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2.10 Convected Coordinates 
 
An introduction to curvilinear coordinate was given in section 1.16, which serves as an 
introduction to this section. As mentioned there, the formulation of almost all mechanics 
problems, and their numerical implementation and solution, can be achieved using a 
description of the problem in terms of Cartesian coordinates. However, use of curvilinear 
coordinates allows for a deeper insight into a number of important concepts and aspects of, in 
particular, large strain mechanics problems. These include the notions of the Push Forward 
operation, Lie derivatives and objective rates. 
 
As will become clear, note that all the tensor relations expressed in symbolic notation already 

discussed, such as CU  , iii nNF ˆ , lFF  , etc., are independent of coordinate system, 

and hold also for the convected coordinates discussed here. 
 
 
2.10.1 Convected Coordinates 
 
In the Cartesian system, orthogonal coordinates ,i iX x  were used.  Here, introduce the 

curvilinear coordinates i .  The material coordinates can then be written as 
 

),,( 321  XX      (2.10.1) 
 
so i

iX EX   and 

 

i
i

i
i ddXd GEX   ,    (2.10.2) 

 
where iG  are the covariant base vectors in the reference configuration, with corresponding 

contravariant base vectors iG , Fig. 2.10.1, with 
 

i
jj

i GG           (2.10.3) 
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Figure 2.10.1: Curvilinear Coordinates 
 
The coordinate curves form a net in the undeformed configuration (over the surfaces of 
constant i ).  One says that the curvilinear coordinates are convected or embedded, that is, 
the coordinate curves are attached to material particles and deform with the body, so that 
each material particle has the same values of the coordinates i  in both the reference and 
current configurations. The covariant base vectors are tangent the coordinate curves. 
 
In the current configuration, the spatial coordinates can be expressed in terms of a new, 
“current”, set of curvilinear coordinates 
 

),,,( 321 t xx ,     (2.10.4) 
 
with corresponding covariant base vectors ig  and contravariant base vectors ig , with 

 

i
i

i
i ddxd gex   ,    (2.10.5) 

 
As the material deforms, the covariant base vectors ig  deform with the body, being 

“attached” to the body. However, note that the contravariant base vectors ig  are not as such 
attached; they have to be re-evaluated at each step of the deformation anew, so as to ensure 
that the relevant relations, e.g. i i

j j g g , are always satisfied. 

 
Example 1 
 
Consider a pure shear deformation, where a square deforms into a parallelogram, as 
illustrated in Fig. 2.10.2. In this scenario, a unit vector 2E  in the “square” gets mapped to a 

vector 2g  in the parallelogram1. The magnitude of 2g  is 1 / sin . 

 

                                                 
1 This differs from the example worked through in section 1.16; there, the vector g2 maintained unit magnitude. 
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Figure 2.10.2: A pure shear deformation 
 
Consider now a parallelogram (initial condition) deforming into a new parallelogram (the 
current configuration), as shown in Fig. 2.10.3. 
 

 
 

Figure 2.10.3: A pure shear deformation of one parallelogram into another 
 
Keeping in mind that the vector 2g  will be of magnitude 1 / sin , the transformation 

equations 2.10.1 for the configurations shown in Fig. 2.10.3 are2 
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                           (2.10.6) 

                                                 
2 Constants have been omitted from these expressions (which represent the translation of the “parallelogram 
origin” from the Cartesian origin). 
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Following on from §1.16, Eqns. 1.16.19, the covariant base vectors are: 
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             (2.10.7) 

 
and the inverse expressions 
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                     (2.10.8) 

 
Line elements in the configurations can now be expressed as 

 
i i i

i ii

i i i
i ii

d
d dX d d

d
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                                   (2.10.9) 

 
The scale factors, i.e. the magnitudes of the covariant base vectors, are (see Eqns. 1.16.36) 
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The contravariant base vectors are (see Eqn. 1.16.23) 
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and the inverse expressions 
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The magnitudes of the contravariant base vectors, are 
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The metric coefficients are (see Eqns. 1.16.27) 
 

2

2

2

2

1 1 1
1 0 0

tan sin tan
1 1 1

0 , 1 0
tan sin tan

0 0 1 0 0 1

1 1 1
1 0 0

tan sin tan

1 1 1
0 , 1 0

tan sin tan

0 0 1 0 0 1

ij i j
ij i j

ij i j
ij i j

G G

g g

  

  

  

  

      
   
            
   
   
      

      
  
          
  
  
     

G G G G

g g g g








    (2.10.14) 

 
The transformation determinants are (consistent with zero volume change), from Eqns. 
1.16.32-34, 
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Example 2 
 
Consider a motion whereby a cube of material, with sides of length 0L , is transformed into a 

cylinder of radius R  and height H , Fig. 2.10.4. 
 

 
 

Figure 2.10.4: a cube deformed into a cylinder 
 
A plane view of one quarter of the cube and cylinder are shown in Fig. 2.10.5. 
 

 
 

Figure 2.10.5: a cube deformed into a cylinder 
 
The motion and inverse motion are given by 
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)(1 xχX  ,          

   

   
303

2221
1

2
02

222101

2

2

x
H

L
X

xx
x

x

R

L
X

xx
R

L
X







       (basis: iE )                 (2.10.17) 

 
Introducing a set of convected coordinates, Fig. 2.10.6, the material and spatial coordinates 
are 
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and (these are simply cylindrical coordinates) 
 

),,( 321  xx ,          
33

212
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x

x
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                                  (2.10.19) 

 
A typical material particle (denoted by p) is shown in Fig. 2.10.6.  Note that the position 
vectors for p have the same i  values, since they represent the same material particle. 
 

 
 

Figure 2.10.6: curvilinear coordinate curves 
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■  
 
 
2.10.2 The Deformation Gradient 
 
With convected curvilinear coordinates, the deformation gradient is 
 

 

1 2 3
1 2 3

1 0 0

0 1 0

0 0 1

i
i

j
i

 

     

 
   
  

F g G

g G g G g G

g G

,                (2.10.20) 

 
The deformation gradient operates on a material vector (with contravariant components) 

i
iVV G , resulting in a spatial tensor i

ivv g  (with the same components iV v ), for 

example, 
 

 i j i
i j id d d d     F X g G G g x          (2.10.21) 

 
To emphasise the point, line elements mapped between the configurations have the same 
coordinates i : a line element 1 2 3

1 2 3d d d    G G G  gets mapped to  

 

  1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3d d d d d d               g G g G g G G G G g g g  

(2.10.22) 
 
This shows also that line elements tangent to the coordinate curves are mapped to new 
elements tangent to the new coordinate curves; the covariant base vectors iG  are a field of 

tangent vectors which get mapped to the new field of tangent vectors ig , as illustrated in Fig. 

2.10.7. 
 

 
 

Figure 2.10.7: Vectors tangent to coordinate curves 
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The deformation gradient F, the transpose TF  and the inverses T1 ,  FF , map the base 

vectors in one configuration onto the base vectors in the other configuration (that the 1F  and 
TF  in this equation are indeed the inverses of F  and TF  follows from 1.16.63): 
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     Deformation Gradient    (2.10.23) 

 
Thus the tensors F  and 1F  map the covariant base vectors into each other, whereas the 
tensors TF  and TF  map the contravariant base vectors into each other, as illustrated in Fig. 
2.10.8. 
 

 
 

Figure 2.10.8: the deformation gradient, its transpose and the inverses 
 
 
It was mentioned above how the deformation gradient maps base vectors tangential to the 
coordinate curves into new vectors tangential to the coordinate curves in the current 
configuration. In the same way, contravariant base vectors, which are normal to coordinate 
surfaces, get mapped to normal vectors in the current configuration. For example, the 
contravariant vector 1G  is normal to the surface of constant 1 , and gets mapped through 

TF  to the new vector 1g , which is normal to the surface of constant 1  in the current 
configuration. 
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Example 1 continued 
 
Carrying on Example 1 from above, in Cartesian coordinates, 4 corners of an initial 
parallelogram (see Fig. 2.10.3) get mapped as follows: 
 

   
   

   
   

0,0 0,0

1,0 1,0

1 / tan ,1 1 / tan ,1

1 1 / tan ,1 1 1 / tan ,1

 

 







  

                                      (2.10.24) 

 
This corresponds to a deformation gradient with respect to the Cartesian bases: 
 

   1
,

0 1 i j i j

 
   
 

F E E e e                                   (2.10.25) 

 
where 
 

1 1

tan tan 
                                               (2.10.26) 

 
From the earlier work with example 1, the deformation gradient can be re-expressed in terms 
of different base vectors: 
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            (2.10.27) 

 
which is Eqn. 2.10.20. 
 
In fact, F can be expressed in a multitude of different ways, depending on which base vectors 
are used. For example, from the above, F can also be expressed as 
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(2.10.28) 
 
 
(This can be verified using Eqn. 2.10.30a below.) 
 
Components of F 
 
The various components of F and its inverses and the transposes, with respect to the different 
bases, are: 
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(2.10.29) 

 
The components of F with respect to the reference bases    ii GG ,  are 
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and similarly for the components with respect to the current bases. 
 
Components of the Base Vectors in different Bases 
 
The base vectors themselves can be expressed alternately: 
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         (2.10.31) 

 
showing that some of the components of the deformation gradient can be viewed also as  
components of the base vectors.  Similarly, 
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For the contravariant base vectors, one has 
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and 
 

    mi
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 TTT                            (2.10.34) 

 
 
2.10.3 Reduction to Material and Spatial Coordinates 
 
Material Coordinates 
 
Suppose that the material coordinates iX  with Cartesian basis are used (rather than the 
convected coordinates with curvilinear basis iG ), Fig. 2.10.9.  Then 
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which are Eqns. 2.2.2, 2.2.4.  Thus xGrad  is the notation for F and gradX  is the notation for 

1F , to be used when the material coordinates iX  are used to describe the deformation. 

 

 
 

Figure 2.10.9: Material coordinates and deformed basis 
 
 
Spatial Coordinates 
 
Similarly, when the spatial coordinates ix  are to be used as independent variables, then 
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The descriptions are illustrated in Fig. 2.10.10.  Note that the base vectors iG , ig  are not the 

same in each of these cases (curvilinear, material and spatial). 
 

 
 

Figure 2.10.10: deformation described using different independent variables 
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2.10.4 Strain Tensors 
 
The Cauchy-Green tensors 
 
The right Cauchy-Green tensor C and the left Cauchy-Green tensor b are defined by Eqns. 
2.2.10, 2.2.13, 
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    (2.10.39) 

 
Thus the covariant components of the right Cauchy-Green tensor are the metric coefficients 

ijg . This highlights the importance of C: the ij i jg  g g  give a clear measure of the 

deformation occurring. (It is possible to evaluate other components of C, e.g. ijC , and also 
its components with respect to the current basis, but only the components ijC  with respect to 

the reference basis are (normally) used in the analysis.)  
 
The Stretch 
 
Now, analogous to 2.2.9, 2.2.12, 
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so that the stretches are, analogous to 2.2.17, 
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The Green-Lagrange and Euler-Almansi Tensors 
 
The Green-Lagrange strain tensor E and the Euler-Almansi strain tensor e are defined 
through 2.2.22, 2.2.24, 
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The components of E and e can be evaluated through (writing IG  , the identity tensor 
expressed in terms of the base vectors in the reference configuration, and Ig  , the identity 
tensor expressed in terms of the base vectors in the current configuration) 
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(2.10.43) 
 
Note that the components of E and e with respect to their bases are equal, ijij eE   (although 

this is not true regarding their other components, e.g. ijij eE  ). 
 
Example 1 continued 
 
Carrying on Example 1 from above, consider now an example vector 
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The contravariant and covariant components are 
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The magnitude of the vector can be calculated through (see Eqn. 1.16.52 and 1.16.49) 
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The new vector is obtained from the deformation gradient: 
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In terms of the contravariant vectors: 
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Note that the contravariant components do not change with the deformation, but the covariant 
components do in general change with the deformation. 
 
The magnitudes of the vectors before and after deformation are given by the Cauchy-Green 
strain tensors, whose coefficients are those of the metric tensors (the first of these is the same 
as 2.10.46) 
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From this, the magnitude of the vector after deformation is 
 

   2 2 2i j
ij x y y x yg V V V V V V V      v v                  (2.10.50) 

 
 
2.10.5 Intermediate Configurations 
 
Stretch and Rotation Tensors 
 
The polar decompositions vRRUF   have been described in §2.2.5.  The decompositions 
are illustrated in Fig. 2.10.11.  In the material decomposition, the material is first stretched by 
U and then rotated by R.  Let the base vectors in the associated intermediate configuration be 
 iĝ .  Similarly, in the spatial decomposition, the material is first rotated by R and then 

stretched by v.  Let the base vectors in the associated intermediate configuration in this case 
be  iG .  Then, analogous to Eqn. 2.10.23, {▲Problem 1} 
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Figure 2.10.11: the material and spatial polar decompositions 
 
 
Note that U and v symmetric, TUU  , Tvv  , so 
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Similarly, for the rotation tensor, with R orthogonal, T1 RR  , 
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The above relations can be checked using Eqns. 2.10.23 and RUF  , vRF  , 11   RFv , 
etc. 
 
Various relations between the base vectors can be derived, for example, 
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                    (2.10.57) 

 
Deformation Gradient Relationship between Bases 
 
The various base vectors are related above through the stretch and rotation tensors.  The 
intermediate bases are related directly through the deformation gradient.  For example, from 
2.10.53a, 2.10.55b, 
 

iiii GFGURUGg ˆˆˆ TT                                      (2.10.58) 

 
In the same way, 
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Tensor Components 
 
The stretch and rotation tensors can be decomposed along any of the bases.  For U the most 
natural bases would be  iG  and  iG , for example, 
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with j
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  ,,, .  One also has 

 



Section 2.10 

Solid Mechanics Part III                                                                                Kelly 298

j
i

j
i

j
ij

ij
i

j
i

j
ii

j
j

i
i
j

m
jimjiij

ji
ij

jijiij
ji

ij

vv

vv

Gvv

vv

GgGvGGGv

gGGvGGGv

gGGvGGGv

gGGvGGGv

ˆˆˆ,ˆˆ

ˆˆˆ,ˆˆ

ˆˆˆˆ,ˆˆ

ˆˆˆ,ˆˆ













                          (2.10.61) 

 
with similar symmetry.  Also, 
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and 
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with similar symmetry.  Note that, comparing 2.10.60a, 2.10.61a, 2.10.62a, 2.10.63a and 
using 2.10.57, 
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Now note that rotations preserve vectors lengths and, in particular, preserve the metric, i.e., 
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                                (2.10.65) 

 
Thus, again using 2.10.57, and 2.10.60-2.10.63, the contravariant components of the above 

tensors are also equal,    ijijijij vvUU 11   . 
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As mentioned, the tensors can be decomposed along other bases, for example, 
 

jijiij
ji

ij vv gGvggggv  ˆ,                                (2.10.66) 

 
 
2.10.6 Eigenvectors and Eigenvalues 
 
Analogous to §2.2.5, the eigenvalues of C are determined from the eigenvalue problem 
 

  0det  IC C                                                  (2.10.67) 

 
leading to the characteristic equation 1.11.5 
 

0IIIIII 23  CCCCCC                                      (2.10.68) 

 
with principal scalar invariants 1.11.6-7 
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    (2.10.69) 

  

The eigenvectors are the principal material directions iN̂ , with 

 

  0NIC  ii
ˆ                                                  (2.10.70) 

 
The spectral decomposition is then 
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2 ˆˆ
i

iii NNC                                                (2.10.71) 

 
where 2

ii  C  and the i  are the stretches.  The remaining spectral decompositions in 

2.2.37 hold also.  Note also that the rotation tensor in terms of principal directions is (see 
2.2.35) 
 

i
ii

i NnNnR ˆˆˆˆ                                                (2.10.72) 

 
where in̂  are the spatial principal directions. 
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2.10.7 Displacement and Displacement Gradients 
 
Consider the displacement u of a material particle.  This can be written in terms of covariant 
components iU  and iu : 

 
i

i
i

i uU gGXxu  .               (2.10.73) 

 
The covariant derivative of u can be expressed as 
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im
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                                           (2.10.74) 

 
The single line refers to covariant differentiation with respect to the undeformed basis, i.e. 
the Christoffel symbols to use are functions of the ijG .  The double line refers to covariant 

differentiation with respect to the deformed basis, i.e. the Christoffel symbols to use are 
functions of the ijg . 

 
Alternatively, the covariant derivative can be expressed as 
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The last equalities following from 2.10.31-32. 
 
The components of the Green-Lagrange and Euler-Almansi strain tensors 2.10.43 can be 
written in terms of displacements using relations 2.10.76 {▲Problem 2}: 
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In terms of spatial coordinates,   j

ij
iii

ii XxX egEG  /,, , j
iji XUU  / , the 

components of the Euler-Lagrange strain tensor are 
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which is 2.2.46.  
 
 
2.10.8 The Deformation of Area and Volume Elements 
 
Differential Volume Element 
 
Consider a differential volume element formed by the elements i

id G in the undeformed 

configuration, Eqn. 1.16.43: 
 

321  dddGdV         (2.10.79) 
 
where, Eqn. 1.16.31,1.16.34, 
 

  jiijij GGG GG  ,det    (2.10.80) 

 
The same volume element in the deformed configuration is determined by the elements 

i
id g : 
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where 
 

  jiijij ggg gg  ,det    (2.8.82) 

 
From 1.16.53 et seq., 2.10.11, 
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        (2.10.83) 

 
where ijk  is the Cartesian permutation symbol, and so the Jacobian determinant is (see 

2.2.53) 
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and Fdet  is the determinant of the matrix with components i

jF . 

 
Differential Area Element 
 
Consider a differential surface (parallelogram) element in the undeformed configuration, 

bounded by two vector elements )1(Xd  and )2(Xd , and with unit normal N̂ .  Then the vector 
normal to the surface element and with magnitude equal to the area of the surface is, using 
1.16.54, given by 
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i ddedddddS GGGXXN G )2()1()2()1()2()1(ˆ           (2.10.85) 

 
where  G

ijke  is the permutation symbol associated with the basis iG , i.e.  

 
  Ge ijkkjiijkijk   GGGG .                                (2.10.86) 

 
Using kk gFG T , one has 
 

kji
ijk ddGdS gFN T)2()1(ˆ                                    (2.10.87) 

 
Similarly, the surface vector in the deformed configuration with unit normal n̂  is 
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j
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i ddeddddds gggxxn g )2()1()2()1()2()1(ˆ            (2.10.88) 

 
where  g

ijke  is the permutation symbol associated with the basis ig , i.e.  

 
  ge ijkkjiijkijk   gggg .                                   (2.10.89) 

 
Comparing the two expressions for the areas in the undeformed and deformed configurations, 
2.10.87-88, one finds that 
 

  dSdS
G

g
ds NFFNFn TT detˆ                                 (2.10.90) 

 
which is Nanson’s relation, Eqn. 2.2.59. This is consistent with was said earlier in relation to 
Fig. 2.10.8 and the contravariant bases: TF  maps vectors normal to the coordinate curves in 
the initial configuration into corresponding vectors normal to the coordinate curves in the 
current configuration. 
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2.10.9 Problems 
 
1. Derive the relations 2.10.51. 
2. Use relations 2.10.76, with jiijg gg   and jiijG GG  , to derive 2.10.77 
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