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1.17 Curvilinear Coordinates: Transformation Laws 
 
 
1.17.1 Coordinate Transformation Rules 
 
Suppose that one has a second set of curvilinear coordinates ),,( 321 ΘΘΘ , with 
 

),,(),,,( 321321 ΘΘΘΘ=ΘΘΘΘΘ=Θ iiii            (1.17.1) 
 

By the chain rule, the covariant base vectors in the second coordinate system are given by 
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A similar calculation can be carried out for the inverse relation and for the contravariant 
base vectors, giving 
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The coordinate transformation formulae for vectors u can be obtained from 
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     Vector Transformation Rule   (1.17.3) 

 
These transformation laws have a simple structure and pattern – the 
subscripts/superscripts on the transformed coordinates Θ  quantities match those on the 
transformed quantities, g,u , and similarly for the first coordinate system. 
 
Note: 
• Covariant and contravariant vectors (and other quantities) are often defined in terms of the 

transformation rules which they obey.  For example, a covariant vector can be defined as one 
whose components transform according to the rules in the second line of the box Eqn. 1.17.3  

 
The transformation laws can be extended to higher-order tensors, 
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 Tensor Transformation Rule (1.17.4) 

 
From these transformation expressions, the following important theorem can be deduced: 
 

If the tensor components are zero in any one coordinate system, they also 
vanish in any other coordinate system 

 
Reduction to Cartesian Coordinates 
 
For the Cartesian system, let i
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i

ii ggegge ==′== ,  and 
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It follows from 1.17.2 that 
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so the transformation is orthogonal, as expected.  Also, as in Eqns. 1.5.11 and 1.5.13. 
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Transformation Matrix 
 
Transforming coordinates from ii gg → , one can write 
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ii M ggggg ⋅== ⋅                                            (1.17.8) 
 
The transformation for a vector can then be expressed, in index notation and matrix 
notation, as 
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ii vMvvMv ⋅⋅ == ,                                            (1.17.9) 
 
and the transformation matrix is 
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The rule for contravariant components is then, from 1.17.4, 
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The Identity Tensor 
 
The identity tensor transforms as  
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Note that 
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so that, for example, 
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1.17.2 The Metric of the Space 
 
In a second coordinate system, the metric 1.16.38 transforms to 
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confirming that the metric is a scalar invariant. 
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1.17.3 Problems 
 
1 Show that nm

mn vug  is an invariant. 

2 How does g  transform between different coordinate systems (in terms of the 
Jacobian of the transformation, [ ]pmJ Θ∂Θ∂= /det )?  [Note that g, although a scalar, 
is not invariant; it is thus called a pseudoscalar.] 

3 The components ijA  of a tensor A are 
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in cylindrical coordinates, at the point 3,4/,1 === zr πθ .  Find the contravariant 
components of A at this point in spherical coordinates. [Hint: use matrix 
multiplication.] 

 


	1.17 Curvilinear Coordinates: Transformation Laws
	1.17.1 Coordinate Transformation Rules
	Reduction to Cartesian Coordinates
	Transformation Matrix
	The Identity Tensor

	1.17.2 The Metric of the Space
	1.17.3 Problems


