Convected Coordinates: Time Rates of Change

In this section, the time derivatives of kinematic tensors described in §2.4-2.6 are now described using convected coordinates.

2.11.1 Deformation Rates

Time Derivatives of the Base Vectors and the Deformation Gradient
The material time derivatives of the material base vectors are zero: $\dot{\mathbf{G}}_{i}=\dot{\mathbf{G}}^{i}=0$. The material time derivatives of the deformed base vectors are, from 2.10.23, (and using $\left.\dot{\mathbf{I}}=d\left(\mathbf{F F}^{-1}\right) / d t=\dot{\mathbf{F}} \mathbf{F}^{-1}+\mathbf{F} \dot{\mathbf{F}}^{-1}\right)$

$$
\begin{align*}
& \dot{\mathbf{g}}_{i}=\dot{\mathbf{F}} \mathbf{G}_{i}=\dot{\mathbf{F}} \mathbf{F}^{-1} \mathbf{g}_{i}=-\mathbf{F} \dot{\mathbf{F}}^{-1} \mathbf{g}_{i} \tag{2.11.1}\\
& \dot{\mathbf{g}}^{i}=\dot{\mathbf{F}}^{-\mathrm{T}} \mathbf{G}^{i}=\dot{\mathbf{F}}^{-\mathrm{T}} \mathbf{F}^{\mathrm{T}} \mathbf{g}^{i}=-\mathbf{F}^{-\mathrm{T}} \dot{\mathbf{F}}^{\mathrm{T}} \mathbf{g}^{i}
\end{align*}
$$

with, again from 2.10.23,

$$
\begin{align*}
\dot{\mathbf{F}} & =\dot{\mathbf{g}}_{i} \otimes \mathbf{G}^{i} \\
\dot{\mathbf{F}}^{-1} & =\mathbf{G}_{i} \otimes \dot{\mathbf{g}}^{i} \\
\dot{\mathbf{F}}^{-\mathrm{T}} & =\dot{\mathbf{g}}^{i} \otimes \mathbf{G}_{i} \tag{2.11.2}\\
\dot{\mathbf{F}}^{\mathrm{T}} & =\mathbf{G}^{i} \otimes \dot{\mathbf{g}}_{i}
\end{align*}
$$

The Velocity Gradient

The velocity gradient is defined by $2.5 .2, \mathbf{l}=\operatorname{grad} \mathbf{v}$, so that, using 1.16.23,

$$
\begin{equation*}
\mathbf{l}=\frac{\partial \mathbf{v}}{\partial \mathbf{x}}=\frac{\partial \mathbf{v}}{\partial x^{i}} \otimes \mathbf{e}^{i}=\frac{\partial \mathbf{v}}{\partial \Theta^{j}} \frac{\partial \Theta^{j}}{\partial x^{i}} \otimes \mathbf{e}^{i}=\frac{\partial \mathbf{v}}{\partial \Theta^{j}} \otimes \mathbf{g}^{j} \tag{2.11.3}
\end{equation*}
$$

Also, from 1.16.19,

$$
\begin{equation*}
\dot{\mathbf{g}}_{i}=\frac{\partial \dot{\mathbf{x}}}{\partial \Theta^{i}}=\frac{\partial \mathbf{v}}{\partial \Theta^{i}} \tag{2.11.4}
\end{equation*}
$$

so that, as an alternative to 2.11.3,

$$
\begin{equation*}
\mathbf{l}=\dot{\mathbf{g}}_{i} \otimes \mathbf{g}^{i} \tag{2.11.5}
\end{equation*}
$$

The components of the spatial velocity gradient are

$$
\begin{align*}
& l_{i j}=\mathbf{g}_{i} \mathbf{l g}_{j}=\mathbf{g}_{i} \cdot \dot{\mathbf{g}}_{j} \\
& l_{\cdot j}^{i}=\mathbf{g}^{i} \mathbf{I} \mathbf{g}_{j}=\mathbf{g}^{i} \cdot \dot{\mathbf{g}}_{j} \tag{2.11.6}\\
& l_{i}^{j}=\mathbf{g}_{i} \mathbf{l g}^{j}=g^{m j} \mathbf{g}_{i} \cdot \dot{\mathbf{g}}_{m}=\mathbf{g}_{i} \cdot \dot{\mathbf{g}}^{j} \\
& l^{i j}=\mathbf{g}^{i} \mathbf{l} \mathbf{g}^{j}=\mathbf{g}^{i} \cdot \dot{\mathbf{g}}^{j}
\end{align*}
$$

Convected Bases

From 2.11.1, 2.11.2 and 2.11.5,

$$
\begin{align*}
\dot{\mathbf{g}}_{i} & =\mathbf{l g}_{i} & \dot{\mathbf{g}}^{i} & =-\mathbf{l}^{\mathrm{T}} \mathbf{g}^{i} \tag{2.11.7}\\
& =\mathbf{g}_{\boldsymbol{i}}{ }^{\mathrm{T}} & & =-\mathbf{g}^{i} \mathbf{l}
\end{align*}
$$

Contracting the first of these with $d \Theta^{i}$ leads to

$$
\begin{equation*}
\dot{\mathbf{g}}_{i} d \Theta^{i}=\lg _{i} d \Theta^{i} \tag{2.11.8}
\end{equation*}
$$

which is equivalent to 2.5.1, $d \mathbf{v}=\mathbf{l} d \mathbf{x}$.

Time Derivatives of the Deformation Gradient in terms of the Velocity Gradient

Eqns. 2.11.2 can also be re-expressed using Eqns. 2.11.7:

$$
\begin{align*}
\dot{\mathbf{F}} & =\dot{\mathbf{g}}_{i} \otimes \mathbf{G}^{i}=\mathbf{g}_{i} \mathbf{l}^{\mathrm{T}} \otimes \mathbf{G}^{i}=\mathbf{l g}_{i} \otimes \mathbf{G}^{i}=\mathbf{l} \mathbf{F} \\
\dot{\mathbf{F}}^{-1} & =\mathbf{G}_{i} \otimes \dot{\mathbf{g}}^{i}=-\mathbf{G}_{i} \otimes \mathbf{g}^{i} \mathbf{l}=-\mathbf{F}^{-1} \mathbf{l} \\
\dot{\mathbf{F}}^{-\mathrm{T}} & =\dot{\mathbf{g}}^{i} \otimes \mathbf{G}_{i}=-\mathbf{g}^{i} \mathbf{l} \otimes \mathbf{G}_{i}=-\mathbf{l}^{\mathrm{T}} \mathbf{g}^{i} \otimes \mathbf{G}_{i}=-\mathbf{l}^{\mathrm{T}} \mathbf{F}^{-\mathrm{T}} \tag{2.11.9}\\
\dot{\mathbf{F}}^{\mathrm{T}} & =\mathbf{G}^{i} \otimes \dot{\mathbf{g}}_{i}=\mathbf{G}^{i} \otimes \mathbf{g}_{i} \mathbf{l}^{\mathrm{T}}=\mathbf{F}^{\mathrm{T}} \mathbf{l}^{\mathrm{T}}
\end{align*}
$$

which are Eqns. 2.5.4-5.
An alternative way of arriving at Eqns. 2.11.7 is to start with Eqns. 2.11.9: the covariant base vectors \mathbf{G}_{i} convect to $\mathbf{g}_{i}(t)$ over time through the time-dependent deformation gradient: $\mathbf{g}_{i}(t)=\mathbf{F}(t) \mathbf{G}_{i}$. For this relation to hold at all times, one must have, from Eqn. 2.11.9b,

$$
\begin{align*}
\dot{\mathbf{G}}_{i}=0 & =\frac{\dot{\mathbf{F}^{-1} \mathbf{g}_{i}}}{} \\
& =\dot{\mathbf{F}}^{-1} \mathbf{g}_{i}+\mathbf{F}^{-1} \dot{\mathbf{g}}_{i} \tag{2.11.10}\\
& =\mathbf{F}^{-1}\left(-\mathbf{l g}_{i}+\dot{\mathbf{g}}_{i}\right)
\end{align*}
$$

Thus, in order to maintain the convection of the tangent basis over time, one requires that

$$
\begin{equation*}
\dot{\mathbf{g}}_{i}=\lg _{i} \tag{2.11.11}
\end{equation*}
$$

The contravariant base vectors \mathbf{G}^{i} transform to $\mathbf{g}^{i}(t)$ over time through the time-dependent inverse transpose of the deformation gradient: $\mathbf{g}^{i}(t)=\mathbf{F}^{-\mathrm{T}}(t) \mathbf{G}^{i}$. For this relation to hold at all times, one must have, from Eqn. 2.11.9d,

$$
\begin{align*}
\dot{\mathbf{G}}^{i}=0 & =\frac{\cdot}{\mathbf{F}^{\mathrm{T}} \mathbf{g}^{i}} \\
& =\dot{\mathbf{F}}^{\mathrm{T}} \mathbf{g}^{i}+\mathbf{F}^{\mathrm{T}} \dot{\mathbf{g}}^{i} \tag{2.11.12}\\
& =\mathbf{F}^{\mathrm{T}}\left(\mathbf{l}^{\mathrm{T}} \mathbf{g}^{i}+\dot{\mathbf{g}}^{i}\right)
\end{align*}
$$

Thus, in order to maintain the convection of the normal basis over time, one requires that

$$
\begin{equation*}
\dot{\mathbf{g}}^{i}=-\mathbf{l}^{\mathrm{T}} \mathbf{g}^{i} \tag{2.11.13}
\end{equation*}
$$

The Rate of Deformation and Spin Tensors

From 2.5.6, $\mathbf{l}=\mathbf{d}+\mathbf{w}$. The covariant components of the rate of deformation and spin are

$$
\begin{align*}
& d_{i j}=\frac{1}{2} \mathbf{g}_{i}\left(\mathbf{l}+\mathbf{l}^{\mathrm{T}}\right) \mathbf{g}_{j}=\frac{1}{2} \mathbf{g}_{i}\left(\dot{\mathbf{g}}_{m} \otimes \mathbf{g}^{m}+\mathbf{g}^{m} \otimes \dot{\mathbf{g}}_{m}\right) \mathbf{g}_{j}=\frac{1}{2}\left(\mathbf{g}_{i} \cdot \dot{\mathbf{g}}_{j}+\dot{\mathbf{g}}_{i} \cdot \mathbf{g}_{j}\right)=\frac{1}{2} \overline{\mathbf{g}_{i} \cdot \mathbf{g}_{j}} \\
& w_{i j}=\frac{1}{2} \mathbf{g}_{i}\left(\mathbf{l}-\mathbf{l}^{\mathrm{T}}\right) \mathbf{g}_{j}=\frac{1}{2} \mathbf{g}_{i}\left(\dot{\mathbf{g}}_{m} \otimes \mathbf{g}^{m}-\mathbf{g}^{m} \otimes \dot{\mathbf{g}}_{m}\right) \mathbf{g}_{j}=\frac{1}{2}\left(\mathbf{g}_{i} \cdot \dot{\mathbf{g}}_{j}-\dot{\mathbf{g}}_{i} \cdot \mathbf{g}_{j}\right) \tag{2.11.14}
\end{align*}
$$

Alternatively, from 2.11.6a,

$$
\begin{align*}
\mathbf{d}=\frac{1}{2}\left(\mathbf{l}+\mathbf{l}^{\mathrm{T}}\right) & =\frac{1}{2}\left(\mathbf{g}_{i} \cdot \dot{\mathbf{g}}_{j}+\dot{\mathbf{g}}_{i} \cdot \mathbf{g}_{j}\right) \mathbf{g}_{i} \otimes \mathbf{g}_{j} \\
& =\frac{1}{2} \overline{\mathbf{g}_{i} \cdot \mathbf{g}_{j}} \mathbf{g}_{i} \otimes \mathbf{g}_{j} \tag{2.11.15}\\
& =\frac{1}{2} \dot{g}_{i j} \mathbf{g}_{i} \otimes \mathbf{g}_{j}
\end{align*}
$$

