
Section 3.1 

Solid Mechanics Part III  Kelly 317

3.1 Conservation of Mass 
 
 
3.1.1 Mass and Density 
 
Mass is a non-negative scalar measure of a body’s tendency to resist a change in motion. 
 
Consider a small volume element vΔ  whose mass is mΔ .  Define the average density of 
this volume element by the ratio 
 

v
m
Δ
Δ

=AVEρ               (3.1.1) 

 
If p is some point within the volume element, then define the spatial mass density at p to 
be the limiting value of this ratio as the volume shrinks down to the point, 
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In a real material, the incremental volume element vΔ  must not actually get too small 
since then the limit ρ  would depend on the atomistic structure of the material; the 
volume is only allowed to decrease to some minimum value which contains a large 
number of molecules.  The spatial mass density is a representative average obtained by 
having vΔ  large compared to the atomic scale, but small compared to a typical length 
scale of the problem under consideration. 
 
The density, as with displacement, velocity, and other quantities, is defined for specific 
particles of a continuum, and is a continuous function of coordinates and time, 

),( txρρ = .  However, the mass is not defined this way – one writes for the mass of an 
infinitesimal volume of material – a mass element, 
 

dvtdm ),(xρ=        (3.1.3) 
 
or, for the mass of a volume v of material at time t, 
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3.1.2 Conservation of Mass 
 
The law of conservation of mass states that mass can neither be created nor destroyed.   
 
Consider a collection of matter located somewhere in space.  This quantity of matter with 
well-defined boundaries is termed a system.  The law of conservation of mass then 
implies that the mass of this given system remains constant,  
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          Conservation of Mass               (3.1.5) 

 
The volume occupied by the matter may be changing and the density of the matter within 
the system may be changing, but the mass remains constant. 
 
Considering a differential mass element at position X in the reference configuration and 
at x in the current configuration, Eqn. 3.1.5 can be rewritten as 
 

),()( tdmdm xX =          (3.1.6) 
 
The conservation of mass equation can be expressed in terms of densities.  First, 
introduce 0ρ , the reference mass density (or simply the density), defined through 
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Note that the density 0ρ  and the spatial mass density ρ  are not the same quantities1.   
 
Thus the local (or differential) form of the conservation of mass can be expressed as (see 
Fig. 3.1.1) 
 

const),()(0 === dvtdVdm xX ρρ        (3.1.8) 
 

 
 

Figure 3.1.1: Conservation of Mass for a deforming mass element 
 
Integration over a finite region of material gives the global (or integral) form, 
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or 
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1 they not only are functions of different variables, but also have different values; they are not different 
representations of the same thing, as were, for example, the velocities v and V.  One could introduce a 
material mass density, )),,((),( ttXxtX ρ=Ρ , but such a quantity is not useful in analysis 
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3.1.3 Control Mass and Control Volume 
 
A control mass is a fixed mass of material whose volume and density may change, and 
which may move through space, Fig. 3.1.2.  There is no mass transport through the 
moving surface of the control mass.  For such a system, Eqn. 3.1.10 holds. 
 

 
 

Figure 3.1.2: Control Mass 
 
By definition, the derivative in 3.1.10 is the time derivative of a property (in this case 
mass) of a collection of material particles as they move through space, and when they 
instantaneously occupy the volume v, Fig. 3.1.3, or 
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Alternatively, one can take the material derivative inside the integral sign: 
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This is now equivalent to the sum of the rates of change of mass of the mass elements 
occupying the volume v. 
 

 
 

Figure 3.1.3: Control Mass occupying different volumes at different times 
 
 
A control volume, on the other hand, is a fixed volume (region) of space through which 
material may flow, Fig. 3.1.4, and for which the mass may change.  For such a system, 
one has 
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Figure 3.1.4: Control Volume 
 
 
3.1.4 The Continuity Equation (Spatial Form) 
 
A consequence of the law of conservation of mass is the continuity equation, which (in 
the spatial form) relates the density and velocity of any material particle during motion.  
This equation can be derived in a number of ways: 
 
Derivation of the Continuity Equation using a Control Volume (Global Form) 
 
The continuity equation can be derived directly by considering a control volume - this is 
the derivation appropriate to fluid mechanics.  Mass inside this fixed volume cannot be 
created or destroyed, so that the rate of increase of mass in the volume must equal the rate 
at which mass is flowing into the volume through its bounding surface. 
 
The rate of increase of mass inside the fixed volume v is 
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The mass flux (rate of flow of mass) out through the surface is given by Eqn. 1.7.9,  
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where n is the unit outward normal to the surface and v is the velocity.  It follows that 
 

0,0 =+
∂
∂

=⋅+
∂
∂

∫∫∫∫
s

ii
vsv

dsnvdv
t

dsdv
t

ρρρρ nv           (3.1.15) 

 
Use of the divergence theorem 1.7.12 leads to 
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leading to the continuity equation, 
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    Continuity Equation 

(3.1.17) 
 
This is (these are) the continuity equation in spatial form.  The second and third forms of 
the equation are obtained by re-writing the local derivative in terms of the material 
derivative 2.4.7 (see also 1.6.23b). 
 
If the material is incompressible, so the density remains constant in the neighbourhood of 
a particle as it moves, then the continuity equation reduces to 
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Derivation of the Continuity Equation using a Control Mass 
 
Here follow two ways to derive the continuity equation using a control mass. 
 
1. Derivation using the Formal Definition 
 
From 3.1.11, adding and subtracting a term: 
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The terms in the second square bracket correspond to holding the volume v fixed and 
evidently equals the local rate of change: 
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The region )()( tvttv −Δ+  is swept out in time tΔ .  Superimposing the volumes )(tv  and 

)( ttv Δ+ , Fig. 3.1.5, it can be seen that a small element vΔ  of )()( tvttv −Δ+  is given by 
(see the example associated with Fig. 1.7.7) 
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where s is the surface.  Thus 
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and 3.1.15 is again obtained, from which the continuity equation results from use of the 
divergence theorem.  
 

 
 

Figure 3.1.5: Evaluation of Eqn. 3.1.22 
 
 
2. Derivation by Converting to Mass Elements 
 
This derivation requires the kinematic relation for the material time derivative of a 
volume element, 2.5.23: dvdtdvd vdiv/)( = .  One has 
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The continuity equation then follows, since this must hold for any arbitrary region of the 
volume v.  
 
Derivation of the Continuity Equation using a Control Volume (Local Form) 
 
The continuity equation can also be derived using a differential control volume element.  
This calculation is similar to that given in §1.6.6, with the velocity v replaced by vρ . 
 
 
3.1.5 The Continuity Equation (Material Form) 
 
From 3.1.9, and using 2.2.53, JdVdv = ,  
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Since V  is an arbitrary region, the integrand must vanish everywhere, so that 
 

),()),,(()(0 tJtt XXχX ρρ =   Continuity Equation (Material Form)   (3.1.25) 
 

This is known as the continuity (mass) equation in the material description.  Since 
00 =ρ& , the rate form of this equation is simply 
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The material form of the continuity equation, Jρρ =0 , is an algebraic equation, unlike 
the partial differential equation in the spatial form.  However, the two must be equivalent, 
and indeed the spatial form can be derived directly from this material form: using 2.5.20, 
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This is zero, and 0>J , and the spatial continuity equation follows. 
 
Example (of Conservation of Mass) 
 
Consider a bar of material of length 0l , with density in the undeformed configuration 0ρ  
and spatial mass density ),( txρ , undergoing the 1-D motion )1/( At+= xX , 

XXx At+= .  The volume ratio (taking unit cross-sectional area) is AtJ += 1 .  The 
continuity equation in the material form 3.1.25 specifies that 
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so that the total mass of the bar is ∫ =ol md
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Evaluating the total mass of the bar at time t leads to 
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which is again m, as required. 

 
 

 
 

Figure 3.1.6: a stretching bar 
 
 
The density could have been derived from the equation of continuity in the spatial form: 
since the velocity is  
 

At
AtttA

dt
tdt

+
==== −

1
)),,((),(,),(),( 1 xxχVxvXXxXV  

 
one has 
 

0
11

=
+

+
∂
∂

+
+

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

At
A

At
A

t
v

t
ρρρρρρ

x
x

xx
v  

 
Without attempting to solve this first order partial differential equation, it can be seen by 
substitution that the value for ρ  obtained previously satisfies the equation. 

■  
 
 
3.1.6 Material Derivatives of Integrals 
 
Reynold’s Transport Theorem 
 
In the above, the material derivative of the total mass carried by a control mass, 
 

∫
v

dvt
dt
d ),(xρ , 

 
was considered.  It is quite often that one needs to evaluate material time derivatives of 
similar volume (and line and surface) integrals, involving other properties, for example 
momentum or energy.  Thus, suppose that ),( txA  is the distribution of some property 
(per unit volume) throughout a volume v (A is taken to be a second order tensor, but what 
follows applies also to vectors and scalars).  Then the rate of change of the total amount 
of the property carried by the mass system is 
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at time t
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Again, this integral can be evaluated in a number of ways.  For example, one could 
evaluate it using the formal definition of the material derivative, as done above for 

ρ=A .  Alternatively, one can evaluate it using the relation 2.5.23,  dvdtdvd vdiv/)( = , 
through 
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Thus one arrives at Reynold’s transport theorem 
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 Reynold’s Transport Theorem    (3.1.29) 

 
The index notation is shown for the case when A is a second order tensor.  In the last of 
these forms2 (obtained by application of the divergence theorem), the first term represents 
the amount (of A) created within the volume v whereas the second term (the flux term) 
represents the (volume) rate of flow of the property through the surface.  In the last three 
versions, Reynold’s transport theorem gives the material derivative of the moving control 
mass in terms of the derivative of the instantaneous fixed volume in space (the first term). 
 
Of course when ρ=A , the continuity equation is recovered. 
 
Another way to derive this result is to first convert to the reference configuration, so that 
integration and differentiation commute (since dV  is independent of time): 
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2 also known as the Leibniz formula 
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Reynold’s Transport Theorem for Specific Properties  
 
A property that is given per unit mass is called a specific property.  For example, 
specific heat is the heat per unit mass.  Consider then a property B, a scalar, vector or 
tensor, which is defined per unit mass through a volume.  Then the rate of change of the 
total amount of the property carried by the mass system is simply 
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Material Derivatives of Line and Surface Integrals  
 
Material derivatives of line and surface integrals can also be evaluated.  From 2.5.8, 

xlx ddtdd =/)( , 
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and, using 2.5.22, ( ) ( ) dsdtdsd nlvn ˆdiv/ˆ T−= , 
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3.1.7 Problems 
 
1. A motion is given by the equations 

332
2

12211 ),1(,3 XxtXtXxtXXx =++−=+=  
(a) Calculate the spatial mass density ρ  in terms of the density 0ρ  
(b) Derive a first order ordinary differential equation for the density ρ  (in terms of 

x and t only) assuming that it is independent of position x 
 


