1.19 Curvilinear Coordinates: Curved Geometries

In this section is examined the special case of a two-dimensional curved surface.

1.19.1 Monoclinic Coordinate Systems

Base Vectors

A curved surface can be defined using two covariant base vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, with the third base vector, \mathbf{a}_{3}, everywhere of unit size and normal to the other two, Fig. 1.19.1 These base vectors form a monoclinic reference frame, that is, only one of the angles between the base vectors is not necessarily a right angle.

Figure 1.19.1: Geometry of the Curved Surface
In what follows, in the index notation, Greek letters such as α, β take values 1 and 2 ; as before, Latin letters take values from 1..3.

Since $\mathbf{a}^{3}=\mathbf{a}_{3}$ and

$$
\begin{equation*}
a_{\alpha 3}=\mathbf{a}_{\alpha} \cdot \mathbf{a}_{3}=0, \quad a^{\alpha 3}=\mathbf{a}^{\alpha} \cdot \mathbf{a}^{3}=0 \tag{1.19.1}
\end{equation*}
$$

the determinant of metric coefficients is

$$
J^{2}=\left|\begin{array}{ccc}
g_{11} & g_{12} & 0 \tag{1.19.2}\\
g_{21} & g_{22} & 0 \\
0 & 0 & 1
\end{array}\right|, \quad \frac{1}{J^{2}}=\left|\begin{array}{ccc}
g^{11} & g^{12} & 0 \\
g^{21} & g^{22} & 0 \\
0 & 0 & 1
\end{array}\right|
$$

The Cross Product

Particularising the results of $\S 1.16 .10$, define the surface permutation symbol to be the triple scalar product

$$
\begin{equation*}
e_{\alpha \beta} \equiv \mathbf{a}_{\alpha} \cdot \mathbf{a}_{\beta} \times \mathbf{a}_{3}=\varepsilon_{\alpha \beta} \sqrt{g}, \quad e^{\alpha \beta} \equiv \mathbf{a}^{\alpha} \cdot \mathbf{a}^{\beta} \times \mathbf{a}^{3}=\varepsilon^{\alpha \beta} \frac{1}{\sqrt{g}} \tag{1.19.3}
\end{equation*}
$$

where $\varepsilon_{\alpha \beta}=\varepsilon^{\alpha \beta}$ is the Cartesian permutation symbol, $\varepsilon_{12}=+1, \varepsilon_{21}=-1$, and zero otherwise, with

$$
\begin{equation*}
e^{\alpha \beta} e_{\mu \eta}=\varepsilon^{\alpha \beta} \varepsilon_{\mu \eta}, \quad e^{\alpha \beta} e_{\mu \eta}=\delta_{\mu}^{\alpha} \delta_{\eta}^{\beta}-\delta_{\mu}^{\beta} \delta_{\eta}^{\alpha}=e^{\beta \alpha} e_{\eta \mu} \tag{1.19.4}
\end{equation*}
$$

From 1.19.3,

$$
\begin{align*}
\mathbf{a}_{\alpha} \times \mathbf{a}_{\beta} & =e_{\alpha \beta} \mathbf{a}^{3} \tag{1.19.5}\\
\mathbf{a}^{\alpha} \times \mathbf{a}^{\beta} & =e^{\alpha \beta} \mathbf{a}_{3}
\end{align*}
$$

and so

$$
\begin{equation*}
\mathbf{a}_{3}=\frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\sqrt{g}} \tag{1.19.6}
\end{equation*}
$$

The cross product of surface vectors, that is, vectors with component in the normal (\mathbf{g}_{3}) direction zero, can be written as

$$
\begin{align*}
\mathbf{u} \times \mathbf{v} & =e_{\alpha \beta} u^{\alpha} v^{\beta} \mathbf{a}^{3}=\sqrt{g}\left|\begin{array}{cc}
u^{1} & u^{2} \\
v^{1} & v^{2}
\end{array}\right| \mathbf{a}^{3} \tag{1.19.7}\\
& =e^{\alpha \beta} u_{\alpha} v_{\beta} \mathbf{a}_{3}=\frac{1}{\sqrt{g}}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{a}_{3}
\end{align*}
$$

The Metric and Surface elements

Considering a line element lying within the surface, so that $\Theta^{3}=0$, the metric for the surface is

$$
\begin{equation*}
(\Delta s)^{2}=d \mathbf{s} \cdot d \mathbf{s}=\left(d \Theta^{\alpha} \mathbf{a}_{\alpha}\right) \cdot\left(d \Theta^{\beta} \mathbf{a}_{\beta}\right)=g_{\alpha \beta} d \Theta^{\alpha} d \Theta^{\beta} \tag{1.19.8}
\end{equation*}
$$

which is in this context known as the first fundamental form of the surface.
Similarly, from 1.16.41, a surface element is given by

$$
\begin{equation*}
\Delta S=\sqrt{g} \Delta \Theta^{1} \Delta \Theta^{2} \tag{1.19.9}
\end{equation*}
$$

Christoffel Symbols

The Christoffel symbols can be simplified as follows. A differentiation of $\mathbf{a}_{3} \cdot \mathbf{a}_{3}=1$ leads to

$$
\begin{equation*}
\mathbf{a}_{3, \alpha} \cdot \mathbf{a}_{3}=-\mathbf{a}_{3, \alpha} \cdot \mathbf{a}_{3} \tag{1.19.10}
\end{equation*}
$$

so that, from Eqn 1.18.6,

$$
\begin{equation*}
\Gamma_{3 \alpha 3}=\Gamma_{\alpha 33}=0 \tag{1.19.11}
\end{equation*}
$$

Further, since $\partial \mathbf{a}_{3} / \partial \Theta^{3}=0$,

$$
\begin{equation*}
\Gamma_{33 \alpha}=0, \quad \Gamma_{333}=0 \tag{1.19.12}
\end{equation*}
$$

These last two equations imply that the $\Gamma_{i j k}$ vanish whenever two or more of the subscripts are 3.

Next, differentiate 1.19 .1 to get

$$
\begin{equation*}
\mathbf{a}_{\alpha, \beta} \cdot \mathbf{a}_{3}=-\mathbf{a}_{3, \beta} \cdot \mathbf{a}_{\alpha}, \quad \mathbf{a}^{\alpha}{ }_{, \beta} \cdot \mathbf{a}^{3}=-\mathbf{a}^{3}{ }_{, \beta} \cdot \mathbf{a}^{\alpha} \tag{1.19.13}
\end{equation*}
$$

and Eqns. 1.18.6 now lead to

$$
\begin{equation*}
\Gamma_{\alpha \beta 3}=\Gamma_{\beta \alpha 3}=-\Gamma_{3 \beta \alpha}=-\Gamma_{\beta 3 \alpha} \tag{1.19.14}
\end{equation*}
$$

From 1.18.8, using 1.19.11,

$$
\begin{align*}
& \Gamma_{\alpha \beta}^{3}=\Gamma_{\alpha \beta \gamma} g^{\gamma 3}+\Gamma_{\alpha \beta 3} g^{33}=\Gamma_{\alpha \beta 3} \\
& \Gamma_{3 \alpha}^{3}=\Gamma_{3 \alpha \beta} g^{\beta 3}+\Gamma_{3 \alpha 3} g^{33}=\Gamma_{3 \alpha 3}=0 \tag{1.19.15}
\end{align*}
$$

and, similarly $\{\mathbf{\Delta}$ Problem 1\}

$$
\begin{equation*}
\Gamma_{\alpha 3}^{3}=\Gamma_{33}^{\alpha}=\Gamma_{33}^{3}=0 \tag{1.19.16}
\end{equation*}
$$

1.19.2 The Curvature Tensor

In this section is introduced a tensor which, with the metric coefficients, completely describes the surface.

First, although the base vector \mathbf{a}_{3} maintains unit length, its direction changes as a function of the coordinates Θ^{1}, Θ^{2}, and its derivative is, from 1.18.2 or 1.18.5 (and using 1.19.15)

$$
\begin{equation*}
\frac{\partial \mathbf{a}_{3}}{\partial \Theta^{\alpha}}=\Gamma_{3 \alpha}^{k} \mathbf{a}_{k}=\Gamma_{3 \alpha}^{\beta} \mathbf{a}_{\beta}, \quad \frac{\partial \mathbf{a}^{3}}{\partial \Theta^{\alpha}}=-\Gamma_{\alpha k}^{3} \mathbf{a}^{k}=-\Gamma_{\alpha \beta}^{3} \mathbf{a}^{\beta} \tag{1.19.17}
\end{equation*}
$$

Define now the curvature tensor \mathbf{K} to have the covariant components $K_{\alpha \beta}$, through

$$
\begin{equation*}
\frac{\partial \mathbf{a}_{3}}{\partial \Theta^{\alpha}}=-K_{\alpha \beta} \mathbf{a}^{\beta} \tag{1.19.18}
\end{equation*}
$$

and it follows from 1.19.13, 1.19.15a and 1.19.14,

$$
\begin{equation*}
K_{\alpha \beta}=\Gamma_{\alpha \beta}^{3}=\Gamma_{\alpha \beta 3}=-\Gamma_{3 \beta \alpha} \tag{1.19.19}
\end{equation*}
$$

and, since these Christoffel symbols are symmetric in the α, β, the curvature tensor is symmetric.

The mixed and contravariant components of the curvature tensor follows from 1.16.58-9:

$$
\begin{array}{r}
K_{\alpha}^{\beta}=g^{\gamma \beta} K_{\alpha \gamma}=g_{\alpha \gamma} K^{\gamma \beta}, \quad K^{\alpha \beta}=g^{\alpha \gamma} g^{\beta \lambda} K_{\gamma \lambda} \\
\frac{\partial \mathbf{a}_{3}}{\partial \boldsymbol{\Theta}^{\alpha}} \equiv-K_{\alpha \beta} \mathbf{a}^{\beta}=-K_{\alpha \beta} g^{\gamma \beta} \mathbf{a}_{\gamma}=-K_{\alpha}^{\gamma} \mathbf{a}_{\gamma} \tag{1.19.20}
\end{array}
$$

and the "dot" is not necessary in the mixed notation because of the symmetry property. From these and 1.18.8, it follows that

$$
\begin{equation*}
K_{\beta}^{\alpha}=g^{\gamma \alpha} K_{\gamma \beta}=-g^{\gamma \alpha} \Gamma_{3 \beta \gamma}=-\Gamma_{3 \beta}^{\alpha}=-\Gamma_{\beta 3}^{\alpha} \tag{1.19.21}
\end{equation*}
$$

Also,

$$
\begin{align*}
d \mathbf{a}_{3} \cdot d \mathbf{s} & =\left(\mathbf{a}_{3, \alpha} d \Theta^{\alpha}\right) \cdot\left(d \Theta^{\beta} \mathbf{a}_{\beta}\right) \\
& =\left(-K_{\alpha \gamma} d \Theta^{\alpha} \mathbf{a}^{\gamma}\right) \cdot\left(d \Theta^{\beta} \mathbf{a}_{\beta}\right) \tag{1.19.22}\\
& =-K_{\alpha \beta} d \Theta^{\alpha} d \Theta^{\beta}
\end{align*}
$$

which is known as the second fundamental form of the surface.
From 1.19.19 and the definitions of the Christoffel symbols, 1.18.4, 1.18.6, the curvature can be expressed as

$$
\begin{equation*}
K_{\alpha \beta}=\frac{\partial \mathbf{a}_{\alpha}}{\partial \Theta^{\beta}} \cdot \mathbf{a}_{3}=-\frac{\partial \mathbf{a}_{3}}{\partial \Theta^{\beta}} \cdot \mathbf{a}_{\alpha} \tag{1.19.23}
\end{equation*}
$$

showing that the curvature is a measure of the change of the base vector \mathbf{a}_{α} along the Θ^{β} curve, in the direction of the normal vector; alternatively, the rate of change of the normal vector along Θ^{β}, in the direction $-\mathbf{a}_{\alpha}$. Looking at this in more detail, consider now the change in the normal vector \mathbf{a}_{3} in the Θ^{1} direction, Fig. 1.19.2. Then

$$
\begin{equation*}
d \mathbf{a}_{3}=\mathbf{a}_{3,1} d \Theta^{1}=-K_{1}^{\gamma} d \Theta^{1} \mathbf{a}_{\gamma} \tag{1.19.24}
\end{equation*}
$$

Figure 1.19.2: Curvature of the Surface
Taking the case of $K_{1}^{1} \neq 0, K_{1}^{2}=0$, one has $d \mathbf{a}_{3}=-K_{1}^{1} d \Theta^{1} \mathbf{a}_{1}$. From Fig. 1.19.2, and since the normal vector is of unit length, the magnitude $\left|d \mathbf{a}_{3}\right|$ equals $d \phi$, the small angle through which the normal vector rotates as one travels along the Θ^{1} coordinate curve. The curvature of the surface is defined to be the rate of change of the angle $\phi:^{1}$

$$
\begin{equation*}
\frac{d \phi}{d s}=\frac{\left|-K_{1}^{1} d \Theta^{1} \mathbf{a}_{1}\right|}{\left|d \Theta^{1} \mathbf{a}_{1}\right|}=\left|K_{1}^{1}\right| \tag{1.19.25}
\end{equation*}
$$

and so the mixed component K_{1}^{1} is the curvature in the Θ^{1} direction. Similarly, K_{2}^{2} is the curvature in the Θ^{2} direction.

Assume now that $K_{1}^{1}=0, K_{1}^{2} \neq 0$. Eqn. 1.19.24 now reads $d \mathbf{a}_{3}=-K_{1}^{2} d \Theta^{1} \mathbf{a}_{2}$ and, referring Fig. 1.19.3, the twist of the surface with respect to the coordinates is

$$
\begin{equation*}
\frac{d \varphi}{d s}=\frac{\left|-K_{1}^{2} d \Theta^{1} \mathbf{a}_{2}\right|}{\left|d \Theta^{1} \mathbf{a}_{1}\right|}=\left|K_{1}^{2}\right| \frac{\left\lvert\, \frac{\mathbf{a}_{2} \mid}{\left|\mathbf{a}_{1}\right|}\right.}{|c|} \tag{1.19.26}
\end{equation*}
$$

Figure 1.19.3: Twisting over the Surface
When $\left|\mathbf{a}_{1}\right|=\left|\mathbf{a}_{2}\right|,\left|K_{1}^{2}\right|$ is the twist; when they are not equal, $\left|K_{1}^{2}\right|$ is closely related to the twist.

[^0]Two important quantities are often used to describe the curvature of a surface. These are the first and the third principal scalar invariants:

$$
\begin{align*}
\mathrm{I}_{\mathbf{K}} & =K_{\cdot i}^{i}=K_{1}^{1}+K_{2}^{2} \\
\mathrm{III}_{\mathbf{K}} & =\operatorname{det} K_{\cdot j}^{i}=\left|\begin{array}{ll}
K_{1}^{1} & K_{2}^{1} \\
K_{1}^{2} & K_{2}^{2}
\end{array}\right|=K_{1}^{1} K_{2}^{2}-K_{2}^{1} K_{1}^{2}=\varepsilon_{\alpha \beta} K_{1}^{\alpha} K_{2}^{\beta} \tag{1.19.27}
\end{align*}
$$

The first invariant is twice the mean curvature K_{M} whilst the third invariant is called the Gaussian curvature (or Total curvature) K_{G} of the surface.

Example (Curvature of a Sphere)

The surface of a sphere of radius a can be described by the coordinates $\left(\Theta^{1}, \Theta^{2}\right)$, Fig. 1.19.4, where

$$
x^{1}=a \sin \Theta^{1} \cos \Theta^{2}, \quad x^{2}=a \sin \Theta^{1} \sin \Theta^{2}, \quad x^{3}=a \cos \Theta^{1}
$$

Figure 1.19.4: a spherical surface
Then, from the definitions 1.16.19, 1.16.27-28, 1.16.34, \{ $\boldsymbol{\Delta}$ Problem 2\}

$$
\begin{align*}
\mathbf{a}_{1} & =+a \cos \Theta^{1} \cos \Theta^{2} \mathbf{e}_{1}+a \cos \Theta^{1} \sin \Theta^{2} \mathbf{e}_{2}-a \sin \Theta^{1} \mathbf{e}_{3} \\
\mathbf{a}_{2} & =-a \sin \Theta^{1} \sin \Theta^{2} \mathbf{e}_{1}+a \sin \Theta^{1} \cos \Theta^{2} \mathbf{e}_{2} \\
\mathbf{a}^{1} & =\frac{1}{a^{2}} \mathbf{a}_{1} \tag{1.19.28}\\
\mathbf{a}^{2} & =\frac{1}{a^{2} \sin ^{2} \Theta^{1}} \mathbf{a}_{2} \\
g_{\alpha \beta} & =\left|\begin{array}{cc}
a^{2} & 0 \\
0 & a^{2} \sin ^{2} \Theta^{1}
\end{array}\right|, \quad g=a^{4} \sin ^{2} \Theta^{1}
\end{align*}
$$

From 1.19.6,

$$
\begin{equation*}
\mathbf{a}_{3}=\sin \Theta^{1} \cos \Theta^{2} \mathbf{e}_{1}+\sin \Theta^{1} \sin \Theta^{2} \mathbf{e}_{2}+\cos \Theta^{1} \mathbf{e}_{3} \tag{1.19.29}
\end{equation*}
$$

and this is clearly an orthogonal coordinate system with scale factors

$$
\begin{equation*}
h_{1}=a, \quad h_{2}=a \sin \Theta^{1}, \quad h_{3}=1 \tag{1.19.30}
\end{equation*}
$$

The surface Christoffel symbols are, from 1.18.33, 1.18.36,

$$
\begin{equation*}
\Gamma_{11}^{1}=\Gamma_{12}^{1}=\Gamma_{21}^{1}=\Gamma_{11}^{2}=\Gamma_{22}^{2}=0, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{\cos \Theta^{1}}{\sin ^{2} \Theta^{1}}, \quad \Gamma_{22}^{1}=-\sin \Theta^{1} \cos \Theta^{1} \tag{1.19.31}
\end{equation*}
$$

Using the definitions 1.18.4, \{ $\boldsymbol{\Delta}$ Problem 3\}

$$
\begin{align*}
& \Gamma_{13}^{1}=\Gamma_{31}^{1}=\frac{1}{a}, \quad \Gamma_{23}^{1}=\Gamma_{32}^{1}=0 \\
& \Gamma_{13}^{2}=\Gamma_{31}^{2}=0, \quad \Gamma_{23}^{2}=\Gamma_{32}^{2}=\frac{1}{a} \tag{1.19.32}\\
& \Gamma_{11}^{3}=-a, \quad \Gamma_{12}^{3}=\Gamma_{21}^{3}=0, \quad \Gamma_{22}^{3}=-a \sin ^{2} \Theta^{1}
\end{align*}
$$

with the remaining symbols $\Gamma_{\alpha 3}^{3}=\Gamma_{3 \alpha}^{3}=\Gamma_{33}^{\alpha}=\Gamma_{33}^{3}=0$.
The components of the curvature tensor are then, from 1.19.21, 1.19.19,

$$
\left[K_{\beta}^{\alpha}\right]=\left[\begin{array}{cc}
-\frac{1}{a} & 0 \tag{1.19.33}\\
0 & -\frac{1}{a}
\end{array}\right], \quad\left[K_{\alpha \beta}\right]=\left[\begin{array}{cc}
-a & 0 \\
0 & -a \sin ^{2} \Theta^{1}
\end{array}\right]
$$

The mean and Gaussian curvature of a sphere are then

$$
\begin{align*}
K_{M} & =-\frac{2}{a} \tag{1.19.34}\\
K_{G} & =\frac{1}{a^{2}}
\end{align*}
$$

The principal curvatures are evidently K_{1}^{1} and K_{2}^{2}. As expected, they are simply the reciprocal of the radius of curvature a.

1.19.3 Covariant Derivatives

Vectors

Consider a vector \mathbf{v}, which is not necessarily a surface vector, that is, it might have a normal component $v_{3}=v^{3}$. The covariant derivative is

$$
\begin{align*}
\left.v^{\alpha}\right|_{\beta} & =v_{, \beta}^{\alpha}+\Gamma_{\gamma \beta}^{\alpha} v^{\gamma}+\Gamma_{3 \beta}^{\alpha} v^{3} & \left.v_{\alpha}\right|_{\beta} & =v_{\alpha, \beta}-\Gamma_{\alpha \beta}^{\gamma} v_{\gamma}-\Gamma_{\alpha \beta}^{3} v_{3} \\
\left.v^{\alpha}\right|_{3} & =v_{, 3}^{\alpha}+\Gamma_{\gamma 3}^{\alpha} v^{\gamma}+\Gamma_{33}^{\alpha} v^{3} & \left.v_{\alpha}\right|_{3} & =v_{\alpha, 3}-\Gamma_{\alpha 3}^{\gamma} v_{\gamma}-\Gamma_{\alpha 3}^{3} v_{3} \\
& =v_{, 3}^{\alpha}+\Gamma_{\gamma 3}^{\alpha} v^{\gamma} & & =v_{\alpha, 3}-\Gamma_{\alpha 3}^{\gamma} v_{\gamma} \tag{1.19.35}\\
\left.v^{3}\right|_{\alpha} & =v_{, \alpha}^{3}+\Gamma_{\gamma \alpha}^{3} v^{\gamma}+\Gamma_{3 \alpha}^{3} v^{3} & \left.v_{3}\right|_{\alpha} & =v_{3, \alpha}-\Gamma_{3 \alpha}^{\gamma} v_{\gamma}-\Gamma_{3 \alpha}^{3} v_{3} \\
& =v_{, \alpha}^{3}+\Gamma_{\gamma \alpha}^{3} v^{\gamma} & & =v_{3, \alpha}-\Gamma_{3 \alpha}^{\gamma} v_{\gamma}
\end{align*}
$$

Define now a two-dimensional analogue of the three-dimensional covariant derivative through

$$
\begin{align*}
& v^{\alpha} \|_{\beta}=v^{\alpha}{ }_{\beta}+\Gamma_{\gamma \beta}^{\alpha} v^{\gamma} \tag{1.19.36}\\
& v_{\alpha} \|_{\beta}=v_{\alpha, \beta}-\Gamma_{\alpha \beta}^{\gamma} v_{\gamma}
\end{align*}
$$

so that, using 1.19.19, 1.19.21, the covariant derivative can be expressed as

$$
\begin{align*}
& \left.v^{\alpha}\right|_{\beta}=v^{\alpha} \|_{\beta}-K_{\beta}^{\alpha} v^{3} \tag{1.19.37}\\
& \left.v_{\alpha}\right|_{\beta}=v_{\alpha} \|_{\beta}-K_{\alpha \beta} v_{3}
\end{align*}
$$

In the special case when the vector is a plane vector, then $v_{3}=v^{3}=0$, and there is no difference between the three-dimensional and two-dimensional covariant derivatives. In the general case, the covariant derivatives can now be expressed as

$$
\begin{align*}
\mathbf{v}_{, \beta} & =\left.v^{i}\right|_{\beta} \mathbf{a}_{i} \\
& =\left(v^{\alpha} \|_{\beta}-K_{\beta}^{\alpha} v^{3}\right) \mathbf{a}_{\alpha}+\left.v^{3}\right|_{\beta} \mathbf{a}_{3} \tag{1.19.38}\\
\mathbf{v}_{, \beta} & =\left.v_{i}\right|_{\beta} \mathbf{a}^{i} \\
& =\left(v_{\alpha} \|_{\beta}-K_{\alpha \beta} v_{3}\right) \mathbf{a}^{\alpha}+\left.v_{3}\right|_{\beta} \mathbf{a}^{3}
\end{align*}
$$

From 1.18.25, the gradient of a surface vector is (using 1.19.21)

$$
\begin{equation*}
\operatorname{grad} \mathbf{v}=\left(v_{\alpha} \|_{\beta}-K_{\alpha \beta} v_{3}\right) \mathbf{a}^{\alpha} \otimes \mathbf{a}^{\beta}+K_{\alpha}^{\gamma} v_{\gamma} \mathbf{a}^{\alpha} \otimes \mathbf{a}^{3} \tag{1.19.39}
\end{equation*}
$$

Tensors

The covariant derivatives of second order tensor components are given by 1.18.18. For example,

$$
\begin{align*}
\left.A^{i j}\right|_{\gamma} & =A^{i j}, \gamma+\Gamma_{m \gamma}^{i} A^{m j}+\Gamma_{m \gamma}^{j} A^{i m} \tag{1.19.40}\\
& =A^{i j}{ }_{, \gamma}+\Gamma_{\lambda \gamma}^{i} A^{\lambda j}+\Gamma_{3 \gamma}^{i} A^{3 j}+\Gamma_{\lambda \gamma}^{j} A^{i \lambda}+\Gamma_{3 \gamma}^{j} A^{i 3}
\end{align*}
$$

Here, only surface tensors will be examined, that is, all components with an index 3 are zero. The two dimensional (plane) covariant derivative is

$$
\begin{equation*}
A^{\alpha \beta} \|_{\gamma} \equiv A^{\alpha \beta}{ }_{, \gamma}+\Gamma_{\lambda \gamma}^{\alpha} A^{\lambda \beta}+\Gamma_{\lambda \gamma}^{\beta} A^{\alpha \lambda} \tag{1.19.41}
\end{equation*}
$$

Although $A^{\alpha 3}=A^{3 \alpha}=0$ for plane tensors, one still has non-zero

$$
\begin{align*}
\left.A^{\alpha 3}\right|_{\gamma} & =A^{\alpha 3}{ }_{\gamma}+\Gamma_{\lambda \gamma}^{\alpha} A^{\lambda 3}+\Gamma_{\lambda \gamma}^{3} A^{\alpha \lambda} \\
& =\Gamma_{\lambda \gamma}^{3} A^{\alpha \lambda} \\
& =K_{\lambda \gamma} A^{\alpha \lambda} \\
\left.A^{3 \beta}\right|_{\gamma \gamma} & =A^{3 \beta}{ }_{, \gamma}+\Gamma_{\lambda \gamma}^{3} A^{\lambda \beta}+\Gamma_{\lambda \gamma}^{\beta} A^{3 \lambda} \tag{1.19.42}\\
& =\Gamma_{\lambda \gamma}^{3} A^{\lambda \beta} \\
& =K_{\lambda \gamma} A^{\lambda \beta}
\end{align*}
$$

with $\left.A^{33}\right|_{\gamma}=0$.
From 1.18.28, the divergence of a surface tensor is

$$
\begin{equation*}
\operatorname{div} \mathbf{A}=A^{\alpha \beta} \|_{\beta} \mathbf{a}_{\alpha}+K_{\beta \gamma} A^{\beta \gamma} \mathbf{a}_{3} \tag{1.19.43}
\end{equation*}
$$

1.19.4 The Gauss-Codazzi Equations

Some useful equations can be derived by considering the second derivatives of the base vectors. First, from 1.18.2,

$$
\begin{align*}
\mathbf{a}_{\alpha, \beta} & =\Gamma_{\alpha \beta}^{\lambda} \mathbf{a}_{\lambda}+\Gamma_{\alpha \beta}^{3} \mathbf{a}_{3} \tag{1.19.44}\\
& =\Gamma_{\alpha \beta}^{\lambda} \mathbf{a}_{\lambda}+K_{\alpha \beta} \mathbf{a}_{3}
\end{align*}
$$

A second derivative is

$$
\begin{equation*}
\mathbf{a}_{\alpha, \beta \gamma}=\Gamma_{\alpha \beta, \gamma}^{\lambda} \mathbf{a}_{\lambda}+\Gamma_{\alpha \beta}^{\lambda} \mathbf{a}_{\lambda, \gamma}+K_{\alpha \beta, \gamma} \mathbf{a}_{3}+K_{\alpha \beta} \mathbf{a}_{3, \gamma} \tag{1.19.45}
\end{equation*}
$$

Eliminating the base vectors derivatives using 1.19.44 and 1.19.20b leads to \{ $\boldsymbol{\Delta}$ Problem 4\}

$$
\begin{equation*}
\mathbf{a}_{\alpha, \beta \gamma}=\left(\Gamma_{\alpha \beta, \gamma}^{\lambda}+\Gamma_{\alpha \beta}^{\eta} \Gamma_{\eta \gamma}^{\lambda}-K_{\alpha \beta} K_{\gamma}^{\lambda}\right) \mathbf{a}_{\lambda}+\left(\Gamma_{\alpha \beta}^{\lambda} K_{\lambda \gamma}+K_{\alpha \beta, \gamma}\right) \mathbf{a}_{3} \tag{1.19.46}
\end{equation*}
$$

This equals the partial derivative $\mathbf{a}_{\alpha, \gamma \beta}$. Comparison of the coefficient of \mathbf{a}_{3} for these alternative expressions for the second partial derivative leads to

$$
\begin{equation*}
K_{\alpha \beta, \gamma}-\Gamma_{\alpha \gamma}^{\lambda} K_{\lambda \beta}=K_{\alpha \gamma, \beta}-\Gamma_{\alpha \beta}^{\lambda} K_{\lambda \gamma} \tag{1.19.47}
\end{equation*}
$$

From Eqn. 1.18.18,

$$
\begin{equation*}
K_{\alpha \beta} \|_{\gamma}=K_{\alpha \beta, \gamma}-\Gamma_{\alpha \gamma}^{\lambda} K_{\lambda \beta}-\Gamma_{\beta \gamma}^{\lambda} K_{\alpha \lambda} \tag{1.19.48}
\end{equation*}
$$

and so

$$
\begin{equation*}
K_{\alpha \beta}\left\|_{\gamma}=K_{\alpha \gamma}\right\|_{\beta} \tag{1.19.49}
\end{equation*}
$$

These are the Codazzi equations, in which there are only two independent non-trivial relations:

$$
\begin{equation*}
K_{11}\left\|_{2}=K_{12}\right\|_{1}, \quad K_{22}\left\|_{1}=K_{12}\right\|_{2} \tag{1.19.50}
\end{equation*}
$$

Raising indices using the metric coefficients leads to the similar equations

$$
\begin{equation*}
K_{\beta}^{\alpha}\left\|_{\gamma}=K_{\gamma}^{\alpha}\right\|_{\beta} \tag{1.19.51}
\end{equation*}
$$

The Riemann-Christoffel Curvature Tensor

Comparing the coefficients of \mathbf{a}_{λ} in 1.19.46 and the similar expression for the second partial derivative shows that

$$
\begin{equation*}
\Gamma_{\alpha \gamma, \beta}^{\lambda}-\Gamma_{\alpha \beta, \gamma}^{\lambda}+\Gamma_{\alpha \gamma}^{\eta} \Gamma_{\eta \beta}^{\lambda}-\Gamma_{\alpha \beta}^{\eta} \Gamma_{\eta \gamma}^{\lambda}=K_{\alpha \gamma} K_{\beta}^{\lambda}-K_{\alpha \beta} K_{\gamma}^{\lambda} \tag{1.19.52}
\end{equation*}
$$

The terms on the left are the two-dimensional Riemann-Christoffel, Eqn. 1.18.21, and so

$$
\begin{equation*}
R_{\alpha \beta \gamma}^{\lambda}=K_{\alpha \gamma} K_{\beta}^{\lambda}-K_{\alpha \beta} K_{\gamma}^{\lambda} \tag{1.19.53}
\end{equation*}
$$

Further,

$$
\begin{equation*}
R_{\lambda \alpha \beta \gamma}=g_{\lambda \eta} R_{\alpha \beta \beta \gamma}^{\eta}=K_{\alpha \gamma} g_{\lambda \eta} K_{\beta}^{\eta}-K_{\alpha \beta} g_{\lambda \eta} K_{\gamma}^{\eta}=K_{\alpha \gamma} K_{\beta \lambda}-K_{\alpha \beta} K_{\gamma \lambda} \tag{1.19.54}
\end{equation*}
$$

These are the Gauss equations. From 1.18 .21 et seq., only 4 of the Riemann-Christoffel symbols are non-zero, and they are related through

$$
\begin{equation*}
R_{1212}=-R_{2112}=-R_{1221}=R_{2121} \tag{1.19.55}
\end{equation*}
$$

so that there is in fact only one independent non-trivial Gauss relation. Further,

$$
\begin{align*}
R_{\lambda \alpha \beta \gamma} & =K_{\alpha \gamma} K_{\beta \lambda}-K_{\alpha \beta} K_{\gamma \lambda} \\
& =K_{\alpha}^{\mu} K_{\lambda}^{\eta}\left(g_{\nu \mu} g_{\beta \eta}-g_{\beta \mu} g_{\nu \eta}\right) \tag{1.19.56}\\
& =K_{\alpha}^{\mu} K_{\lambda}^{\eta}\left(\delta_{\mu}^{v} \delta_{\eta}^{\rho}-\delta_{\mu}^{\rho} \delta_{\eta}^{v}\right) g_{\beta \rho} g_{\gamma \nu}
\end{align*}
$$

Using 1.19.4b, 1.19.3,

$$
\begin{align*}
R_{\lambda \alpha \beta \gamma} & =K_{\alpha}^{\mu} K_{\lambda}^{\eta} e^{\rho \nu} e_{\eta \mu} g_{\beta \rho} g_{\gamma \nu} \\
& =K_{\alpha}^{\mu} K_{\lambda}^{\eta} e_{\beta \gamma} e_{\eta \mu} \tag{1.19.57}\\
& =g \varepsilon_{\beta \gamma} \varepsilon_{\eta \mu} K_{\alpha}^{\mu} K_{\lambda}^{\eta}
\end{align*}
$$

and so the Gauss relation can be expressed succinctly as

$$
\begin{equation*}
K_{G}=\frac{R_{1212}}{g} \tag{1.19.58}
\end{equation*}
$$

where K_{G} is the Gaussian curvature, 1.19.27b. Thus the Riemann-Christoffel tensor is zero if and only if the Gaussian curvature is zero, and in this case only can the order of the two covariant differentiations be interchanged.

The Gauss-Codazzi equations, 1.19.50 and 1.19.58, are equivalent to a set of two first order and one second order differential equations that must be satisfied by the three independent metric coefficients $g_{\alpha \beta}$ and the three independent curvature tensor coefficients $K_{\alpha \beta}$.

Intrinsic Surface Properties

An intrinsic property of a surface is any quantity that remains unchanged when the surface is bent into another shape without stretching or shrinking. Some examples of intrinsic properties are the length of a curve on the surface, surface area, the components of the surface metric tensor $g_{\alpha \beta}$ (and hence the components of the Riemann-Christoffel tensor) and the Guassian curvature (which follows from the Gauss equation 1.19.58).

A developable surface is one which can be obtained by bending a plane, for example a piece of paper. Examples of developable surfaces are the cylindrical surface and the surface of a cone. Since the Riemann-Christoffel tensor and hence the Gaussian curvature vanish for the plane, they vanish for all developable surfaces.

1.19.5 Geodesics

The Geodesic Curvature and Normal Curvature

Consider a curve C lying on the surface, with arc length s measured from some fixed point. As for the space curve, $\S 1.6 .2$, one can define the unit tangent vector $\boldsymbol{\tau}$, principal normal \mathbf{v} and binormal vector \mathbf{b} (Eqn. 1.6.3 et seq.):

$$
\begin{equation*}
\boldsymbol{\tau}=\frac{d \mathbf{x}}{d s}=\frac{d \Theta^{\alpha}}{d s} \mathbf{a}_{\alpha}, \quad \mathbf{v}=\frac{1}{\kappa} \frac{d \boldsymbol{\tau}}{d s}, \quad \mathbf{b}=\boldsymbol{\tau} \times \mathbf{v} \tag{1.19.59}
\end{equation*}
$$

so that the curve passes along the intersection of the osculating plane containing $\boldsymbol{\tau}$ and \mathbf{v} (see Fig. 1.6.3), and the surface These vectors form an orthonormal set but, although \mathbf{v} is normal to the tangent, it is not necessarily normal to the surface, as illustrated in Fig.
1.19.5. For this reason, form the new orthonormal triad $\left(\boldsymbol{\tau}, \boldsymbol{\tau}_{2}, \mathbf{a}_{3}\right)$, so that the unit vector $\boldsymbol{\tau}_{2}$ lies in the plane tangent to the surface. From 1.19.59, 1.19.3,

$$
\begin{equation*}
\boldsymbol{\tau}_{2}=\mathbf{a}_{3} \times \boldsymbol{\tau}=\frac{d \Theta^{\alpha}}{d s} \mathbf{a}_{3} \times \mathbf{a}_{\alpha}=e_{\alpha \beta} \frac{d \Theta^{\alpha}}{d s} \mathbf{a}^{\beta} \tag{1.19.60}
\end{equation*}
$$

Figure 1.19.5: a curve lying on a surface
Next, the vector $d \boldsymbol{\tau} / d s$ will be decomposed into components along $\boldsymbol{\tau}_{2}$ and the normal \mathbf{a}_{3}. First, differentiate 1.19.59a and use 1.19.44b to get $\{\mathbf{\Delta}$ Problem 5\}

$$
\begin{equation*}
\frac{d \boldsymbol{\tau}}{d s}=\left(\frac{d^{2} \Theta^{\gamma}}{d s^{2}}+\Gamma_{\alpha \beta}^{\gamma} \frac{d \Theta^{\alpha}}{d s} \frac{d \Theta^{\beta}}{d s}\right) \mathbf{a}_{\gamma}+K_{\alpha \beta} \frac{d \Theta^{\alpha}}{d s} \frac{d \Theta^{\beta}}{d s} \mathbf{a}_{3} \tag{1.19.61}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d \boldsymbol{\tau}}{d s}=\kappa_{g} \boldsymbol{\tau}_{2}+\kappa_{n} \mathbf{a}_{3} \tag{1.19.62}
\end{equation*}
$$

where

$$
\begin{align*}
& \kappa_{g}=e_{\lambda \gamma} \frac{d \Theta^{\lambda}}{d s}\left(\frac{d^{2} \Theta^{\gamma}}{d s^{2}}+\Gamma_{\alpha \beta}^{\gamma} \frac{d \Theta^{\alpha}}{d s} \frac{d \Theta^{\beta}}{d s}\right) \tag{1.19.63}\\
& \kappa_{n}=K_{\alpha \beta} \frac{d \Theta^{\alpha}}{d s} \frac{d \Theta^{\beta}}{d s}
\end{align*}
$$

These are formulae for the geodesic curvature κ_{g} and the normal curvature κ_{n}. Many different curves with representations $\Theta^{\alpha}(s)$ can pass through a certain point with a given tangent vector $\boldsymbol{\tau}$. Form 1.19.59, these will all have the same value of $d \Theta^{\alpha} / d s$ and so, from 1.19.63, these curves will have the same normal curvature but, in general, different geodesic curvatures.

A curve passing through a normal section, that is, along the intersection of a plane containing τ and \mathbf{a}_{3}, and the surface, will have zero geodesic curvature.

The normal curvature can be expressed as

$$
\begin{equation*}
\kappa_{n}=\boldsymbol{\tau} \mathbf{K} \boldsymbol{\tau} \tag{1.19.64}
\end{equation*}
$$

If the tangent is along an eigenvector of \mathbf{K}, then κ_{n} is an eigenvalue, and hence a maximum or minimum normal curvature. Surface curves with the property that an eigenvector of the curvature tensor is tangent to it at every point is called a line of curvature. A convenient coordinate system for a surface is one in which the coordinate curves are lines of curvature. Such a system, with Θ^{1} containing the maximum values of κ_{n}, has at every point a curvature tensor of the form

$$
\left[K_{i}^{j}\right]=\left[\begin{array}{cc}
K_{1}^{1} & 0 \tag{1.19.65}\\
0 & K_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\left(\kappa_{n}\right)_{\max } & 0 \\
0 & \left(\kappa_{n}\right)_{\min }
\end{array}\right]
$$

This was the case with the spherical surface example discussed in §1.19.2.

The Geodesic

A geodesic is defined to be a curve which has zero geodesic curvature at every point along the curve. Form 1.19.63, parametric equations for the geodesics over a surface are

$$
\begin{equation*}
\frac{d^{2} \Theta^{\gamma}}{d s^{2}}+\Gamma_{\alpha \beta}^{\gamma} \frac{d \Theta^{\alpha}}{d s} \frac{d \Theta^{\beta}}{d s}=0 \tag{1.19.64}
\end{equation*}
$$

It can be proved that the geodesic is the curve of shortest distance joining two points on the surface. Thus the geodesic curvature is a measure of the deviance of the curve from the shortest-path curve.

The Geodesic Coordinate System

If the Gaussian curvature of a surface is not zero, then it is not possible to find a surface coordinate system for which the metric tensor components $g_{\alpha \beta}$ equal the Kronecker delta $\delta_{\alpha \beta}$ everywhere. Such a geometry is called Riemannian. However, it is always possible to construct a coordinate system in which $g_{\alpha \beta}=\delta_{\alpha \beta}$, and the derivatives of the metric coefficients are zero, at a particular point on the surface. This is the geodesic coordinate system.

1.19.6 Problems

1 Derive Eqns. 1.19.16, $\Gamma_{\alpha 3}^{3}=\Gamma_{33}^{\alpha}=\Gamma_{33}^{3}=0$.
2 Derive the Cartesian components of the curvilinear base vectors for the spherical surface, Eqn. 1.19.28.

3 Derive the Christoffel symbols for the spherical surface, Eqn. 1.19.32.
4 Use Eqns. 1.19.44-5 and 1.19.20b to derive 1.19.46.
5 Use Eqns. 1.19.59a and 1.19.44b to derive 1.19.61.

[^0]: ${ }^{1}$ this is essentially the same definition as for the space curve of $\S 1.6 .2$; there, the angle $\phi=\kappa \Delta s$

