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2.3 Deformation and Strain: Further Topics 
 
 
2.3.1 Volumetric and Isochoric Deformations 
 
When analysing materials which are only slightly incompressible, it is useful to 
decompose the deformation gradient multiplicatively, according to 
 

( ) FFIF 3/13/1 JJ ==             (2.3.1) 
 
From this definition {▲Problem 1}, 
 

1det =F             (2.3.2) 
 
and so F  characterises a volume preserving (distortional or isochoric) deformation.  The 
tensor I3/1J  characterises the volume-changing (dilational or volumetric) component of 
the deformation, with ( ) JJ == FI detdet 3/1 . 
 
This concept can be carried on to other kinematic tensors.  For example, with FFC T= ,  
 

CFFC 3/2T3/2 JJ ≡= .    (2.3.3) 
 
F  and C  are called the modified deformation gradient and the modified right 
Cauchy-Green tensor, respectively.  The square of the stretch is given by 
 

{ }XCXXCX ˆˆˆˆ 3/22 ddJdd ==λ     (2.3.4) 
 
so that λλ 3/1J= , where λ  is the modified stretch, due to the action of C .  Similarly, 
the modified principal stretches are 
 

ii J λλ 3/1−= ,     3,2,1=i               (2.3.5) 
 
with 
 

1det 321 == λλλF                                                (2.3.6) 
 
The case of simple shear discussed earlier is an example of an isochoric deformation, in 
which  the deformation gradient and the modified deformation gradient coincide,  

II =3/1J . 
 
 
2.3.2 Relative Deformation 
 
It is usual to use the configuration at )0,( =tX  as the reference configuration, and define 
quantities such as the deformation gradient relative to this reference configuration.  As 
mentioned, any configuration can be taken to be the reference configuration, and a new 
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deformation gradient can be constructed with respect to this new reference configuration.  
Further, the reference configuration does not have to be fixed, but could be moving also. 
 
In many cases, it is useful to choose the current configuration ),( tx  to be the reference 
configuration, for example when evaluating rates of change of kinematic quantities (see 
later).  To this end, introduce a third configuration: this is the configuration at some time 

τ=t  and the position of a material particle X here is denoted by ),(ˆ τXχx = , where χ  is 
the motion function.  The deformation at this time τ  relative to the current configuration 
is called the relative deformation, and is denoted by ),(ˆ )( τxχx t= , as illustrated in Fig. 
2.3.1. 
 

 
 

Figure 2.3.1: the relative deformation 
 
 
The relative deformation gradient tF  is defined through 
 

xxFx dd t ),(ˆ τ= ,       
x
xF
∂
∂

=
ˆ

t           (2.3.7) 

 
Also, since XXFx dtd ),(=  and XXFx dd ),(ˆ τ= , one has the relation 
 

),(),(),( tt XFxFXF ττ =     (2.3.8) 
 
Similarly, relative strain measures can be defined, for example the relative right Cauchy-
Green strain tensor is 
 

( ) ( ) ( )τττ ttt FFC T=      (2.3.9) 
 
Example 
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)1(, 2211 +== tXxeXx t  
 
Inverting these gives the spatial description )1/(, 2211 +== − txXexX t , and the relative 
deformation is 
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The deformation gradients are 
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2.3.3 Derivatives of the Stretch 
 
In this section, some useful formulae involving the derivatives of the stretches with 
respect to the Cauchy-Green strain tensors are derived. 
  
Derivatives with respect to b 
 
First, take the stretches to be functions of the left Cauchy-Green strain b.  Write b using 
the spatial principal directions in̂  as a basis, 2.2.37, so that the total differential can be 
expressed as 
 

[ ]∑
=

⊗+⊗+⊗=
3

1

2 ˆˆˆˆˆˆ2
i

iiiiiiiii dddd nnnnnnb λλλ              (2.3.10) 

 
Since ijji δ=⋅nn ˆˆ , then 
 

[ ] iiiiiiiiiii ddddd λλλλλ 2ˆˆˆˆ2ˆˆ 2 =⋅+⋅+= nnnnnbn  (no sum over i)          (2.3.11) 
 
This last follows since the change in a vector of constant length is always orthogonal to 
the vector itself (as in the curvature analysis of §1.6.2).  Using the property 

)(: vuTuTv ⊗= , one has (summing over the k but not over the i; here ikik dd δλλ =/ ) 
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    (2.3.12) 

 
Then, since bb ∂∂∂∂ /:/ ii λλ  is also equal to 1, one has 
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The chain rule then gives the second derivative. 
 
The above analysis is for distinct principal stretches.  When λλλλ ≡== 321 , then 

Ib 2λ= , Ib λλdd 2= .  Also, ( ) λλ dd ∂∂= /3 bb , so ( ) Ib λλ 2/3 =∂∂ , or  
 

b
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:2:3              (2.3.14) 

 
But 1/:/ =∂∂∂∂ bb λλ  and II :3 = , and so in this case, λλ 2// Ib =∂∂ . 
 
A similar calculation can be carried out for two equal eigenvalues 321 λλλλ ≠== .  In 
summary, 
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          (2.3.15) 

 
Derivatives with respect to C 
 
The stretch can also be considered to be a function of the right Cauchy-Green strain C.  
The derivatives of the stretches with respect to C can be found in exactly the same way as 
for the left Cauchy-Green strain.  The results are the same as given in 2.3.15 except that, 
referring to 2.2.37, b is replaced by C and n̂  is replaced by N̂ . 
 
 
2.3.4 The Directional Derivative of Kinematic Quantities 
 
The directional derivative of vectors and tensors was introduced in §1.6.11 and §1.15.4.  
Taking directional derivatives of kinematic quantities is often very useful, for example in 
linearising equations in order to apply numerical solution algorithms 
 
The Deformation Gradient 
 
First, consider the deformation gradient as a function of the current position x (or motion 
χ ) and examine its value at ax + : 
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[ ] ( )aaFxFaxF x o+∂+=+ )()(                                             (2.3.16) 

 
The directional derivative [ ] ( )axFaFx ∂∂=∂ /  can be expressed as 
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                                              (2.3.17) 

 
the last line resulting from 2.2.8b.  It follows that the directional derivative of the 
deformation gradient in the direction of a displacement vector u from the current 
configuration is 
 

 [ ] ( )FuuFx grad=∂                                                     (2.3.18) 
 
On the other hand, consider the deformation gradient as a function of X and examine its 
value at AX + : 
 

[ ]AFXFAXF X∂+=+ )()(                                             (2.3.19) 
 
and now 
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                                         (2.3.20) 

 
where FAa = . 
 
Other Kinematic Quantities 
 
The directional derivative of the Green-Lagrange strain, the right and left Cauchy-Green 
tensors and the Jacobian in the direction of a displacement u from the current 
configuration are  {▲Problem 2} 
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                                (2.3.21) 

 
where ε  is the small-strain tensor, 2.2.48. 
 
The directional derivative is also useful for deriving various relations between the 
kinematic variables.  For example, for an arbitrary vector a, using the chain rule 1.15.28, 
2.3.20, 1.15.24, the trace relations 1.10.10e and 1.10.10b, and 2.2.8b, 1.14.9,   
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                                            (2.3.22) 

 
so that, from 1.14.16b with a constant, 
 

TdivGrad FJJ =                                             (2.3.23) 
 
 
2.3.5 Problems 
 
1. Use 1.10.16c to show that 1det =F . 
2. (a) use the relation ( )IFFE −= T

2
1 , Eqn. 2.3.18, ( )FuuFx grad][ =∂ , and the product 

rule of differentiation to derive 2.3.21a, εFFuEx
T][ =∂ , where ε  is the small 

strain tensor. 
(b) evaluate [ ]uCx∂  (in terms of F and ε , the small strain tensor) 
(c) evaluate [ ]ubx∂  (in terms of ugrad  and b) 
(d) evaluate [ ]ux J∂  (in terms of J and udiv ; use the chain rule [ ] [ ][ ]uFu xFx ∂∂=∂ JJ ˆ , 

with FF det)(ˆ =J , [ ] uuFx Grad=∂ ) 
 


