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2.12 Pull Back, Push Forward and Lie Time Derivatives 
 
This section is in the main concerned with the following issue: an observer attached to a 
fixed, say Cartesian, coordinate system will see a material move and deform over time, and 
will observe various vectorial and tensorial quantities to change also. However, a 
hypothetical observer attached to the deforming material, and moving and deforming with 
the material, will see something different. The question is: what quantities will be seen to 
change from this embedded observer’s viewpoint? 
 
 
2.12.1 Time Derivatives of Spatial Fields 
 
In terms of the spatial basis, a spatial vector v can be expressed in terms of the covariant 
components and contravariant components, 
 

,i i
i iv v v g v g                      (2.12.1) 

 
We want to distinguish between two quantities. The first is the material time derivative of the 
vector v: 
 

,i i i i i i
i i i i i iv v v v v v
 

     v g g g v g g g                               (2.12.2) 

  
The second is the time derivative holding the base vectors fixed,  
 

,i i
i iv vg g                                                       (2.12.3) 

  
This latter is called the convected derivative and is the rate of the change as seen by an 
observer attached to the deforming bases. 
 
From Eqn. 2.12.1, the components of v can be expressed as 
 

, i i
i iv v   v g v g                            (2.12.4) 

 
Taking the material time derivative, and using Eqns. 2.11.11, 2.11.13, 
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            (2.12.5) 

 
Thus there are two convected derivatives of a vector, depending on whether one is using 
covariant or contravariant components: 
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As will be seen below, these quantities are Lie derivatives of the vector v. 
 
The time derivative of the components can be expressed in an alternative way, by expressing 
the spatial base vectors , i

ig g  in terms of the material base vectors , i
iG G ; using Eqns. 

2.10.23: 
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                                 (2.12.7) 

 
So, as an alternative to Eqns. 2.12.6,  
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                           (2.12.8) 

 
As will be seen further below, the quantities on the right are the material time derivatives of 
the pull-back of the vector v. 
 
Repeating the above, now for a spatial tensor a: in terms of the spatial basis, a can be 
expressed in terms of the covariant components and contravariant components as 
 

,i j ij
ij i ja a   a g g a g g                                 (2.12.9) 

 
The material time derivative of the tensor a is 
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                   (2.12.10) 

  
and the convected derivative is the first term:  
 

,i j ij
ij i ja a g g g g                                     (2.12.11) 

 
The components of a can be expressed as 



Section 2.12 

Solid Mechanics Part III                                                                                Kelly 309

 
, ij i j

ij i ja a g Ag g Ag               (2.12.12) 

 
Taking the material time derivative, and again using Eqns. 2.11.11, 2.11.13, 
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         (2.12.13) 

 
The convected derivatives are thus 
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              (2.12.14) 

 
As will be seen below, these quantities are Lie derivatives of the tensor a. 
 
The time derivative of the components can be expressed in an alternative way, by expressing 
the spatial base vectors , i

ig g  in terms of the material base vectors , i
iG G ; using Eqns. 

2.10.23: 
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             (2.12.15) 

 
So, as an alternative to Eqns. 2.12.14, 
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                                 (2.12.16) 

 
As will be seen next, the quantities on the right are the material time derivatives of the pull-
back of the tensor a. 
 
Example 
 
Considering again Example 1 which was worked through in detail in §2.10, suppose we have 
a shearing deformation as shown in Fig. 2.12.1 (this is Fig. 2.10.3). 
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Figure 2.12.1: A pure shear deformation of one parallelogram into another 
 
Let the shear angle   in Fig. 2.12.1 evolve over time according to  
 

t                                                            (2.12.17) 
 

From Eqns. 2.10.7, 2.10.11, the rates of change of the base vectors are 
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    (2.12.18) 

 
The velocity gradient is, from Eqn. 2.11.5, 
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where   is given by Eqn. 2.10.26, and 
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Considering again the vector V of Eqn. 2.10.44,  T

x y iV V   V E , and its corresponding 

deformed vector v of Eqn. 2.10.47,  x y y iV V V    v e , 
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y
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v e ,                                             (2.12.21) 

 
The contravariant and covariant components of v  are 
 

, , , 1
0

tan

y
yi i i

i i i
y

V
V

v v v v
V



 
               

v g v g
                          (2.12.22) 

 
The “hat” on the v


  is to emphasise that (see Eqns. 2.12.5)  
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                              (2.12.23) 

 
 From Eqns. 2.12.6, the convected derivatives are  
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Thus 0 v lv , which, from Eqn. 2.12.6, implies that 0iv  . This is the expected result: the 

contravariant components do not change over time. They are always / tanx y yV V V   , as 

given by Eqn. 2.10.47b. 
  
Consider now an example tensor 
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A E                                          (2.12.24) 

 
The covariant and contravariant components are 
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This deforms to (with F given by Eqn. 2.10.25) 
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Converting between the various convected base vectors using Eqns. 2.10.7-8, 2.10.11-12, the 
contravariant and covariant and components are ,ij i j

i j ija a   a g g a g g : 
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(2.12.27) 
 
Also, 
 

 
0 0
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and the contravariant and covariant components are 
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Again, the “hat” emphasises that (see Eqns. 2.12.13)  
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                         (2.12.31) 

 
Thus T 0  a la al , i.e. 0ija  , only when 0xy yyA A  , which is consistent with Eqn. 

2.12.27a (only constant terms, independent of   remain in that case). 
 
 
2.12.2 Push-Forward and Pull-Back 
 
Next are defined the push-forward and pull-back of vectors and tensors, which will lead into 
the concept of Lie derivatives, which relate back to what was just discussed above regarding 
convected derivatives. 
 
Vectors 
 
Consider a vector V given in terms of the reference configuration base vectors: 
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The push-forward, symbolised by  *  , is defined to be the vector with the same 

components, but with respect to the current configuration base vectors. There are 2 push-
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forward operations, depending on the type of components used; the symbol b  is used for 
covariant components iV  and the symbol # for contravariant components iV ; using 2.10.23, 
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   Push-forward of Vector     (2.12.33) 

 
Eqn. 2.12.33b says that the push forward of the contravariant form of V is simply FV. In 
other words, the push forward here is the actual corresponding vector in the deformed 

configuration,  i j
iv  v FV g , and, as a consequence of the definitions, i iV v , as 

illustrated in Fig. 2.12.2. 
 

 
 

Figure 2.12.2: The push-forward of a vector V 
 
A special case of Eqn. 2.12.33b is the push forward of a line element in the reference 
configuration, giving the corresponding line element in the current configuration: 
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Similarly, consider a vector v given in terms of the current configuration basis: 
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The pull-back of v,  v1

*
 , is defined to be the vector with components iv  (or iv ) with 

respect to the reference configuration base vectors iG  (or iG ).  Using 2.10.23, 
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  Pull-back of a vector    (2.12.36) 

 
and, for a line element in the current configuration, 
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Note that a push-forward and pull-back applied successively to a vector with the same 
component type will result in the initial vector. 
 
From the above, for two material vectors U and V and two spatial vectors u and v, 
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                        (2.12.38) 

 
For example, as a special case of this, in the reference configuration, 1G  and 2G  are 

perpendicular: 2
1 0 G G . Pushing forward these vectors, we get from Eqn. 2.12.33: 

1 1FG g  and T 2 2 F G g , and again    # 2 2
* 1 * 1 0

b
    G G g g . 

 
 
Tensors 
 
Consider a material tensor A: 
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            (2.12.39) 

 
As for the vector, the push-forward of A,  A* , is defined to be the tensor with the same 
components, but with respect to the deformed base vectors.  Thus, using 2.10.23, 
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  Push-forward of Tensor  (2.12.40) 

 
Similarly, consider a spatial tensor a: 
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The pull-back is 
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     Pull-back of Tensor     (2.12.42) 

 
The first of these, TF aF , is called the covariant pull-back, whereas the second, 1 T F aF , is 
called the contravariant pull-back. 
 
Since F maps material vectors to spatial vectors, a maps spatial vectors to spatial vectors, and 

TF  maps spatial vectors to material vectors, it follows that the pull-back TF aF maps material 
vectors to material vectors, and so is a material tensor field, and similarly for the other three 
pull-backs.  
 
Time Derivatives 
 
It will be recognised that the expressions for the pull backs of a spatial covariant tensor and 
spatial contravariant tensor in Eqns. 2.12.42a,b are those appearing in Eqns. 2.12.16. Keeping 
in mind Eqn. 2.12.14, one sees that, for a spatial tensor in terms of covariant components, 
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Other Push-Forward and Pull-Back relations for Vectors and Tensors 
 
Here follow some relations involving the push-forward and pull-backs of tensors. 
 
For two material tensors A and B and two spatial tensors a and b, the scalar product is 
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This scalar product then push-forwards and pull-backs as {▲Problem 1} 
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For material tensor A and material vectors VU, , and spatial tensor a and spatial vectors 

vu, , 
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Then 
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For material tensor A and material vector V, and spatial tensor a and spatial vector v, the 
contractions AV  and av  are 
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and so transform as  
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Finally, for material tensors A, B and spatial tensors a, b,  
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and so  
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Push-Forward and Pull-Back operations for Strain Tensors 
 
The push-forward of the covariant right Cauchy-Green strain and its contravariant inverse are 
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From 2.10.39, ijij gC  , the covariant components of the identity tensor expressed in terms 

of the convected base vectors in the current configuration, i.e. the spatial metric tensor, 
ii

ijg ggg  , and   ijij
gC 1 , the contravariant components of g. Thus the push-forward 

of covariant C is g and the pull-back of covariant g is C, and the push-forward of 
contravariant 1C  is g and the pull-back of contravariant g is 1C : 
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                                  (2.12.53) 

Push-forward of the right Cauchy-Green strain  
 
Similarly, the pull-back of covariant 1b  is G and the push-forward of covariant G is 1b , 
and the pull-back of contravariant b is G and the push-forward of contravariant G is b. 
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                                   (2.12.54) 

Pull-back of the left Cauchy-Green strain  
 
For the covariant form of the Green-Lagrange strain, the push-forward is 

 

  1T
*

 EFFggE ji
ij

b E .                                (2.12.55) 

 
From 2.10.43, ijij eE  , the covariant components of the Euler-Almansi strain tensor, and so 

the push-forward of covariant E is e and the pull-back of covariant e is E. 
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    EeeE   bb 1
** ,  .                                    (2.12.56) 

Push-forward of the Green-Lagrange strain 
Pull-back of the Euler-Almansi strain 

 
 
Push-Forward and Pull-Back with Polar Decomposition Intermediate 
Configurations 
 
Pull backs and push-forwards can be defined relative to any two configurations.  Consider 
the polar decomposition and the intermediate configurations discussed in §2.10 (see Fig. 
2.10.11).  Effectively, we are replacing F with R: pushing forward a material tensor A from 

the reference configuration  iG  to the configuration  iĜ  leads to 
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Note that the result is the same regardless of whether one is using the covariant, contravariant 
or mixed forms. 
 

Similarly, the pull back of a tensor Â  from the intermediate configuration  iĜ  to the 

reference configuration  iG  is 
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The push-forward of a tensor â  from  iĝ  to  g  and the corresponding pull-back of a 

spatial tensor a is 
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The push-forwards and pull-backs due to the stretch tensors are 
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     (2.12.62) 

 
Push-forwards and pull-backs can also be defined using TF  (in the place of F) and these 

move between the intermediate configurations, gG ˆˆ  . 
 
Recall Eqn. 2.10.64, which state that the covariant components of 11 ,,,  vUvU  with respect 

to the bases iiii ggGG ,ˆ,ˆ,  respectively, are equal.  This can be explained also in terms of 

push-forwards and pull-backs.  For example, with TRURv   and T11 RRUv   , one can 
write (in fact these relations are valid for all component types) 
 

       gRGR UvUv ˆ
1

*
1

* ,                                 (2.12.63) 

 
The first of these shows that the components of U with respect to G  are the same as those of 

v with respect to Ĝ  (for all component types).  The second shows that the components of 
1U  with respect to ĝ  are the same as those of 1v  with respect to g. 

 
As another example, with 2UC  , 
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        gUgU gCgC ˆ
#1

*
1

ˆ
1

* ˆ,ˆ    b                              (2.12.64) 
 
 
2.12.3 The Lie Time Derivative 
 
The Lie (time) derivative is a concept of tensor analysis which is used to distinguish 
between the change in some quantity, and the change in that quantity excluding changes due 
to the motion/configuration changes. As mentioned in the introduction to this section, we can 
imagine a hypothetical observer attached to the deforming material, who moves and deforms 
with the material. This observer will see no change in the configuration itself, 0i

i  g g  . 

However, they will still see changes to vectors and tensors. These changes are measured 
using the Lie Derivative, which will be seen to be none other than the convected derivative 
discussed above. 
 
 
Vectors 
 
First, the Lie (time) derivative Lvv  of a vector v is the material derivative holding the 

deformed basis constant, that is, Eqns. 2.12.3: 
 

#

L

L

b i
v i

i
v i

v

v





v g

v g




                                                       (2.12.65) 

 
Formally, it is defined in terms of the pull-back and push-forward, 
 

 1
* *Lv

d

dt
        

v v        The Lie Time Derivative     (2.12.66) 

 
This is illustrated in the Fig. 2.12.3.  The spatial vector is first pulled back to the reference 
configuration, there the differentiation is carried out, where the base vectors are constant, 
then the vector is pushed forward again to the spatial description. 
 

 
 

Figure 2.12.3: The Lie Derivative 
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For covariant components, one first pulls back the vector i

iv g  to i
iv G , the derivative is taken, 

i
iv G , and then it is pushed forward to i

iv g , which is consistent with the definition 2.12.65a.  

The definition 2.12.51 allows one to calculate the Lie derivative in absolute notation: using 
2.12.36a, 2.12.33a, 2.11.9, 
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      (2.12.67) 

 
The Lie derivative for the contravariant components can be calculated in a similar way, and 
in summary (these are simply Eqns. 2.12.6): {▲Problem 2} 
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     Lie Derivatives of Vectors       (2.12.68) 

 
Tensors 
 
The material time derivative of a spatial tensor a is  
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                            (2.12.69) 

 
The Lie (time) derivative avL  is then 
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                                               (2.12.70) 

 
For example, for covariant components, one first pulls back the tensor ji

ija gg   to 
ji

ija GG  , the derivative is taken, ji
ija GG  , and then it is pushed forward to ji

ija gg  .  

Thus, using 2.12.42a, 2.12.42a, 2.11.9,  



Section 2.12 

Solid Mechanics Part III                                                                                Kelly 323

 

 

 
 

1
* *

T T T T 1

T T T T T 1

T

L
b

bb
v

d

dt
  

 

 

      

  

  

  

a a

F F aF F aF F aF F

F F l aF F aF F alF F

l a a al

 





      (2.12.71) 

 
The Lie derivative for the other components can be calculated in a similar way, and in 
summary (these are Eqns. 2.12.14): {▲Problem 3} 
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     Lie Derivatives of Tensors       (2.12.72) 

 
The first of these, T a l a al , is called the Cotter-Rivlin rate. The second of these, 

T a la al , is also called the Oldroyd rate. 
 
Lie Derivatives of Strain Tensors 
 
From 2.5.18,  
 

0bllbb

eleled




T

T




                                                 (2.12.73) 

 
and so the Lie derivative of the covariant form of the Euler-Almansi strain is the rate of 
deformation and the Lie derivative of the contravariant form of the left Cauchy-Green tensor 
is zero.  Further, from 2.12.53a, the Lie derivative of the metric tensor is the push forward of 
the material time derivative of the right Cauchy-Green strain: 

 

 bb
v Cg 

*L  ,                                                    (2.12.74) 

 
Also, directly from 2.11.15, 

 
L 2b

v g d                                                          (2.12.75) 

 
 
Corotational Rates 
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The Lie derivatives in 2.12.72 were derived using pull-backs and push-forwards between the 
reference configuration and the current configuration. If, instead, we relate quantities to the 
rotated intermediate configuration, in other words use R instead of F in the calculations, we 
find that, using Eqn. 2.6.1, T T  RΩ RR RR  , 

 

 1
* *

T T

Lv

d

dt

d

dt

        
      

  R R

a a

R R aR R

a Ω a aΩ

                        (2.12.76) 

 
This is called the Green-Naghdi rate. 
 
Rather than pulling back from the intermediate configuration to the reference configuration, 
we can choose the current configuration to be the reference configuration. Rotating from this 
configuration (see section 2.6.3), RΩ w , the spin tensor, and one obtains the Jaumann 

rate,  a wa aw . 
 
 
Lie Derivatives and Objective Rates 
 
The concept of objectivity was discussed in section 2.8.  Essentially, if two observers are 
rotating relative to each other with rotation  tQ  and both are observing some spatial tensor,  

T as measured by one observer and *T  as measured by the other, then this tensor is objective 
provided * TT QTQ  for all Q, i.e. the measurement of the deformation would be 
independent of the observer. One of the most important uses of the Lie derivative is that Lie 
derivatives of objective spatial tensors are objective spatial tensors.  Thus the rates given in 
2.12.72 are all objective. 
 
For example, suppose we have an objective spatial tensor a, i.e. so that * Ta QaQ . The 

velocity gradient is not objective, and instead satisfies the relation 2.8.27: * T T l QlQ QQ .  

Using the properties of the transpose, the orthogonality of Q, and the identity T T QQ QQ  , 
one has for Eqns. 2.12.72a,b, 
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            (2.12.77) 

 
showing that these rates are indeed objective. 
 
Further, any linear combination of them is objective, for example, 
 

          awwaallaallaallaaalala   TTTT

2

1

2

1
     (2.12.78) 

 
is objective, provided a is.  This is the Jaumann rate introduced in Eqn. 2.8.36 and 
mentioned after Eqn. 2.12.76 above.  Further, as mentioned after Eqn. 2.12.72, the Cotter-
Rivlin rate of Eqn. 2.8.37 is equivalent to Lb

va . 

 
The Lie Derivative and the Directional Derivative 
 
Recall that the material time derivative of a tensor can be written in terms of the directional 
derivative, §2.6.5.  Hence the Lie derivative can also be expressed as 
 

    vTT f
1

**L  v                    (2.12.79) 

 
and hence the subscript v on the L.  Thus one can say that the Lie derivative is the push 
forward of the directional derivative of the material field  T1

*
  in the direction of the 

velocity vector. 
 
 
2.12.4 Problems 
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1. Eqns. 2.12.30 follow immediately from 2.12.29.  However, use Eqns. 2.12.40, 2.12.42, 

i.e.   1T
*

 AFFA b , etc., directly, to verify relations 2.12.45. 
2. Derive the Lie derivatives of a vector v, Eqns. 2.12.68. 
3. Derive the Lie derivatives of a tensor a, Eqns. 2.12.72. 


