress components acting at a point.  This result is re-derived here, together with 
results for the maximum shear stress 
 
Normal Stresses 
 
Let 321 ,, eee  be unit vectors in the principal directions and consider an arbitrary unit 
normal vector 332211 eeen nnn ++= , Fig. 3.4.2.  From 3.3.8 and Cauchy’s law,  the 
normal stress acting on the plane with normal n is 
 

( ) nnσnt n ⋅=⋅= )(
Nσ            (3.4.7) 

 

 
 

Figure 3.4.2: normal stress acting on a plane defined by the unit normal n 
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With respect to the principal stresses, using 3.4.6, 
  

333222111
)( eeenσt n nnn σσσ ++==                     (3.4.8) 

 
and the normal stress is 
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Since 12
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1 =++ nnn  and, without loss of generality, taking 321 σσσ ≥≥ , one has 
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Similarly, 
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Thus the maximum normal stress acting at a point is the maximum principal stress and 
the minimum normal stress acting at a point is the minimum principal stress. 
 
Shear Stresses 
 
Next, it will be shown that the maximum shearing stresses at a point act on planes 
oriented at 45o to the principal planes and that they have magnitude equal to half the 
difference between the principal stresses. 
 
From 3.3.39, 3.4.8 and 3.4.9, the shear stress on the plane is 
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Using the condition 12
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1 =++ nnn  to eliminate 3n  leads to 
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The stationary points are now obtained by equating the partial derivatives with respect to 
the two variables 1n  and 2n  to zero: 
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      (3.4.14) 

 
One sees immediately that 021 == nn  (so that 13 ±=n ) is a solution; this is the principal 
direction 3e  and the shear stress is by definition zero on the plane with this normal.  In 
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this calculation, the component 3n  was eliminated and 2
Sσ  was treated as a function of 

the variables ),( 21 nn .  Similarly, 1n  can be eliminated with ),( 32 nn  treated as the 
variables, leading to the solution 1en = , and 2n  can be eliminated with ),( 31 nn  treated as 
the variables, leading to the solution 2en = .  Thus these solutions lead to the minimum 
shear stress value 02 =Sσ . 
 
A second solution to Eqn. 3.4.14 can be seen to be 2/1,0 21 ±== nn  (so that 

2/13 ±=n ) with corresponding shear stress values ( )2
324

12 σσσ −=S .  Two other 
solutions can be obtained as described earlier, by eliminating 1n  and by eliminating 2n .  
The full solution is listed below, and these are evidently the maximum (absolute value of 
the) shear stresses acting at a point: 
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          (3.4.15) 

 
Taking 321 σσσ ≥≥ , the maximum shear stress at a point is 
 

( )31max 2
1 σστ −=     (3.4.16) 

 
and acts on a plane with normal oriented at 45o to the 1 and 3 principal directions.  This is 
illustrated in Fig. 3.4.3. 
 

 
 

Figure 3.4.3: maximum shear stress at  apoint 
 
 
Example (maximum shear stress) 
 
Consider the stress state  
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This is the same tensor considered in the example of §1.11.1.  Using the results of that 
example, the principal stresses are 15,5,10 321 −=== σσσ  and so the maximum shear 
stress at that point is 
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The planes and direction upon which they act are shown in Fig. 3.4.4. 
 

 
 

Figure 3.4.4: maximum shear stress 
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