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2.5 Deformation Rates 
 
In this section, rates of change of the deformation tensors introduced earlier, F, C, E, etc., 
are evaluated, and special tensors used to measure deformation rates are discussed, for 
example the velocity gradient l, the rate of deformation d and the spin tensor w.  
 
 
2.5.1 The Velocity Gradient 
 
The velocity gradient is used as a measure of the rate at which a material is deforming.   
 
Consider two fixed neighbouring points, x and xx d , Fig. 2.5.1.  The velocities of the 
material particles at these points at any given time instant are )(xv  and )( xxv d , and 
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The relative velocity between the points is 
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with l defined to be the (spatial) velocity gradient, 
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Figure 2.5.1: velocity gradient 
 
Expression 2.5.1 emphasises the tensorial character of the spatial velocity gradient, 
mapping as it does one vector into another.  Its physical meaning will become clear when 
it is decomposed into its symmetric and skew-symmetric parts below. 
 
The spatial velocity gradient is commonly used in both solid and fluid mechanics.  Less 
commonly used is the material velocity gradient, which is related to the rate of change of 
the deformation gradient: 
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and use has been made of the fact that, since X and t are independent variables, material 
time derivatives and material gradients commute. 
 
 
2.5.2 Material Derivatives of the Deformation Gradient 
 
The spatial velocity gradient may be written as 
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or 1 FFl   so that the material derivative of F can be expressed as 
 

FlF      Material Time Derivative of the Deformation Gradient     (2.5.4) 
 
Also, it can be shown that {▲Problem 1} 
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2.5.3 The Rate of Deformation and Spin Tensors 
 
The velocity gradient can be decomposed into a symmetric tensor and a skew-symmetric 
tensor as follows (see §1.10.10): 
 

wdl          (2.5.6) 
 
where d is the rate of deformation tensor (or rate of stretching tensor) and w is the 
spin tensor (or rate of rotation, or vorticity tensor), defined by 
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   Rate of Deformation and Spin Tensors  

(2.5.7) 
 
The physical meaning of these tensors is next examined. 
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The Rate of Deformation 
 
Consider first the rate of deformation tensor d and note that 
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The rate at which the square of the length of xd  is changing is then 
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     (2.5.9) 

 

the last equality following from 2.5.6 and 1.10.31e.  Dividing across by 
2

2 xd , then leads 

to 
 

ndn ˆˆ



 Rate of stretching per unit stretch in the direction n̂        (2.5.10) 

 
where Xx dd /  is the stretch and xxn dd /ˆ   is a unit normal in the direction of xd .  

Thus the rate of deformation d gives the rate of stretching of line elements.  The diagonal 
components of d, for example  
 

1111 deed , 
 
represent unit rates of extension in the coordinate directions. 
 
Note that these are instantaneous rates of extension, in other words, they are rates of 
extensions of elements in the current configuration at the current time; they are not a 
measure of the rate at which a line element in the original configuration changed into the 
corresponding line element in the current configuration. 
 
Note: 

 Eqn. 2.5.10 can also be derived as follows: let N̂  be a unit normal in the direction of Xd , and 

n̂  be the corresponding unit normal in the direction of xd .  Then XNFxn dd ˆˆ  , or NFn ˆˆ  . 

Differentiating gives NlFNFnn ˆˆˆˆ     or  nlnn ˆˆˆ   .  Contracting both sides with n̂  

leads to   nlnnnnn ˆˆ/ˆˆˆˆ   .  But 0)ˆˆ(1ˆˆ  dtd nnnn  so, by the chain rule, 0ˆˆ nn   

(confirming that a vector n̂  of constant length is orthogonal to a change in that vector n̂d ), and 
the result follows 

 
Consider now the rate of change of the angle   between two vectors )2()1( , xx dd .  Using 
2.5.8 and 1.10.3d, 
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which reduces to 2.5.9 when )2()1( xx dd  .  An alternative expression for this dot product 
is 
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(2.5.12) 
 
Equating 2.5.11 and 2.5.12 leads to 
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ndn            (2.5.13) 

 

where )()( / ii
i dd Xx  is the stretch and )()( /ˆ ii

i dd xxn   is a unit normal in the 

direction of )(idx . 
 
It follows from 2.5.13 that the off-diagonal terms of the rate of deformation tensor 
represent shear rates: the rate of change of the right angle between line elements aligned 
with the coordinate directions.  For example, taking the base vectors 11 n̂e  , 22 n̂e  , 
2.5.13 reduces to 

 

1212 2

1d                               (2.5.14) 

 
where 12  is the instantaneous right angle between the axes in the current configuration.  
 
The Spin 
 
Consider now the spin tensor w; since it is skew-symmetric, it can be written in terms of 
its axial vector ω  (Eqn. 1.10.34), called the angular velocity vector: 
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(The vector ω2  is called the vorticity (or spin) vector.)  Thus when d is zero, the motion 
consists of a rotation about some axis at angular velocity ω  (cf. the end of §1.10.11), 

with rωv  , r measured from a point on the axis, and vrωwr  . 
 
On the other hand, when dl  , 0w  , one has oω  , and the motion is called 
irrotational. 
 
Example (Shear Flow) 
 
Consider a simple shear flow in which the velocity profile is “triangular” as shown in 
Fig. 2.5.2.  This type of flow can be generated (at least approximately) in many fluids by 
confining the fluid between plates a distance h apart, and by sliding the upper plate over 
the lower one at constant velocity V.  If the material particles adjacent to the upper plate 
have velocity 1eV , then the velocity field is 12ev x , where hV / .  This is a steady 
flow ( / t  v 0 ); at any given point, there is no change over time.  The velocity gradient 
is 21 eel    and the acceleration of material particles is zero:  a lv 0 .  The rate of 
deformation and spin are 
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and, from 2.5.14, 12   , the rate of change of the angle shown in Fig. 2.5.2. 
 

 
 

Figure 2.5.2: shear flow 
 
The eigenvalues of d are 2/,0    ( 0det d ) and the principal invariants, Eqn. 

1.11.17, are 0III,II,0I 2
4
1  ddd  .  For 2/  , the eigenvector is 

 T0111 n  and for 2/  , it is  T0112 n  (for 0  it is 3e ).  (The 

eigenvalues and eigenvectors of w are complex.)  Relative to the basis of eigenvectors, 
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so at 45  there is an instantaneous pure rate of stretching/contraction of material. 
 

■  
 
 
2.5.4 Other Rates of Strain Tensors 
 
From 2.2.9, 2.2.22, 
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This can also be written in terms of spatial line elements: 
 

  xFEFxXEX dddd 1T                            (2.5.17) 
 
But from 2.5.9, these also equal xxddd , which leads to expressions for the material time 
derivatives of the right Cauchy-Green and Green-Lagrange strain tensors (also given here 
are expressions for the time derivatives of the left Cauchy-Green and Euler-Almansi 
tensors {▲Problem 3}) 
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Note that  
 

  EE ddt  

 
so that the integral of the rate of Green-Lagrange strain is path independent and, in 
particular, the integral of E  around any closed loop (so that the final configuration is the 
same as the initial configuration) is zero.  However, in general, the integral of the rate of 
deformation, 
 

dtd  

 
is not independent of the path – there is no universal function h such that dtd /hd   with 

  hd ddt .  Thus the integral dtd  over a closed path may be non-zero, and hence the 

integral of the rate of deformation is not a good measure of the total strain. 
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The Hencky Strain 
 

The Hencky strain is, Eqn. 2.2.37,   


3

1
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i iii nnh  , where in  are the principal 

spatial axes.  Thus, if the principal spatial axes do not change with time, 
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similarly for the corresponding material tensors), 11 ln,ln 
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For example, consider an extension in the coordinate directions, so 
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so iiid  /  (no sum), and hd  .  Further, dt dh .  Note that, as mentioned above, 

this expression does not hold in general, but does in this case of uniform extension. 
 
 
2.5.5 Material Derivatives of Line, Area and Volume Elements 
 
The material derivative of a line element dtdd /)( x  has been derived (defined) through 
2.4.8.  For area and volume elements, it is necessary first to evaluate the material 
derivative of the Jacobian determinant J.  From the chain rule, one has (see Eqns 1.15.11, 
1.15.7) 
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Hence {▲Problem 4} 
 

v

v

l

div

)grad(tr

)(tr

J

J

JJ





      (2.5.20) 

 
Since wdl   and 0tr w , it also follows that dtrJJ  . 
 
As mentioned earlier, an isochoric motion is one for which the volume is constant – thus 
any of the following statements characterise the necessary and sufficient conditions for an 
isochoric motion: 
 

0:,0tr,0div,0,1 T   FFdv JJ         (2.5.21) 
 
Applying Nanson’s formula 2.2.59, the material derivative of an area vector element is 
{▲Problem 6} 
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Finally, from 2.2.53, the material time derivative of a volume element is 
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Example (Shear and Stretch) 
 
Consider a sample of material undergoing the following motion, Fig. 2.4.3. 
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Figure 2.4.3: shear and stretch 
 
The deformation gradient and material strain tensors are 
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the Jacobian  FdetJ , and the spatial strain tensors are 
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This deformation can also be expressed as a stretch followed by a simple shear: 
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The velocity is 
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The velocity gradient is 
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and the rate of deformation and spin are 
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Also 
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As expected, from 2.5.20, 
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2.5.6 Problems 
 
1. (a) Differentiate the relation 1 FFI  and use 2.5.4, FlF  , to derive 2.5.5b, 

lFF 1
.

1   . 
(b) Differentiate the relation TT  FFI  and use 2.5.4, FlF  , and 1.10.3e to derive 

2.5.5c, TT
.

T   FlF . 
2. For the velocity field 

32133
2
222

2
11 3,2, xxxvxxvxxv   

determine the rate of stretching per unit stretch at (2,0,1) in the direction of the unit 
vector 

   5/34 21 ee   

And in the direction of 1e ? 

3. (a)   Derive the relation 2.5.18a, dFFC T2  directly from FFC T  
(b) Use the definitions TFFb   and 2/)( 1 bIe  to derive the relations 

2.5.18c,d: eleldebllbb  TT ,   
4. Use 2.5.4, 2.5.19, 1.10.3h, 1.10.6, to derive 2.5.20.  
5. For the motion 33212

2
11 ,,3 tXxtXXxttXx  , verify that lFF  .  What is 

the ratio of the volume element currently occupying )1,1,1(  to its volume in the 
undeformed configuration?  And what is the rate of change of this volume element, 
per unit current volume? 

6. Use Nanson’s formula 2.2.59, the product rule of differentiation, and 2.5.20, 2.5.5c, 

to derive the material time derivative of a vector area element, 2.5.22 (note that N̂ , 
a unit normal in the undeformed configuration, is constant). 


