1.B Appendix to Chapter 1

1.B. 1 The Ordinary Calculus

Here are listed some important concepts from the ordinary calculus.

The Derivative

Consider u, a function f of one independent variable x. The derivative of u at x is defined by

$$
\begin{equation*}
\frac{d u}{d x} \equiv f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \tag{1.B.1}
\end{equation*}
$$

where Δu is the increment in u due to an increment Δx in x.

The Differential

The differential of u is defined by

$$
\begin{equation*}
d u=f^{\prime}(x) \Delta x \tag{1.B.2}
\end{equation*}
$$

By considering the special case of $u=f(x)=x$, one has $d u=d x=\Delta x$, so the differential of the independent variable is equivalent to the increment. $d x=\Delta x$. Thus, in general, the differential can be written as $d u=f^{\prime}(x) d x$. The differential of u and increment in u are only approximately equal, $d u \approx \Delta u$, and approach one another as $\Delta x \rightarrow 0$. This is illustrated in Fig. 1.B.1.

Figure 1.B.1: the differential
If x is itself a function of another variable, t say, $u(x(t))$, then the chain rule of differentiation gives

$$
\begin{equation*}
\frac{d u}{d t}=f^{\prime}(x) \frac{d x}{d t} \tag{1.B.3}
\end{equation*}
$$

Arc Length

The length of an arc, measured from a fixed point a on the arc, to x, is, from the definition of the integral,

$$
\begin{equation*}
s=\int_{a}^{x} d s=\int_{a}^{x} \sec \psi d x=\int_{a}^{x} \sqrt{1+(d y / d x)^{2}} d x \tag{1.B.4}
\end{equation*}
$$

where ψ is the angle the tangent to the arc makes with the x axis, Fig 1.B.2, with $(d y / d x)=\tan \psi$ and $(d s)^{2}=(d x)^{2}+(d y)^{2}$ (ds is the length of the dotted line in Fig. 1.B.2b). Also, it can be seen that

$$
\begin{align*}
\lim _{\Delta s \rightarrow 0} \frac{|p q|_{\text {chord }}}{|p q|_{\text {arc }}} & =\lim _{\Delta s \rightarrow 0} \frac{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{\Delta s} \\
& =\lim _{\Delta s \rightarrow 0} \sqrt{\left(\frac{\Delta x}{\Delta s}\right)^{2}+\left(\frac{\Delta y}{\Delta s}\right)^{2}} \tag{1.B.5}\\
& =\sqrt{\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}}=1
\end{align*}
$$

so that, if the increment Δs is small, $(\Delta s)^{2} \approx(\Delta x)^{2}+(\Delta y)^{2}$.

Figure 1.B.2: arc length

The Calculus of Two or More Variables

Consider now two independent variables, $u=f(x, y)$. We can define partial derivatives so that, for example,

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\left.\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}\right|_{y \text { constant }}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \tag{1.B.6}
\end{equation*}
$$

The total differential $d u$ due to increments in both x and y can in this case be shown to be

$$
\begin{equation*}
d u=\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y \tag{1.B.7}
\end{equation*}
$$

which is written as $d u=(\partial u / \partial x) d x+(\partial u / \partial y) d y$, by setting $d x=\Delta x, d y=\Delta y$. Again, the differential $d u$ is only an approximation to the actual increment Δu (the increment and differential are shown in Fig. 1.B. 3 for the case $d y=\Delta y=0$).

It can be shown that this expression for the differential $d u$ holds whether x and y are independent, or whether they are functions themselves of an independent variable t, $u \equiv u(x(t), y(t))$, in which case one has the total derivative of u with respect to t,

$$
\begin{equation*}
\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t} \tag{1.B.8}
\end{equation*}
$$

Figure 1.B.3: the partial derivative

The Chain rule for Two or More Variables

Consider the case where u is a function of the two variables $x, y, u=f(x, y)$, but also that x and y are functions of the two independent variables s and $t, u=f(x(s, t), y(s, t))$. Then

$$
\begin{align*}
d u & =\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y \\
& =\frac{\partial u}{\partial x}\left(\frac{\partial x}{\partial s} d s+\frac{\partial x}{\partial t} d t\right)+\frac{\partial u}{\partial y}\left(\frac{\partial y}{\partial s} d s+\frac{\partial y}{\partial t} d t\right) \tag{1.B.9}\\
& =\left(\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}\right) d s+\left(\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}\right) d t
\end{align*}
$$

But, also,

$$
\begin{equation*}
d u=\frac{\partial u}{\partial s} d s+\frac{\partial u}{\partial t} d t \tag{1.B.10}
\end{equation*}
$$

Comparing the two, and since $d s, d t$ are independent and arbitrary, one obtains the chain rule

$$
\begin{align*}
& \frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t} \tag{1.B.11}
\end{align*}
$$

In the special case when x and y are functions of only one variable, t say, so that $u=f[x(t), y(t)]$, the above reduces to the total derivative given earlier.

One can further specialise: In the case when u is a function of x and t, with $x=x(t)$, $u=f[x(t), t]$, one has

$$
\begin{equation*}
\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial t} \tag{1.B.12}
\end{equation*}
$$

When u is a function of one variable only, x say, so that $u=f[x(t)]$, the above reduces to the chain rule for ordinary differentiation.

Taylor's Theorem

Suppose the value of a function $f(x, y)$ is known at $\left(x_{0}, y_{0}\right)$. Its value at a neighbouring point $\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ is then given by

$$
\begin{align*}
f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)= & f\left(x_{0}, y_{0}\right)+\left(\left.\Delta x \frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}+\left.\Delta y \frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}\right) \\
& +\frac{1}{2}\left(\left.(\Delta x)^{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}+\left.\Delta x \Delta y \frac{\partial^{2} f}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)}+\left.(\Delta x)^{2} \frac{\partial^{2} f}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)}\right)+\cdots \tag{1.B.13}
\end{align*}
$$

The Mean Value Theorem

If $f(x)$ is continuous over an interval $a<x<b$, then

$$
\begin{equation*}
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} \tag{1.B.14}
\end{equation*}
$$

Geometrically, this is equivalent to saying that there exists at least one point in the interval for which the tangent line is parallel to the line joining $f(a)$ and $f(b)$. This result is known as the mean value theorem.

Figure 1.B.4: the mean value theorem
The law of the mean can also be written in terms of an integral: there is at least one point ξ in the interval $[a, b]$ such that

$$
\begin{equation*}
f(\xi)=\frac{1}{l} \int_{a}^{b} f(x) d x \tag{1.B.15}
\end{equation*}
$$

where l is the length of the interval, $l=b-a$. The right hand side here can be interpreted as the average value of f over the interval. The theorem therefore states that the average value of the function lies somewhere in the interval. The equivalent expression for a double integral is that there is at least one point $\left(\xi_{1}, \xi_{2}\right)$ in a region R such that

$$
\begin{equation*}
f\left(\xi_{1}, \xi_{2}\right)=\frac{1}{A} \iint_{R} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{1.B.16}
\end{equation*}
$$

where A is the area of the region of integration R, and similarly for a triple/volume integral.

1.B. 2 Transformation of Coordinate System

Let the coordinates of a point in space be $\left(x_{1}, x_{2}, x_{3}\right)$. Introduce a second set of coordinates $\left(\Theta_{1}, \Theta_{2}, \Theta_{3}\right)$, related to the first set through the transformation equations

$$
\begin{equation*}
\Theta_{i}=f_{i}\left(x_{1}, x_{2}, x_{3}\right) \tag{1.B.17}
\end{equation*}
$$

with the inverse equations

$$
\begin{equation*}
x_{i}=g_{i}\left(\Theta_{1}, \Theta_{2}, \Theta_{3}\right) \tag{1.B.18}
\end{equation*}
$$

A transformation is termed an admissible transformation if the inverse transformation exists and is in one-to-one correspondence in a certain region of the variables (x_{1}, x_{2}, x_{3}), that is, each set of numbers $\left(\Theta_{1}, \Theta_{2}, \Theta_{3}\right)$ defines a unique set $\left(x_{1}, x_{2}, x_{3}\right)$ in the region, and vice versa.

Now suppose that one has a point with coordinates x_{i}^{0}, Θ_{i}^{0} which satisfy 1.B.17. Eqn. 1.B. 17 will be in general non-linear, but differentiating leads to

$$
\begin{equation*}
d \Theta_{i}=\frac{\partial f_{i}}{\partial x_{j}} d x_{j} \tag{1.B.19}
\end{equation*}
$$

which is a system of three linear equations. From basic linear algebra, this system can be solved for the $d x_{j}$ if and only if the determinant of the coefficients does not vanish, i.e

$$
\begin{equation*}
J=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{j}}\right] \neq 0, \tag{1.B.20}
\end{equation*}
$$

with the partial derivatives evaluated at x_{i}^{0} (the one dimensional situation is shown in Fig. 1.B.5). If $J \neq 0$, one can solve for the $d x_{i}$:

$$
\begin{equation*}
d x_{i}=A_{i j} d \Theta_{j}, \tag{1.B.21}
\end{equation*}
$$

say. This is a linear approximation of the inverse equations 1.B. 18 and so the inverse exists in a small region near $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. This argument can be extended to other neighbouring points and the region in which $J \neq 0$ will be the region for which the transformation will be admissible.

If the Jacobian is positive everywhere, then a right handed set will be transformed into another right handed set, and the transformation is said to be proper.

Figure 1.B.5: linear approximation

