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Convected Coordinates: Time Rates of Change 
 
In this section, the time derivatives of kinematic tensors described in §2.4-2.6 are now 
described using convected coordinates. 
 
 
2.11.1 Deformation Rates 
 
Time Derivatives of the Base Vectors and the Deformation Gradient 
 
The material time derivatives of the material base vectors are zero: 0i

i  G G  .  The 

material time derivatives of the deformed base vectors are, from 2.10.23, (and using 
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with, again from 2.10.23, 
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The Velocity Gradient 
 
The velocity gradient is defined by 2.5.2, vl grad , so that, using 1.16.23, 
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Also, from 1.16.19, 
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so that, as an alternative to 2.11.3,  
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The components of the spatial velocity gradient are 
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Convected Bases 
 
From 2.11.1, 2.11.2 and 2.11.5, 
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Contracting the first of these with id  leads to 
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which is equivalent to 2.5.1, xlv dd  . 
 
Time Derivatives of the Deformation Gradient in terms of the Velocity Gradient 
 
Eqns. 2.11.2 can also be re-expressed using Eqns. 2.11.7: 
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which are Eqns. 2.5.4-5. 
 
An alternative way of arriving at Eqns. 2.11.7 is to start with Eqns. 2.11.9: the covariant base 
vectors iG  convect to  i tg  over time through the time-dependent deformation gradient: 

   i it tg F G . For this relation to hold at all times, one must have, from Eqn. 2.11.9b, 
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Thus, in order to maintain the convection of the tangent basis over time, one requires that 



Section 2.11 

Solid Mechanics Part III                                                                                Kelly 306

 

i ig lg                                                            (2.11.11) 

 
The contravariant base vectors iG  transform to  i tg  over time through the time-dependent 

inverse transpose of the deformation gradient:    Ti it tg F G . For this relation to hold at 

all times, one must have, from Eqn. 2.11.9d, 
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Thus, in order to maintain the convection of the normal basis over time, one requires that 
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The Rate of Deformation and Spin Tensors 
 
From 2.5.6, wdl  .  The covariant components of the rate of deformation and spin are 
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                                      (2.11.14) 
 
Alternatively, from 2.11.6a, 
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