Section 1.B

1.B Appendix to Chapter 1

1.B.1 The Ordinary Calculus
Here are listed some important concepts from the ordinary calculus.
The Derivative

Consider u, a function f of one independent variable x. The derivative of u at x is defined
by

du f(x+Ax)— f(x)

e f’(x)=|imAH0%=IimAHO - (LB.1)
where Au is the increment in u due to an increment Ax in x.
The Differential
The differential of u is defined by
du = f'(x)Ax (1.B.2)

By considering the special case of u = f(x) = x, one has du = dx = Ax, so the
differential of the independent variable is equivalent to the increment. dx = Ax. Thus, in
general, the differential can be written as du = f'(x)dx. The differential of u and
increment in u are only approximately equal, du ~ Au, and approach one another as

Ax — 0. This s illustrated in Fig. 1.B.1.

u !/
p slope F(%) " differential du
]increment Au = f(X+ Ax) — f(x)
dx = AX
X dx + Ax "

Figure 1.B.1: the differential

If x iis itself a function of another variable, t say, u(x(t)), then the chain rule of
differentiation gives
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du dx
—=f'(x)— 1.B.3
o ( )GIt ( )

Arc Length

The length of an arc, measured from a fixed point a on the arc, to x, is, from the definition
of the integral,

S =_|X'ds =j'seCy/dx=JX'\/l+(dy/dx)2dx (1.B.4)

where  is the angle the tangent to the arc makes with the x axis, Fig 1.B.2, with
(dy/dx) =tany and (ds)* = (dx)* +(dy)* (ds is the length of the dotted line in Fig.
1.B.2b). Also, it can be seen that

2 2
I|m |pq|chord — ||m (AX) + (Ay)
As—0 |pq|arc As—0 AS

~ lim \/(ﬂjz +(ﬂjz (LB.5)
As—0 AS AS
@
ds ds

so that, if the increment As is small, (As)® ~ (Ax)* +(Ay)’.

dx = AX
(@) (b)

Figure 1.B.2: arc length
The Calculus of Two or More Variables

Consider now two independent variables, u = f(x,y). We can define partial
derivatives so that, for example,
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ou . Au . f(x+Ax,y) - (X,
&ZIImAx—)O_ :“mAx—>0 ( Ay: ( y)

y constant

(1.B.6)

The total differential du due to increments in both x and y can in this case be shown to
be

du =—Ax+—Ay (1.B.7)
oy

which is written as du = (du/ox)dx + (éu/dy)dy , by setting dx = Ax,dy = Ay. Again,
the differential du is only an approximation to the actual increment Au (the increment
and differential are shown in Fig. 1.B.3 for the case dy = Ay =0).

It can be shown that this expression for the differential du holds whether x and y are
independent, or whether they are functions themselves of an independent variable t,
u = u(x(t), y(t)), in which case one has the total derivative of u with respect to t,

du odudx oudy
=t

= (1.B.8)
dt  ox dt oy dt

u ou
slope —
OX

\I@ncrement AU

dx = Ax

differential du

X

Figure 1.B.3: the partial derivative

The Chain rule for Two or More Variables

Consider the case where u is a function of the two variables x,y, u= f(x,y), but also

that x and y are functions of the two independent variables s and t, u = f(x(s,t), y(s,t)).
Then
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du = Max+ Moy
OX oy
:a—“(ﬁd —dtJ [ayds & dtj (LB.9)
ox \ 0 0 oy \ o ot
au Ox auay ds + a_uax ou oy dt
X as oy 0s ox ot oy ot
But, also,
du= M s+ Mgt (1.B.10)
oS ot

Comparing the two, and since ds,dt are independent and arbitrary, one obtains the chain
rule

u_ouox audy
0S Ox0s oy os
u_ouax audy
ot oxot oy ot

(1.B.11)

In the special case when x and y are functions of only one variable, t say, so that
u = f[x(t), y(t)], the above reduces to the total derivative given earlier.

One can further specialise: In the case when u is a function of x and t, with x = x(t),

u = f[x(t),t], one has
du_oudx, o (1.B.12)
dt  oxdt ot

When u is a function of one variable only, x say, so that u = f[x(t)], the above reduces to
the chain rule for ordinary differentiation.

Taylor’'s Theorem

of

Suppose the value of a function f(x,y) is known at (x,,Y,). Its value at a neighbouring
f(X, +AX, Y, +AY) = T(X,,Y,) + Axaf + Ay
0 1Yo - 0' Yo Ay A
aX (%0:Y0) ay
o*f
+=| (Ax)
[( v o

point (x, +AX, Yy, +Ay) is then given by
(Xov)’o)]
2

+ AXAyY ot

2
+(Ax)’ ot
(%0.¥0) axay

ayZ

}
(X0.Yo)

(1.B.13)

(%0.Y0)
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The Mean Value Theorem

If f(x) is continuous over an interval a < x <b, then

f'(£) = w (1.B.14)

Geometrically, this is equivalent to saying that there exists at least one point in the

interval for which the tangent line is parallel to the line joining f(a) and f(b). This
result is known as the mean value theorem.

f(b)

Figure 1.B.4: the mean value theorem

The law of the mean can also be written in terms of an integral: there is at least one point
& in the interval [a,b] such that

f(&) = %i f (x)dx (1.B.15)

a

where | is the length of the interval, | =b —a. The right hand side here can be interpreted
as the average value of f over the interval. The theorem therefore states that the average
value of the function lies somewhere in the interval. The equivalent expression for a
double integral is that there is at least one point (£,,&,) in a region R such that

() =5 [ 100 1o, (LB.16)

where A is the area of the region of integration R, and similarly for a triple/volume
integral.
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1.B.2 Transformation of Coordinate System

Let the coordinates of a point in space be (x,,X,,x,). Introduce a second set of
coordinates (®,,0,,0,), related to the first set through the transformation equations

0, = f,(x,%,,X;) (1.B.17)
with the inverse equations
X, =9,(0,,0,,0,) (1.B.18)

A transformation is termed an admissible transformation if the inverse transformation
exists and is in one-to-one correspondence in a certain region of the variables (x,,X,, X;),

that is, each set of numbers (®,,0,,0,) defines a unique set (x,, X,,, ) in the region,
and vice versa.

Now suppose that one has a point with coordinates x°, ®’ which satisfy 1.B.17. Eqn.
1.B.17 will be in general non-linear, but differentiating leads to
of.

4o, == dx,, (1.B.19)
X;

which is a system of three linear equations. From basic linear algebra, this system can be
solved for the dx; if and only if the determinant of the coefficients does not vanish, i.e

J= det[aai} 20, (1.B.20)

X

with the partial derivatives evaluated at x° (the one dimensional situation is shown in
Fig. 1.B.5). If J # 0, one can solve for the dx;:

dx, = A,dO (1B.22)

say. This is a linear approximation of the inverse equations 1.B.18 and so the inverse
exists in a small region near (x,x?,x?). This argument can be extended to other

neighbouring points and the region in which J = 0 will be the region for which the
transformation will be admissible.

If the Jacobian is positive everywhere, then a right handed set will be transformed into
another right handed set, and the transformation is said to be proper.
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linear

/ approximation

dx

|

o F

X

Figure 1.B.5: linear approximation
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