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1.19 Curvilinear Coordinates: Curved Geometries 
 
In this section is examined the special case of a two-dimensional curved surface. 
 
 
1.19.1 Monoclinic Coordinate Systems 
 
Base Vectors 
 
A curved surface can be defined using two covariant base vectors 21 , aa , with the third 
base vector, 3a , everywhere of unit size and normal to the other two, Fig. 1.19.1  These 
base vectors form a monoclinic reference frame, that is, only one of the angles between 
the base vectors is not necessarily a right angle. 
 

 
 

Figure 1.19.1: Geometry of the Curved Surface 
 
In what follows, in the index notation, Greek letters such as βα ,  take values 1 and  2; as 
before, Latin letters take values from 1..3. 
 
Since 3

3 aa =  and 
 

033 =⋅= aaααa ,      033 =⋅= aaααa    (1.19.1) 
 
the determinant of metric coefficients is 
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The Cross Product 
 
Particularising the results of §1.16.10, define the surface permutation symbol to be the 
triple scalar product 
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g
ege 1, 3

3
αββααβ

αββααβ εε =×⋅≡=×⋅≡ aaaaaa           (1.19.3) 

where αβ
αβ εε =  is the Cartesian permutation symbol, 112 +=ε , 121 −=ε , and zero 

otherwise, with 
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From 1.19.3, 
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and so 
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The cross product of surface vectors, that is, vectors with component in the normal ( 3g ) 
direction zero, can be written as 
 

3
21

21
3

3
21

21
3

1 aa

aavu

vv
uu

g
vue

vv
uu

gvue

==

==×

βα
αβ

βα
αβ

                                  (1.19.7) 

 
The Metric and Surface elements 
 
Considering a line element lying within the surface, so that 03 =Θ , the metric for the 
surface is 
 

( ) ( ) ( ) βα
αββ

β
α

α ΘΘ=Θ⋅Θ=⋅=∆ ddgdddds aass2   (1.19.8) 
 
which is in this context known as the first fundamental form of the surface. 
 
Similarly, from 1.16.41, a surface element is given by 
 

21∆Θ∆Θ=∆ gS          (1.19.9) 
 
Christoffel Symbols 
 
The Christoffel symbols can be simplified as follows.  A differentiation of 133 =⋅aa  
leads to 
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3,33,3 aaaa ⋅−=⋅ αα                            (1.19.10) 
 
so that, from Eqn 1.18.6, 
 

03333 =Γ=Γ αα           (1.19.11) 
 
Further, since 0/ 3

3 =Θ∂∂a , 
 

0,0 33333 =Γ=Γ α            (1.19.12) 
 
These last two equations imply that the ijkΓ  vanish whenever two or more of the 
subscripts are 3.   
 
Next, differentiate 1.19.1 to get 
 

αββα aaaa ⋅−=⋅ ,33, ,     α
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,                   (1.19.13) 
 
and Eqns. 1.18.6 now lead to 
 

αββαβααβ 3333 Γ−=Γ−=Γ=Γ           (1.19.14) 
 
From 1.18.8, using 1.19.11, 
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and, similarly {▲Problem 1} 
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3
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1.19.2 The Curvature Tensor 
 
In this section is introduced a tensor which, with the metric coefficients, completely 
describes the surface.   
 
First, although the base vector 3a  maintains unit length, its direction changes as a 
function of the coordinates 21 ,ΘΘ , and its derivative is, from 1.18.2 or 1.18.5 (and using 
1.19.15) 
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Define now the curvature tensor K to have the covariant components αβK , through 
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β
αβα a

a
K−=

Θ∂
∂ 3                (1.19.18) 

 
and it follows from 1.19.13, 1.19.15a and 1.19.14, 
 

βααβαβαβ 33
3 Γ−=Γ=Γ=K                                         (1.19.19) 

 
and, since these Christoffel symbols are symmetric in the βα , , the curvature tensor is 
symmetric. 
 
The mixed and contravariant components of the curvature tensor follows from 1.16.58-9: 
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and the “dot” is not necessary in the mixed notation because of the symmetry property.  
From these and 1.18.8, it follows that 
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Also, 
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which is known as the second fundamental form of the surface. 
 
From 1.19.19 and the definitions of the Christoffel symbols, 1.18.4, 1.18.6, the curvature 
can be expressed as 
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showing that the curvature is a measure of the change of the base vector αa  along the βΘ  
curve, in the direction of the normal vector; alternatively, the rate of change of the normal 
vector along βΘ , in the direction αa− .  Looking at this in more detail, consider now the 
change in the normal vector 3a  in the 1Θ  direction, Fig. 1.19.2.  Then 
 

γ
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Figure 1.19.2: Curvature of the Surface 
 
Taking the case of 0,0 2

1
1
1 =≠ KK , one has 1

11
13 aa Θ−= dKd .  From Fig. 1.19.2, and 

since the normal vector is of unit length, the magnitude 3ad  equals φd , the small angle 

through which the normal vector rotates as one travels along the 1Θ  coordinate curve.  
The curvature of the surface is defined to be the rate of change of the angle φ :1 
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and so the mixed component 1

1K  is the curvature in the 1Θ  direction.  Similarly, 2
2K  is 

the curvature in the 2Θ  direction. 
 
Assume now that 0,0 2

1
1
1 ≠= KK .  Eqn. 1.19.24 now reads 2

12
13 aa Θ−= dKd  and, 

referring Fig. 1.19.3, the twist of the surface with respect to the coordinates is  
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Figure 1.19.3: Twisting over the Surface 
 
When 21 aa = , 2

1K  is the twist; when they are not equal, 2
1K  is closely related to the 

twist. 
 

 
1 this is essentially the same definition as for the space curve of §1.6.2; there, the angle s∆= κφ  
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Two important quantities are often used to describe the curvature of a surface.  These are 
the first and the third principal scalar invariants: 
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The first invariant is twice the mean curvature MK  whilst the third invariant is called 
the Gaussian curvature (or Total curvature) GK  of the surface. 
 
Example (Curvature of a Sphere) 
 
The surface of a sphere of radius a can be described by the coordinates ( )21 ,ΘΘ , Fig. 
1.19.4, where 
 

13212211 cos,sinsin,cossin Θ=ΘΘ=ΘΘ= axaxax  
 

 
 

Figure 1.19.4: a spherical surface 
 
Then, from the definitions 1.16.19, 1.16.27-28, 1.16.34, {▲Problem 2} 
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From 1.19.6, 
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and this is clearly an orthogonal coordinate system with scale factors 
 

1,sin, 3
1

21 =Θ== hahah            (1.19.30) 
 
The surface Christoffel symbols are, from 1.18.33, 1.18.36, 
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Using the definitions 1.18.4, {▲Problem 3} 
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with the remaining symbols 03

3333
3
3

3
3 =Γ=Γ=Γ=Γ α

αα . 
 
The components of the curvature tensor are then, from 1.19.21, 1.19.19, 
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The mean and Gaussian curvature of a sphere are then 
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The principal curvatures are evidently 1

1K  and 2
2K .  As expected, they are simply the 

reciprocal of the radius of curvature a. 
■  

 
 
1.19.3 Covariant Derivatives 
 
Vectors 
 
Consider a vector v, which is not necessarily a surface vector, that is, it might have a 
normal component 3

3 vv = .  The covariant derivative is 
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Define now a two-dimensional analogue of the three-dimensional covariant derivative 
through 
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so that, using 1.19.19, 1.19.21, the covariant derivative can be expressed as 
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In the special case when the vector is a plane vector, then 03

3 == vv , and there is no 
difference between the three-dimensional and two-dimensional covariant derivatives.  In 
the general case, the covariant derivatives can now be expressed as 
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From 1.18.25, the gradient of a surface vector is (using 1.19.21) 
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Tensors 
 
The covariant derivatives of second order tensor components are given by 1.18.18.  For 
example, 
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Here, only surface tensors will  be examined, that is, all components with an index 3 are 
zero.  The two dimensional (plane) covariant derivative is 
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Although 033 == αα AA  for plane tensors, one still has non-zero 
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with 0|33 =γA . 
 
From 1.18.28, the divergence of a surface tensor is 
 

3||div aaA βγ
βγαβ

αβ AKA +=        (1.19.43)  
 
 
1.19.4 The Gauss-Codazzi Equations 
 
Some useful equations can be derived by considering the second derivatives of the base 
vectors.  First, from 1.18.2, 
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A second derivative is 
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Eliminating the base vectors derivatives using 1.19.44 and 1.19.20b leads to {▲Problem 
4} 
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This equals the partial derivative γβα ,a .  Comparison of the coefficient of 3a  for these 
alternative expressions for the second partial derivative leads to 
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From Eqn. 1.18.18, 
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and so 
 

βαγγαβ |||| KK =                                  (1.19.49) 
 
These are the Codazzi equations, in which there are only two independent non-trivial 
relations: 
 

212122112211 ||||,|||| KKKK ==    (1.19.50) 
 
Raising indices using the metric coefficients leads to the similar equations 
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The Riemann-Christoffel Curvature Tensor 
 
Comparing the coefficients of λa  in 1.19.46 and the similar expression for the second 
partial derivative shows that 
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The terms on the left are the two-dimensional Riemann-Christoffel, Eqn. 1.18.21, and so 
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Further,   
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These are the Gauss equations.  From 1.18.21 et seq., only 4 of the Riemann-Christoffel 
symbols are non-zero, and they are related through 
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so that there is in fact only one independent non-trivial Gauss relation.  Further, 
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Using 1.19.4b, 1.19.3, 
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and so the Gauss relation can be expressed succinctly as 
 

g
RKG

1212=              (1.19.58) 

 
where GK  is the Gaussian curvature, 1.19.27b.  Thus the Riemann-Christoffel tensor is 
zero if and only if the Gaussian curvature is zero, and in this case only can the order of 
the two covariant differentiations be interchanged. 
 
The Gauss-Codazzi equations, 1.19.50 and 1.19.58, are equivalent to a set of two first 
order and one second order differential equations that must be satisfied by the three 
independent metric coefficients αβg  and the three independent curvature tensor 
coefficients αβK . 
 
Intrinsic Surface Properties 
 
An intrinsic property of a surface is any quantity that remains unchanged when the 
surface is bent into another shape without stretching or shrinking.  Some examples of 
intrinsic properties are the length of a curve on the surface, surface area, the components 
of the surface metric tensor αβg  (and hence the components of the Riemann-Christoffel 
tensor) and the Guassian curvature (which follows from the Gauss equation 1.19.58). 
 
A developable surface is one which can be obtained by bending a plane, for example a 
piece of paper.  Examples of developable surfaces are the cylindrical surface and the 
surface of a cone.  Since the Riemann-Christoffel tensor and hence the Gaussian 
curvature vanish for the plane, they vanish for all developable surfaces.  
 
 
1.19.5 Geodesics 
 
The Geodesic Curvature and Normal Curvature 
 
Consider a curve C  lying on the surface, with arc length s measured from some fixed 
point.  As for the space curve, §1.6.2, one can define the unit tangent vector τ , principal 
normal ν  and binormal vector b (Eqn. 1.6.3 et seq.): 
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d
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d Θ

== ,     
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κ
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= ,     ντb ×=    (1.19.59) 

 
so that the curve passes along the intersection of the osculating plane containing τ and ν  
(see Fig. 1.6.3), and the surface These vectors form an orthonormal set but, although ν  is 
normal to the tangent, it is not necessarily normal to the surface, as illustrated in Fig. 



Section 1.19 

Solid Mechanics Part III                                                                                Kelly 194 

1.19.5.  For this reason, form the new orthonormal triad ( )32 ,, aττ , so that the unit vector 

2τ  lies in the plane tangent to the surface.  From 1.19.59, 1.19.3, 
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Figure 1.19.5: a curve lying on a surface 
 
Next, the vector dsd /τ  will be decomposed into components along 2τ  and the normal 

3a .  First, differentiate 1.19.59a and use 1.19.44b to get {▲Problem 5} 
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Then 
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where 
 

ds
d

ds
dK

ds
d

ds
d

ds
d

ds
de

n

g

βα

αβ

βα
γ
αβ

γλ

λγ

κ

κ

ΘΘ
=








 ΘΘ
Γ+

ΘΘ
= 2

2

                (1.19.63) 

 
These are formulae for the geodesic curvature gκ  and the normal curvature nκ .  Many 

different curves with representations )(sαΘ  can pass through a certain point with a given 
tangent vector τ .  Form 1.19.59, these will all have the same value of dsd /αΘ  and so, 
from 1.19.63, these curves will have the same normal curvature but, in general, different 
geodesic curvatures. 
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A curve passing through a normal section, that is, along the intersection of a plane 
containing τ and 3a , and the surface, will have zero geodesic curvature. 
 
The normal curvature can be expressed as 
 

τKτ=nκ                                        (1.19.64) 
 
If the tangent is along an eigenvector of K, then  nκ  is an eigenvalue, and hence a 
maximum or minimum normal curvature.  Surface curves with the property that an 
eigenvector of the curvature tensor is tangent to it at every point is called a line of 
curvature.  A convenient coordinate system for a surface is one in which the coordinate 
curves are lines of curvature.  Such a system, with 1Θ  containing the maximum values of 

nκ , has at every point a curvature tensor of the form 
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                        (1.19.65) 

 
This was the case with the spherical surface example discussed in §1.19.2. 
 
The Geodesic 
 
A geodesic is defined to be a curve which has zero geodesic curvature at every point 
along the curve.  Form 1.19.63, parametric equations for the geodesics over a surface are 
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                            (1.19.64) 

 
It can be proved that the geodesic is the curve of shortest distance joining two points on 
the surface.  Thus the geodesic curvature is a measure of the deviance of the curve from 
the shortest-path curve. 
 
The Geodesic Coordinate System 
 
If the Gaussian curvature of a surface is not zero, then it is not possible to find a surface 
coordinate system for which the metric tensor components αβg  equal the Kronecker delta 

αβδ  everywhere.  Such a geometry is called Riemannian.  However, it is always possible 
to construct a coordinate system in which αβαβ δ=g  , and the derivatives of the metric 
coefficients are zero, at a particular point on the surface.  This is the geodesic 
coordinate system. 
 
 
1.19.6 Problems 
 
1 Derive Eqns. 1.19.16, 03

3333
3

3 =Γ=Γ=Γ α
α . 

2 Derive the Cartesian components of the curvilinear base vectors for the spherical 
surface, Eqn. 1.19.28. 



Section 1.19 

Solid Mechanics Part III                                                                                Kelly 196 

3 Derive the Christoffel symbols for the spherical surface, Eqn. 1.19.32. 
4 Use Eqns. 1.19.44-5 and 1.19.20b to derive 1.19.46. 
5 Use Eqns. 1.19.59a and 1.19.44b to derive 1.19.61. 


	1.19 Curvilinear Coordinates: Curved Geometries
	1.19.1 Monoclinic Coordinate Systems
	Base Vectors
	The Cross Product
	The Metric and Surface elements
	Christoffel Symbols

	1.19.2 The Curvature Tensor
	Example (Curvature of a Sphere)

	1.19.3 Covariant Derivatives
	Vectors
	Tensors

	1.19.4 The Gauss-Codazzi Equations
	The Riemann-Christoffel Curvature Tensor
	Intrinsic Surface Properties

	1.19.5 Geodesics
	The Geodesic Curvature and Normal Curvature
	The Geodesic
	The Geodesic Coordinate System

	1.19.6 Problems


