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1.B Appendix to Chapter 1 
 
 
1.B.1 The Ordinary Calculus 
 
Here are listed some important concepts from the ordinary calculus. 
 
The Derivative 
 
Consider u, a function f of one independent variable x.  The derivative of u at x is defined 
by 
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where u  is the increment in u due to an increment x  in x. 
 
The Differential 
 
The differential of u is defined by 
 

xxfdu  )(                                                  (1.B.2) 
 
By considering the special case of xxfu  )( , one has xdxdu  , so the 
differential of the independent variable is equivalent to the increment. xdx  .  Thus, in 
general, the differential can be written as dxxfdu )( .  The differential of u and 
increment in u are only approximately equal, udu  , and approach one another as 

0x .  This is illustrated in Fig. 1.B.1. 
 

 
 

Figure 1.B.1: the differential 
 
If x is itself a function of another variable, t say,   txu , then the chain rule of 
differentiation gives 
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Arc Length 
 
The length of an arc, measured from a fixed point a on the arc, to x, is, from the definition 
of the integral, 
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where   is the angle the tangent to the arc makes with the x axis, Fig 1.B.2, with 

tan)/( dxdy  and      222 dydxds   ( ds  is the length of the dotted line in Fig. 
1.B.2b).  Also, it can be seen that 
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so that, if the increment s  is small,      222 yxs  . 
 

 
 

Figure 1.B.2: arc length 
 
The Calculus of Two or More Variables 
 
Consider now two independent variables, ),( yxfu  .  We can define partial 
derivatives so that, for example, 
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The total differential du  due to increments in both x and y can in this case be shown to 
be 
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which is written as    dyyudxxudu  // , by setting ydyxdx  , .   Again, 
the differential du  is only an approximation to the actual increment u  (the increment 
and differential are shown in Fig. 1.B.3 for the case 0 ydy ). 
 
It can be shown that this expression for the differential du  holds whether x and y are 
independent, or whether they are functions themselves of an independent variable t, 

 )(),( tytxuu  , in which case one has the total derivative of u with respect to t, 
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Figure 1.B.3: the partial derivative 
 
 
The Chain rule for Two or More Variables 
 
Consider the case where u is a function of the two variables yx, , ),( yxfu  , but also 

that x and y are functions of the two independent variables s and t,     tsytsxfu ,,, .  
Then 
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But, also, 
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Comparing the two, and since dtds,  are independent and arbitrary, one obtains the chain 
rule 
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In the special case when x and y are functions of only one variable, t say, so that 

 )(),( tytxfu  , the above reduces to the total derivative given earlier. 
 
One can further specialise:  In the case when u is a function of x and t, with )(txx  , 

 ttxfu ),( , one has 
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When u is a function of one variable only, x say, so that  )(txfu  , the above reduces to 
the chain rule for ordinary differentiation. 
 
Taylor’s Theorem 
 
Suppose the value of a function ),( yxf  is known at ),( 00 yx .  Its value at a neighbouring 

point ),( 00 yyxx   is then given by 
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The Mean Value Theorem 
 
If )(xf  is continuous over an interval bxa  , then 
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Geometrically, this is equivalent to saying that there exists at least one point in the 
interval for which the tangent line is parallel to the line joining )(af  and )(bf .  This 
result is known as the mean value theorem. 
 

  
 

Figure 1.B.4: the mean value theorem 
 
The law of the mean can also be written in terms of an integral: there is at least one point 
  in the interval  ba,  such that 
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where l is the length of the interval, abl  .  The right hand side here can be interpreted 
as the average value of f over the interval.  The theorem therefore states that the average 
value of the function lies somewhere in the interval.  The equivalent expression for a 
double integral is that there is at least one point  21 ,  in a region R such that 
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where A is the area of the region of integration R, and similarly for a triple/volume 
integral. 
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1.B.2 Transformation of Coordinate System 
 
Let the coordinates of a point in space be  321 ,, xxx .  Introduce a second set of 

coordinates  321 ,,  , related to the first set through the transformation equations 

 
 321 ,, xxxfii      (1.B.17) 

 
with the inverse equations 
 

 321 ,,  ii gx     (1.B.18) 

  
A transformation is termed an admissible transformation if the inverse transformation 
exists and is in one-to-one correspondence in a certain region of the variables  321 ,, xxx , 

that is,  each set of numbers  321 ,,   defines a unique set  321 ,, xxx  in the region, 

and vice versa.   
 
Now suppose that one has a point with coordinates 0

ix , 0
i  which satisfy 1.B.17.  Eqn. 

1.B.17 will be in general non-linear, but differentiating leads to 
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which is a system of three linear equations.  From basic linear algebra, this system can be 
solved for the jdx  if and only if the determinant of the coefficients does not vanish, i.e 
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with the partial derivatives evaluated at 0

ix  (the one dimensional situation is shown in 

Fig. 1.B.5).  If 0J , one can solve for the idx : 

 

jiji dAdx  ,                                            (1.B.21) 

 
say.  This is a linear approximation of the inverse equations 1.B.18 and so the inverse 
exists in a small region near  0

3
0
2

0
1 ,, xxx .  This argument can be extended to other 

neighbouring points and the region in which 0J  will be the region for which the 
transformation will be admissible.  
 
If the Jacobian is positive everywhere, then a right handed set will be transformed into 
another right handed set, and the transformation is said to be proper. 
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Figure 1.B.5: linear approximation 
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