Section 1.19

1.19 Curvilinear Coordinates: Curved Geometries

In this section is examined the special case of a two-dimensional curved surface.

1.19.1 Monoclinic Coordinate Systems
Base Vectors

A curved surface can be defined using two covariant base vectors a,, a,, with the third
base vector, a,, everywhere of unit size and normal to the other two, Fig. 1.19.1 These

base vectors form a monoclinic reference frame, that is, only one of the angles between
the base vectors is not necessarily a right angle.

Figure 1.19.1: Geometry of the Curved Surface

In what follows, in the index notation, Greek letters such as «, f take values 1 and 2; as
before, Latin letters take values from 1..3.

Since a’ =a, and
a, =0, a“=a"-a’=0 (1.19.1)

the determinant of metric coefficients is

g1 & O ! g” glz 0
JP=lgy gn 0, 7=g21 g”? 0 (1.19.2)
0 0 1 0 0 1

The Cross Product

Particularising the results of §1.16.10, define the surface permutation symbol to be the
triple scalar product
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1
e, =2, a,xa; =6,.g, eV =a"-a"xa’=¢"— (1.19.3)
g

where ¢, = £ is the Cartesian permutation symbol, &, =+1, &,, =—1, and zero

otherwise, with

e’e, =c"¢,, ePe, =0L6-505" =ee,, (1.19.4)
From 1.19.3,
a,xa;=e,a’
(1.19.5)
a’xa’ =e”a,
and so
a, =27 (1.19.6)

Ve

The cross product of surface vectors, that is, vectors with component in the normal (g, )
direction zero, can be written as

1 2
u' u
uxv=e, u"v'a’=g|"  |a’
(1.19.7)
1 [u, u
o 1 Uy
=eu,v,a, =—

V&IV V2

The Metric and Surface elements

Considering a line element lying within the surface, so that ®° = 0, the metric for the
surface is

(As) = ds-ds = (d®“a, )-(d®%a , )= g,,dO" dO" (1.19.8)
which is in this context known as the first fundamental form of the surface.
Similarly, from 1.16.41, a surface element is given by
AS = [gAO'AG? (1.19.9)
Christoffel Symbols

The Christoffel symbols can be simplified as follows. A differentiation of a,-a, =1
leads to
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a;,-a;=-a,, -a, (1.19.10)
so that, from Eqn 1.18.6,
[ =1, =0 (1.19.11)
Further, since da, /00’ =0,
I,, =0, I,;;=0 (1.19.12)

These last two equations imply that the I';, vanish whenever two or more of the

subscripts are 3.
Next, differentiate 1.19.1 to get

3 3
a,,-a;,=-a,,-a,, a“p-a =-ag-a’ (1.19.13)

and Eqns. 1.18.6 now lead to

T =gy =—Topp =T, (1.19.14)
From 1.18.8, using 1.19.11,
Fos =Top8” + T8 =T (1.19.15)
Iy, =Ty,,8" +T,,,8" =T,,, =0
and, similarly { A Problem 1}
[, =T%=I, =0 (1.19.16)

1.19.2 The Curvature Tensor

In this section is introduced a tensor which, with the metric coefficients, completely
describes the surface.

First, although the base vector a; maintains unit length, its direction changes as a

function of the coordinates ®',®°, and its derivative is, from 1.18.2 or 1.18.5 (and using
1.19.15)

oa’
00“

oa,
00“

=Tj,a, =TLa,, =-T}a" =T’ (1.19.17)

Define now the curvature tensor K to have the covariant components X ,, through
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oa,
=K’ 1.19.18
00 (1.19.18)
and it follows from 1.19.13, 1.19.15a and 1.19.14,

K.y =T =T, =Ty, (1.19.19)

and, since these Christoffel symbols are symmetric in the «, 5, the curvature tensor is

symmetric.

The mixed and contravariant components of the curvature tensor follows from 1.16.58-9:

K =¢g"K, =g,K"”, K”=g"g"K,

oa , , (1.19.20)
8@3“ =-K,a" =-K,_g"a =-Ka,

and the “dot” is not necessary in the mixed notation because of the symmetry property.
From these and 1.18.8, it follows that

K =g"K,=-g"T,, =Tt =-T% (1.19.21)

3y —
Also,

a5~ o, 40" ) (40",
= Kayd®“a7)~(d®ﬁaﬂ) (1.19.22)
=-K,,d®"de’

which is known as the second fundamental form of the surface.

From 1.19.19 and the definitions of the Christoffel symbols, 1.18.4, 1.18.6, the curvature
can be expressed as

oa oa

a

_—a@—;-aa (1.19.23)

showing that the curvature is a measure of the change of the base vector a_, along the ®”

curve, in the direction of the normal vector; alternatively, the rate of change of the normal
vector along ®” , in the direction —a_. Looking at this in more detail, consider now the

change in the normal vector a, in the ®' direction, Fig. 1.19.2. Then

da, =a, d®' =-K/dO'a, (1.19.24)
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Figure 1.19.2: Curvature of the Surface

Taking the case of K| # 0, K =0, one has da, = —K/d®'a,. From Fig. 1.19.2, and
since the normal vector is of unit length, the magnitude |da3| equals d¢, the small angle

through which the normal vector rotates as one travels along the ®' coordinate curve.
The curvature of the surface is defined to be the rate of change of the angle ¢:!

dp |-Kldo'a

o= o] =|&}| (1.19.25)

and so the mixed component K| is the curvature in the ®' direction. Similarly, K is

the curvature in the ®* direction.

Assume now that K| =0, K7 # 0. Eqn. 1.19.24 now reads da, = —K;d®'a, and,
referring Fig. 1.19.3, the twist of the surface with respect to the coordinates is

d_go ‘ Ka’@a‘ ‘ ‘|a2
ds ‘d@al‘

(1.19.26)
[a,|

Figure 1.19.3: Twisting over the Surface

K 12‘ i K} ‘ is closely related to the

twist.

! this is essentially the same definition as for the space curve of §1.6.2; there, the angle ¢ = xAs
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Two important quantities are often used to describe the curvature of a surface. These are
the first and the third principal scalar invariants:

I, =K. =K +K;
Kl K,

2
2 2
1 2

(1.19.27)

I =detK’ = = K|K; —-K,K} =¢,K'K}

The first invariant is twice the mean curvature K,, whilst the third invariant is called
the Gaussian curvature (or Total curvature) K of the surface.

Example (Curvature of a Sphere)

The surface of a sphere of radius a can be described by the coordinates (@)1 ,0° ), Fig.
1.19.4, where

x' =asin®' cos®?, x* =asin®'sin®?, x’ =acos®'

X
@1
a2
a
0’ o ’
// !
,\l}a i
4 1
4 a
— i 1 xZ
® N

Figure 1.19.4: a spherical surface

Then, from the definitions 1.16.19, 1.16.27-28, 1.16.34, { AProblem 2}

a, =+acos®' cos@’e, +acos®'sin®’e, —asin@'e,
a, =—asin®'sin®’e, +asin®' cosO’e,

NI (1.19.28)

al=——— 2
. 2
a’sin’ @'
2
a 0

4 2 I
s b g=a"sin" O
0 a“sin“®

gaﬂ =

From 1.19.6,

a, =sin®' cos®’e, +sin®'sin®’e, +cosO'e, (1.19.29)
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and this is clearly an orthogonal coordinate system with scale factors
h =a, h,=asin®', h =1 (1.19.30)

The surface Christoffel symbols are, from 1.18.33, 1.18.36,

1
[ =r =T =12 212 20, 12212229 [ __ 616 coso'
11 12 21 11 22 12 21 Sln2 ®] 22
(1.19.31)
Using the definitions 1.18.4, { A Problem 3}
1 1 1 1 1
I =15 =;’ Iy =T15=0
1
r;=r;=0, I,,=0;= - (1.19.32)
[=-a, T)=T;=0, I, =-asin’@®'
with the remaining symbols I}, =T, =T =T3, =0.
The components of the curvature tensor are then, from 1.19.21, 1.19.19,
1
ke]=| @ " k)=~ ° (1.19.33)
r o _1f #1710 —gsin?@' o
a
The mean and Gaussian curvature of a sphere are then
Ky =2
a
i (1.19.34)
KG = a—2

The principal curvatures are evidently K| and K. As expected, they are simply the
reciprocal of the radius of curvature a.

||
1.19.3 Covariant Derivatives
Vectors

Consider a vector v, which is not necessarily a surface vector, that is, it might have a
normal component v, =v°. The covariant derivative is
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a a a

\% |ﬂ: v +F;‘;v7 +1"3ﬁv3 v, |,6: Vo _rgﬂvy _rjﬂVS
Ve |p= Va,3 +F;{3Vy +F;§v3 Vo 3= Vg3 _F(zSV;/ —Fj3v3
:Va,S + T4y , =v,; -, (1.19.35)
v ,=v 4T+ Vi lo= Vi —T5v, =T5,v
=y 42y =Vig _F?yyavy
,a ra

Define now a two-dimensional analogue of the three-dimensional covariant derivative
through

a

a _ L« v
villz=v ’ﬂ+1“7ﬁv

(1.19.36)
Va ||ﬂ:va,ﬂ _Fo}z/ﬂvy
so that, using 1.19.19, 1.19.21, the covariant derivative can be expressed as
Va — va _Kav3
o=V llp =K (1.19.37)

va |ﬁ':va ||ﬂ _Kaﬁ'v3

In the special case when the vector is a plane vector, then v; =v’ =0, and there is no

difference between the three-dimensional and two-dimensional covariant derivatives. In
the general case, the covariant derivatives can now be expressed as

vy=v,a,
=, -Kiv'h,+v' |, a
( o R re (1.19.38)
V=V |ga
= (Va ||ﬂ _KaﬂVS)aa +v; |,3 a’
From 1.18.25, the gradient of a surface vector is (using 1.19.21)
gradv = (v, ||, -K,,v, a* ®a” + K7v a® ®a’ (1.19.39)

Tensors

The covariant derivatives of second order tensor components are given by 1.18.18. For
example,

AT = A7, +TE A" + T A™

— i i i g3) j o giA Jo4i3 (1.19.40)
=A",+1, 47 +1,, 47 +1] A" +T A4

Here, only surface tensors will be examined, that is, all components with an index 3 are
zero. The two dimensional (plane) covariant derivative is

Solid Mechanics Part II1 190 Kelly



Section 1.19

AP || ,= A%, +T; A7 +T) 4% (1.19.41)

Although A** = 4°* =0 for plane tensors, one still has non-zero

A =A%, +T7 A7 +T; 4%
=T, 4"
=K, 4"

. . D . (1.19.42)
AP | =47, +T; A” +T) 4

: 33
with 47| =0.
From 1.18.28, the divergence of a surface tensor is

divA=47 |, a, +K, A"a, (1.19.43)

1.19.4 The Gauss-Codazzi Equations

Some useful equations can be derived by considering the second derivatives of the base
vectors. First, from 1.18.2,

a  =I%a, +’.a
“r f AT (1.19.44)
= Faﬂaﬂ +Kaﬂa3

A second derivative is

A
a,, =T

A
oy AT FaﬂaM +K

a, +K a, (1.19.45)

af.y

Eliminating the base vectors derivatives using 1.19.44 and 1.19.20b leads to { A Problem
4}

a,, =5, +T0T: K K b, +(TLHK, +K,, R (1.19.46)

af.y

This equals the partial derivative a Comparison of the coefficient of a, for these

ap
alternative expressions for the second partial derivative leads to

A 2
Kllﬂ,}’ _ra;/Klﬂ =K _raﬁKgy (11947)

ar.p

From Eqn. 1.18.18,
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y! y)
Ko ll,=Kop, —ToKip —T5 Ko (1.19.48)
and so

Kaﬂ ||}/=Ka;/ || (1.1949)

B

These are the Codazzi equations, in which there are only two independent non-trivial
relations:

Ky l,=Ky, [l Ky, =Ko, |l (1.19.50)
Raising indices using the metric coefficients leads to the similar equations
Ky, =K/, (1.19.51)

The Riemann-Christoffel Curvature Tensor

Comparing the coefficients of a, in 1.19.46 and the similar expression for the second

partial derivative shows that

l—%

ay.p

A A A A A
~T}, +TITL, ~TLTE =K, Kf—K, K’ (1.19.52)

af.y ay= np

The terms on the left are the two-dimensional Riemann-Christoffel, Eqn. 1.18.21, and so
A A A
R, =K,K;-K_ K’ (1.19.53)
Further,

R"

R -afy

Aapy = Ean :Kayg/anZ _Kaﬁg/lqK: :KayKﬂ,l -K ;K (11954)

af " yA

These are the Gauss equations. From 1.18.21 ef seq., only 4 of the Riemann-Christoffel
symbols are non-zero, and they are related through

Ry, = =Ry, = =Ry = Ry (1.19.55)
so that there is in fact only one independent non-trivial Gauss relation. Further,

R =K, Ky — KK,
= K'K2(2,08 5~ Eulm) (1.19.56)

= KLKI(6160 506 )e 8,

u<n

Alafy

Using 1.19.4b, 1.19.3,
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_ U PV
Rﬂaﬂy_KaKle Cou8 po8

=K/K]eye,, (1.19.57)
= g8ﬁ76nﬂK:KZ
and so the Gauss relation can be expressed succinctly as
R
K, =-122 (1.19.58)
g

where K is the Gaussian curvature, 1.19.27b. Thus the Riemann-Christoffel tensor is

zero if and only if the Gaussian curvature is zero, and in this case only can the order of
the two covariant differentiations be interchanged.

The Gauss-Codazzi equations, 1.19.50 and 1.19.58, are equivalent to a set of two first
order and one second order differential equations that must be satisfied by the three
independent metric coefficients g, and the three independent curvature tensor

coefficients K ;.

Intrinsic Surface Properties

An intrinsic property of a surface is any quantity that remains unchanged when the
surface is bent into another shape without stretching or shrinking. Some examples of
intrinsic properties are the length of a curve on the surface, surface area, the components
of the surface metric tensor g, (and hence the components of the Riemann-Christoffel

tensor) and the Guassian curvature (which follows from the Gauss equation 1.19.58).

A developable surface is one which can be obtained by bending a plane, for example a
piece of paper. Examples of developable surfaces are the cylindrical surface and the
surface of a cone. Since the Riemann-Christoffel tensor and hence the Gaussian
curvature vanish for the plane, they vanish for all developable surfaces.

1.19.5 Geodesics
The Geodesic Curvature and Normal Curvature
Consider a curve C lying on the surface, with arc length s measured from some fixed

point. As for the space curve, §1.6.2, one can define the unit tangent vector T, principal
normal v and binormal vector b (Eqn. 1.6.3 ef seq.):

dx doO° 1 dt
T=—n= a,, VvV=——mi
ds ds K ds

b=1xv (1.19.59)

so that the curve passes along the intersection of the osculating plane containing T and v
(see Fig. 1.6.3), and the surface These vectors form an orthonormal set but, although v is
normal to the tangent, it is not necessarily normal to the surface, as illustrated in Fig.
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1.19.5. For this reason, form the new orthonormal triad (1,', T,,a, ), so that the unit vector
T, lies in the plane tangent to the surface. From 1.19.59, 1.19.3,

T,=a,XT= a, xa, eaﬂdiaﬂ (1.19.60)
s ds
x3
a, ‘/ \/
----------- 0’
.
e C
x2

Figure 1.19.5: a curve lying on a surface

Next, the vector dt/ds will be decomposed into components along T, and the normal
a, . First, differentiate 1.19.59a and use 1.19.44b to get { A Problem 5}

2 a ¥is a B
ﬂ: d—Gz+F§ﬂ do” do a +Kaﬂdidia3 (1.19.61)
ds ds ds ds )7 ds ds
Then
dt
PRL TR LY (1.19.62)
where
Ao’ (d*e’ ., dO“ do’
e = ds \ ds? o ds ds
, (1.19.63)
k=K, dO* dO
ds ds

These are formulae for the geodesic curvature x, and the normal curvature «,. Many

different curves with representations ®“ (s) can pass through a certain point with a given

tangent vector T. Form 1.19.59, these will all have the same value of d®“ /ds and so,
from 1.19.63, these curves will have the same normal curvature but, in general, different
geodesic curvatures.
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A curve passing through a normal section, that is, along the intersection of a plane
containing T and a,, and the surface, will have zero geodesic curvature.

The normal curvature can be expressed as

kK, =tKn7 (1.19.64)

If the tangent is along an eigenvector of K, then «, is an eigenvalue, and hence a

maximum or minimum normal curvature. Surface curves with the property that an
eigenvector of the curvature tensor is tangent to it at every point is called a line of
curvature. A convenient coordinate system for a surface is one in which the coordinate

curves are lines of curvature. Such a system, with ®' containing the maximum values of
K, , has at every point a curvature tensor of the form

1 |k 0 K 0

k/]=|"0 = (5 Do (1.19.65)
0 KZ 0 (Kn )min

This was the case with the spherical surface example discussed in §1.19.2.

The Geodesic

A geodesic is defined to be a curve which has zero geodesic curvature at every point
along the curve. Form 1.19.63, parametric equations for the geodesics over a surface are

207 a o)
d ®2 +F§ﬁ o do =0 (1.19.64)
ds ds ds

It can be proved that the geodesic is the curve of shortest distance joining two points on
the surface. Thus the geodesic curvature is a measure of the deviance of the curve from
the shortest-path curve.

The Geodesic Coordinate System

If the Gaussian curvature of a surface is not zero, then it is not possible to find a surface
coordinate system for which the metric tensor components g, equal the Kronecker delta

0,5 everywhere. Such a geometry is called Riemannian. However, it is always possible
to construct a coordinate system in which g, =3,, , and the derivatives of the metric

coefficients are zero, at a particular point on the surface. This is the geodesic
coordinate system.

1.19.6 Problems
1 Derive Eqns. 1.19.16, T}, =T% =T, =0.

2 Derive the Cartesian components of the curvilinear base vectors for the spherical
surface, Eqn. 1.19.28.
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3 Derive the Christoffel symbols for the spherical surface, Eqn. 1.19.32.
4 Use Eqns. 1.19.44-5 and 1.19.20b to derive 1.19.46.
5 Use Eqgns. 1.19.59a and 1.19.44b to derive 1.19.61.
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