1.15 Tensor Calculus 2: Tensor Functions

1.15.1 Vector-valued functions of a vector

Consider a vector-valued function of a vector

$$
\mathbf{a}=\mathbf{a}(\mathbf{b}), \quad a_{i}=a_{i}\left(b_{j}\right)
$$

This is a function of three independent variables b_{1}, b_{2}, b_{3}, and there are nine partial derivatives $\partial a_{i} / \partial b_{j}$. The partial derivative of the vector \mathbf{a} with respect to \mathbf{b} is defined to be a second-order tensor with these partial derivatives as its components:

$$
\begin{equation*}
\frac{\partial \mathbf{a}(\mathbf{b})}{\partial \mathbf{b}} \equiv \frac{\partial a_{i}}{\partial b_{j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.15.1}
\end{equation*}
$$

It follows from this that

$$
\begin{equation*}
\frac{\partial \mathbf{a}}{\partial \mathbf{b}}=\left(\frac{\partial \mathbf{b}}{\partial \mathbf{a}}\right)^{-1} \quad \text { or } \quad \frac{\partial \mathbf{a}}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{a}}=\mathbf{I}, \quad \frac{\partial a_{i}}{\partial b_{m}} \frac{\partial b_{m}}{\partial a_{j}}=\delta_{i j} \tag{1.15.2}
\end{equation*}
$$

To show this, with $a_{i}=a_{i}\left(b_{j}\right), b_{i}=b_{i}\left(a_{j}\right)$, note that the differential can be written as

$$
d a_{1}=\frac{\partial a_{1}}{\partial b_{j}} d b_{j}=\frac{\partial a_{1}}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{i}} d a_{i}=d a_{1}\left(\frac{\partial a_{1}}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{1}}\right)+d a_{2}\left(\frac{\partial a_{1}}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{2}}\right)+d a_{3}\left(\frac{\partial a_{1}}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{3}}\right)
$$

Since $d a_{1}, d a_{2}, d a_{3}$ are independent, one may set $d a_{2}=d a_{3}=0$, so that

$$
\frac{\partial a_{1}}{\partial b_{j}} \frac{\partial b_{j}}{\partial a_{1}}=1
$$

Similarly, the terms inside the other brackets are zero and, in this way, one finds Eqn. 1.15.2.

1.15.2 Scalar-valued functions of a tensor

Consider a scalar valued function of a (second-order) tensor

$$
\phi=\phi(\mathbf{T}), \quad \mathbf{T}=T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}
$$

This is a function of nine independent variables, $\phi=\phi\left(T_{i j}\right)$, so there are nine different partial derivatives:

$$
\frac{\partial \phi}{\partial T_{11}}, \frac{\partial \phi}{\partial T_{12}}, \frac{\partial \phi}{\partial T_{13}}, \frac{\partial \phi}{\partial T_{21}}, \frac{\partial \phi}{\partial T_{22}}, \frac{\partial \phi}{\partial T_{23}}, \frac{\partial \phi}{\partial T_{31}}, \frac{\partial \phi}{\partial T_{32}}, \frac{\partial \phi}{\partial T_{33}}
$$

The partial derivative of ϕ with respect to \mathbf{T} is defined to be a second-order tensor with these partial derivatives as its components:

$$
\begin{equation*}
\frac{\partial \phi}{\partial \mathbf{T}} \equiv \frac{\partial \phi}{\partial T_{i j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \quad \text { Partial Derivative with respect to a Tensor } \tag{1.15.3}
\end{equation*}
$$

The quantity $\partial \phi(\mathbf{T}) / \partial \mathbf{T}$ is also called the gradient of ϕ with respect to \mathbf{T}.
Thus differentiation with respect to a second-order tensor raises the order by 2 . This agrees with the idea of the gradient of a scalar field where differentiation with respect to a vector raises the order by 1 .

Derivatives of the Trace and Invariants

Consider now the trace: the derivative of $\operatorname{tr} \mathbf{A}$, with respect to \mathbf{A} can be evaluated as follows:

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{A}} \operatorname{tr} \mathbf{A} & =\frac{\partial A_{11}}{\partial \mathbf{A}}+\frac{\partial A_{22}}{\partial \mathbf{A}}+\frac{\partial A_{33}}{\partial \mathbf{A}} \\
& =\frac{\partial A_{11}}{\partial A_{i j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j}+\frac{\partial A_{22}}{\partial A_{i j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j}+\frac{\partial A_{33}}{\partial A_{i j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \tag{1.15.4}\\
& =\mathbf{e}_{1} \otimes \mathbf{e}_{1}+\mathbf{e}_{2} \otimes \mathbf{e}_{2}+\mathbf{e}_{3} \otimes \mathbf{e}_{3} \\
& =\mathbf{I}
\end{align*}
$$

Similarly, one finds that $\{\boldsymbol{\Delta}$ Problem 1\}

$$
\begin{array}{|cc|}
\frac{\partial(\operatorname{tr} \mathbf{A})}{\partial \mathbf{A}}=\mathbf{I} \quad \frac{\partial\left(\operatorname{tr} \mathbf{A}^{2}\right)}{\partial \mathbf{A}}=2 \mathbf{A}^{\mathrm{T}} \quad \frac{\partial\left(\operatorname{tr} \mathbf{A}^{3}\right)}{\partial \mathbf{A}}=3\left(\mathbf{A}^{2}\right)^{\mathrm{T}} \tag{1.15.5}\\
\frac{\partial\left((\operatorname{tr} \mathbf{A})^{2}\right)}{\partial \mathbf{A}}=2(\operatorname{tr} \mathbf{A}) \mathbf{I} \quad \frac{\partial\left((\operatorname{tr} \mathbf{A})^{3}\right)}{\partial \mathbf{A}}=3(\operatorname{tr} \mathbf{A})^{2} \mathbf{I} \\
\hline
\end{array}
$$

Derivatives of Trace Functions
From these and 1.11.17, one can evaluate the derivatives of the invariants $\{\boldsymbol{\Delta}$ Problem 2$\}$:

$$
\begin{aligned}
& \frac{\partial \mathrm{I}_{\mathbf{A}}}{\partial \mathbf{A}}=\mathbf{I} \\
& \frac{\partial \mathrm{II}_{\mathbf{A}}}{\partial \mathbf{A}}=\mathrm{I}_{\mathbf{A}} \mathbf{I}-\mathbf{A}^{\mathrm{T}} \\
& \frac{\partial I I I_{\mathbf{A}}}{\partial \mathbf{A}}=\left(\mathbf{A}^{\mathrm{T}}\right)^{2}-\mathrm{I}_{\mathbf{A}} \mathbf{A}^{\mathrm{T}}+\mathrm{II}_{\mathbf{A}} \mathbf{I}=\mathrm{III}_{\mathbf{A}} \mathbf{A}^{-\mathrm{T}} \\
& \hline
\end{aligned}
$$

Derivative of the Determinant

An important relation is

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{A}}(\operatorname{det} \mathbf{A})=(\operatorname{det} \mathbf{A}) \mathbf{A}^{-\mathrm{T}} \tag{1.15.7}
\end{equation*}
$$

which follows directly from 1.15.6c.

Other Relations

The total differential can be written as

$$
\begin{align*}
d \phi & =\frac{\partial \phi}{\partial T_{11}} d T_{11}+\frac{\partial \phi}{\partial T_{12}} d T_{12}+\frac{\partial \phi}{\partial T_{13}} d T_{13}+\cdots \tag{1.15.8}\\
& \equiv \frac{\partial \phi}{\partial \mathbf{T}}: d \mathbf{T}
\end{align*}
$$

This total differential gives an approximation to the total increment in ϕ when the increments of the independent variables T_{11}, \cdots are small.

The second partial derivative is defined similarly:

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial \mathbf{T} \partial \mathbf{T}} \equiv \frac{\partial^{2} \phi}{\partial T_{i j} \partial T_{p q}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{p} \otimes \mathbf{e}_{q}, \tag{1.15.9}
\end{equation*}
$$

the result being in this case a fourth-order tensor.
Consider a scalar-valued function of a tensor, $\phi(\mathbf{A})$, but now suppose that the components of \mathbf{A} depend upon some scalar parameter $t: \phi=\phi(\mathbf{A}(t))$. By means of the chain rule of differentiation,

$$
\begin{equation*}
\dot{\phi}=\frac{\partial \phi}{\partial A_{i j}} \frac{d A_{i j}}{d t} \tag{1.15.10}
\end{equation*}
$$

which in symbolic notation reads (see Eqn. 1.10.10e)

$$
\begin{equation*}
\frac{d \phi}{d t}=\frac{\partial \phi}{\partial \mathbf{A}}: \frac{d \mathbf{A}}{d t}=\operatorname{tr}\left[\left(\frac{\partial \phi}{\partial \mathbf{A}}\right)^{\mathrm{T}} \frac{d \mathbf{A}}{d t}\right] \tag{1.15.11}
\end{equation*}
$$

Identities for Scalar-valued functions of Symmetric Tensor Functions

Let \mathbf{C} be a symmetric tensor, $\mathbf{C}=\mathbf{C}^{\mathrm{T}}$. Then the partial derivative of $\phi=\phi(\mathbf{C}(\mathbf{T}))$ with respect to \mathbf{T} can be written as $\{\mathbf{\Delta}$ Problem 3\}
(1) $\frac{\partial \phi}{\partial \mathbf{T}}=2 \mathbf{T} \frac{\partial \phi}{\partial \mathbf{C}}$ for $\mathbf{C}=\mathbf{T}^{\mathrm{T}} \mathbf{T}$
(2) $\frac{\partial \phi}{\partial \mathbf{T}}=2 \frac{\partial \phi}{\partial \mathbf{T}} \mathbf{C}$ for $\mathbf{C}=\mathbf{T T}^{\mathrm{T}}$
(3) $\frac{\partial \phi}{\partial \mathbf{T}}=2 \mathbf{T} \frac{\partial \phi}{\partial \mathbf{C}}=2 \frac{\partial \phi}{\partial \mathbf{C}} \mathbf{T}=\mathbf{T} \frac{\partial \phi}{\partial \mathbf{C}}+\frac{\partial \phi}{\partial \mathbf{C}} \mathbf{T}$ for $\mathbf{C}=\mathbf{T} \mathbf{T}$ and symmetric \mathbf{T}

Scalar-valued functions of a Symmetric Tensor

Consider the expression

$$
\begin{equation*}
\mathbf{B}=\frac{\partial \phi(\mathbf{A})}{\partial \mathbf{A}} \quad B_{i j}=\frac{\partial \phi\left(A_{i j}\right)}{\partial A_{i j}} \tag{1.15.13}
\end{equation*}
$$

If \mathbf{A} is a symmetric tensor, there are a number of ways to consider this expression: two possibilities are that ϕ can be considered to be
(i) a symmetric function of the 9 variables $A_{i j}$
(ii) a function of 6 independent variables: $\phi=\phi\left(A_{11}, \bar{A}_{12}, \bar{A}_{13}, A_{22}, \bar{A}_{23}, A_{33}\right)$ where

$$
\begin{aligned}
& \bar{A}_{12}=\frac{1}{2}\left(A_{12}+A_{21}\right)=A_{12}=A_{21} \\
& \bar{A}_{13}=\frac{1}{2}\left(A_{13}+A_{31}\right)=A_{13}=A_{31} \\
& \bar{A}_{23}=\frac{1}{2}\left(A_{23}+A_{32}\right)=A_{23}=A_{32}
\end{aligned}
$$

Looking at (i) and writing $\phi=\phi\left(A_{11}, A_{12}\left(\bar{A}_{12}\right), \cdots, A_{21}\left(\bar{A}_{12}\right), \cdots\right)$, one has, for example,

$$
\frac{\partial \phi}{\partial \bar{A}_{12}}=\frac{\partial \phi}{\partial A_{12}} \frac{\partial A_{12}}{\partial \bar{A}_{12}}+\frac{\partial \phi}{\partial A_{21}} \frac{\partial A_{21}}{\partial \bar{A}_{12}}=\frac{\partial \phi}{\partial A_{12}}+\frac{\partial \phi}{\partial A_{21}}=2 \frac{\partial \phi}{\partial A_{12}},
$$

the last equality following from the fact that ϕ is a symmetrical function of the $A_{i j}$.

Thus, depending on how the scalar function is presented, one could write

$$
\begin{equation*}
B_{11}=\frac{\partial \phi}{\partial A_{11}}, \quad B_{12}=\frac{\partial \phi}{\partial A_{12}}, \quad B_{13}=\frac{\partial \phi}{\partial A_{13}}, \quad \text { etc. } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
B_{11}=\frac{\partial \phi}{\partial A_{11}}, \quad B_{12}=\frac{1}{2} \frac{\partial \phi}{\partial \bar{A}_{12}}, \quad B_{13}=\frac{1}{2} \frac{\partial \phi}{\partial \bar{A}_{13}}, \quad \text { etc. } \tag{ii}
\end{equation*}
$$

1.15.3 Tensor-valued functions of a tensor

The derivative of a (second-order) tensor \mathbf{A} with respect to another tensor \mathbf{B} is defined as

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial \mathbf{B}} \equiv \frac{\partial A_{i j}}{\partial B_{p q}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{p} \otimes \mathbf{e}_{q} \tag{1.15.14}
\end{equation*}
$$

and forms therefore a fourth-order tensor. The total differential $d \mathbf{A}$ can in this case be written as

$$
\begin{equation*}
d \mathbf{A}=\frac{\partial \mathbf{A}}{\partial \mathbf{B}}: d \mathbf{B} \tag{1.15.15}
\end{equation*}
$$

Consider now

$$
\frac{\partial \mathbf{A}}{\partial \mathbf{A}}=\frac{\partial A_{i j}}{\partial A_{k l}} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}
$$

The components of the tensor are independent, so

$$
\begin{equation*}
\frac{\partial A_{11}}{\partial A_{11}}=1, \quad \frac{\partial A_{11}}{\partial A_{12}}=0, \quad \cdots \quad \text { etc. } \quad \frac{\partial A_{m n}}{\partial A_{p q}}=\delta_{m p} \delta_{n q} \tag{1.15.16}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{\partial \mathbf{A}}{\partial \mathbf{A}}=\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{i} \otimes \mathbf{e}_{j}=\mathbf{I} \tag{1.15.17}
\end{equation*}
$$

the fourth-order identity tensor of Eqn. 1.12.4.

Example

Consider the scalar-valued function ϕ of the tensor \mathbf{A} and vector \mathbf{v} (the "dot" can be omitted from the following and similar expressions),

$$
\phi(\mathbf{A}, \mathbf{v})=\mathbf{v} \cdot \mathbf{A} \mathbf{v}
$$

The gradient of ϕ with respect to \mathbf{v} is

$$
\frac{\partial \phi}{\partial \mathbf{v}}=\frac{\partial \mathbf{v}}{\partial \mathbf{v}} \cdot \mathbf{A v}+\mathbf{v} \cdot \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{v}}=\mathbf{A v}+\mathbf{v A}=\left(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\right) \mathbf{v}
$$

On the other hand, the gradient of ϕ with respect to \mathbf{A} is

$$
\frac{\partial \phi}{\partial \mathbf{A}}=\mathbf{v} \cdot \frac{\partial \mathbf{A}}{\partial \mathbf{A}} \mathbf{v}=\mathbf{v} \cdot \mathbf{l} \mathbf{v}=\mathbf{v} \otimes \mathbf{v}
$$

Consider now the derivative of the inverse, $\partial \mathbf{A}^{-1} / \partial \mathbf{A}$. One can differentiate $\mathbf{A}^{-1} \mathbf{A}=\mathbf{0}$ using the product rule to arrive at

$$
\frac{\partial \mathbf{A}^{-1}}{\partial \mathbf{A}} \mathbf{A}=-\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \mathbf{A}}
$$

One needs to be careful with derivatives because of the position of the indices in 1.15.14); it looks like a post-operation of both sides with the inverse leads to $\partial \mathbf{A}^{-1} / \partial \mathbf{A}=-\mathbf{A}^{-1}(\partial \mathbf{A} / \partial \mathbf{A}) \mathbf{A}^{-1}=-A_{i k}^{-1} A_{j l}^{-1} \mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}$. However, this is not correct (unless \mathbf{A} is symmetric). Using the index notation (there is no clear symbolic notation), one has

$$
\begin{align*}
& \frac{\partial A_{i m}^{-1}}{\partial A_{k l}} A_{m j}=-A_{i m}^{-1} \frac{\partial A_{m j}}{\partial A_{k l}} \quad\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right) \\
\rightarrow & \frac{\partial A_{i m}^{-1}}{\partial A_{k l}} A_{m j} A_{j n}^{-1}=-A_{i m}^{-1} \frac{\partial A_{m j}}{\partial A_{k l}} A_{j n}^{-1} \tag{1.15.18}\\
\rightarrow & \frac{\partial A_{i m}^{-1}}{\partial A_{k l}} \delta_{m n}=-A_{i m}^{-1} \delta_{m k} \delta_{j l} A_{j n}^{-1} \\
\rightarrow & \frac{\partial A_{i j}^{-1}}{\partial A_{k l}}=-A_{i k}^{-1} A_{l j}^{-1} \quad\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}\right)
\end{align*}
$$

1.15.4 The Directional Derivative

The directional derivative was introduced in §1.6.11. The ideas introduced there can be extended to tensors. For example, the directional derivative of the trace of a tensor \mathbf{A}, in the direction of a tensor \mathbf{T}, is

$$
\begin{equation*}
\partial_{\mathbf{A}}(\operatorname{tr} \mathbf{A})[\mathbf{T}]=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{tr}(\mathbf{A}+\varepsilon \mathbf{T})=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}(\operatorname{tr} \mathbf{A}+\varepsilon \operatorname{tr} \mathbf{T})=\operatorname{tr} \mathbf{T} \tag{1.15.19}
\end{equation*}
$$

As a further example, consider the scalar function $\phi(\mathbf{A})=\mathbf{u} \cdot \mathbf{A v}$, where \mathbf{u} and \mathbf{v} are constant vectors. Then

$$
\begin{equation*}
\partial_{\mathbf{A}} \phi(\mathbf{A}, \mathbf{u}, \mathbf{v})[\mathbf{T}]=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}[\mathbf{u} \cdot(\mathbf{A}+\varepsilon \mathbf{T}) \mathbf{v}]=\mathbf{u} \cdot \mathbf{T} \mathbf{v} \tag{1.15.20}
\end{equation*}
$$

Also, the gradient of ϕ with respect to \mathbf{A} is

$$
\begin{equation*}
\frac{\partial \phi}{\partial \mathbf{A}}=\frac{\partial}{\partial \mathbf{A}}(\mathbf{u} \cdot \mathbf{A v})=\mathbf{u} \otimes \mathbf{v} \tag{1.15.21}
\end{equation*}
$$

and it can be seen that this is an example of the more general relation

$$
\begin{equation*}
\partial_{\mathbf{A}} \phi[\mathbf{T}]=\frac{\partial \phi}{\partial \mathbf{A}}: \mathbf{T} \tag{1.15.22}
\end{equation*}
$$

which is analogous to 1.6.41. Indeed,

$$
\begin{align*}
& \partial_{\mathbf{x}} \phi[\mathbf{w}]=\frac{\partial \phi}{\partial \mathbf{x}} \cdot \mathbf{w} \\
& \partial_{\mathbf{A}} \phi[\mathbf{T}]=\frac{\partial \phi}{\partial \mathbf{A}}: \mathbf{T} \tag{1.15.23}\\
& \partial_{\mathbf{u}} \mathbf{v}[\mathbf{w}]=\frac{\partial \mathbf{v}}{\partial \mathbf{u}} \mathbf{w}
\end{align*}
$$

Example (the Directional Derivative of the Determinant)

It was shown in $\S 1.6 .11$ that the directional derivative of the determinant of the 2×2 matrix \mathbf{A}, in the direction of a second matrix \mathbf{T}, is

$$
\partial_{\mathbf{A}}(\operatorname{det} \mathbf{A})[\mathbf{T}]=A_{11} T_{22}+A_{22} T_{11}-A_{12} T_{21}-A_{21} T_{12}
$$

This can be seen to be equal to $\operatorname{det} \mathbf{A}\left(\mathbf{A}^{-T}: \mathbf{T}\right)$, which will now be proved more generally for tensors \mathbf{A} and \mathbf{T} :

$$
\begin{aligned}
\partial_{\mathbf{A}}(\operatorname{det} \mathbf{A})[\mathbf{T}] & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{det}(\mathbf{A}+\varepsilon \mathbf{T}) \\
& =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{det}\left[\mathbf{A}\left(\mathbf{I}+\varepsilon \mathbf{A}^{-1} \mathbf{T}\right)\right] \\
& =\left.\operatorname{det} \mathbf{A} \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{det}\left(\mathbf{I}+\varepsilon \mathbf{A}^{-1} \mathbf{T}\right)
\end{aligned}
$$

The last line here follows from (1.10.16a). Now the characteristic equation for a tensor \mathbf{B} is given by (1.11.4, 1.11.5),

$$
\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right)=0=\operatorname{det}(\mathbf{B}-\lambda \mathbf{I})
$$

where λ_{i} are the three eigenvalues of \mathbf{B}. Thus, setting $\lambda=-1$ and $\mathbf{B}=\varepsilon \mathbf{A}^{-1} \mathbf{T}$,

$$
\begin{aligned}
\partial_{\mathbf{A}}(\operatorname{det} \mathbf{A})[\mathbf{T}] & =\left.\operatorname{det} \mathbf{A} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(1+\left.\lambda_{1}\right|_{\varepsilon \mathbf{A}^{-1} \mathbf{T}}\right)\left(1+\left.\lambda_{2}\right|_{\varepsilon \mathbf{A}^{-1} \mathbf{T}}\right)\left(1+\left.\lambda_{3}\right|_{\varepsilon \mathbf{A}^{-1} \mathbf{T}}\right) \\
& =\left.\operatorname{det} \mathbf{A} \frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(1+\left.\varepsilon \lambda_{1}\right|_{\mathbf{A}^{-1} \mathbf{T}}\right)\left(1+\left.\varepsilon \lambda_{2}\right|_{\mathbf{A}^{-1} \mathbf{T}}\right)\left(1+\left.\varepsilon \lambda_{3}\right|_{\mathbf{A}^{-1} \mathbf{T}}\right) \\
& =\operatorname{det} \mathbf{A}\left(\left.\lambda_{1}\right|_{\mathbf{A}^{-1} \mathbf{T}}+\left.\lambda_{2}\right|_{\mathbf{A}^{-1} \mathbf{T}}+\left.\lambda_{3}\right|_{\mathbf{A}^{-1} \mathbf{T}}\right) \\
& =\operatorname{det} \mathbf{A} \operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{T}\right)
\end{aligned}
$$

and, from (1.10.10e),

$$
\begin{equation*}
\partial_{\mathbf{A}}(\operatorname{det} \mathbf{A})[\mathbf{T}]=\operatorname{det} \mathbf{A}\left(\mathbf{A}^{-\mathrm{T}}: \mathbf{T}\right) \tag{1.15.24}
\end{equation*}
$$

Example (the Directional Derivative of a vector function)

Consider the n homogeneous algebraic equations $\mathbf{f}(\mathbf{x})=\mathbf{0}$:

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
\cdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0
\end{gathered}
$$

The directional derivative of \mathbf{f} in the direction of some vector \mathbf{u} is

$$
\begin{align*}
\partial_{\mathbf{x}} \mathbf{f}(\mathbf{x})[\mathbf{u}] & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathbf{f}(\mathbf{z}(\varepsilon)) \quad(\mathbf{z}=\mathbf{x}+\varepsilon \mathbf{u}) \\
& =\left(\frac{\partial \mathbf{f}(\mathbf{z})}{\partial \mathbf{z}} \frac{d \mathbf{z}}{d \varepsilon}\right)_{\varepsilon=0} \tag{1.15.25}\\
& =\mathbf{K u}
\end{align*}
$$

where \mathbf{K}, called the tangent matrix of the system, is

$$
\mathbf{K}=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left[\begin{array}{cccc}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} & \cdots & \partial f_{1} / \partial x_{n} \\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2} & & \partial f_{2} / \partial x_{n} \\
\vdots & & & \vdots \\
\partial f_{n} / \partial x_{1} & & \cdots & \partial f_{n} / \partial x_{n}
\end{array}\right], \quad \partial_{\mathbf{x}} \mathbf{f}[\mathbf{u}]=(\operatorname{grad} \mathbf{f}) \mathbf{u}
$$

which can be compared to (1.15.23c).

Properties of the Directional Derivative

The directional derivative is a linear operator and so one can apply the usual product rule. For example, consider the directional derivative of \mathbf{A}^{-1} in the direction of \mathbf{T} :

$$
\partial_{\mathbf{A}}\left(\mathbf{A}^{-1}\right)[\mathbf{T}]=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}(\mathbf{A}+\varepsilon \mathbf{T})^{-1}
$$

To evaluate this, note that $\partial_{\mathbf{A}}\left(\mathbf{A}^{-1} \mathbf{A}\right)[\mathbf{T}]=\partial_{\mathbf{A}}(\mathbf{I})[\mathbf{T}]=\mathbf{0}$, since \mathbf{I} is independent of \mathbf{A}. The product rule then gives $\partial_{\mathbf{A}}\left(\mathbf{A}^{-1}\right)[\mathbf{T}] \mathbf{A}=-\mathbf{A}^{-1} \partial_{\mathbf{A}}(\mathbf{A})[\mathbf{T}]$, so that

$$
\begin{equation*}
\partial_{\mathbf{A}}\left(\mathbf{A}^{-1}\right)[\mathbf{T}]=-\mathbf{A}^{-1} \partial_{\mathbf{A}} \mathbf{A}[\mathbf{T}] \mathbf{A}^{-1}=-\mathbf{A}^{-1} \mathbf{T} \mathbf{A}^{-1} \tag{1.15.26}
\end{equation*}
$$

Another important property of the directional derivative is the chain rule, which can be applied when the function is of the form $\mathbf{f}(\mathbf{x})=\hat{\mathbf{f}}(\mathbf{B}(\mathbf{x}))$. To derive this rule, consider (see §1.6.11)

$$
\begin{equation*}
\mathbf{f}(\mathbf{x}+\mathbf{u}) \approx \mathbf{f}(\mathbf{x})+\partial_{\mathbf{x}} \mathbf{f}[\mathbf{u}], \tag{1.15.27}
\end{equation*}
$$

where terms of order $o(\mathbf{u})$ have been neglected, i.e.

$$
\lim _{|\mathbf{u}| \rightarrow 0} \frac{o(\mathbf{u})}{|\mathbf{u}|}=0 .
$$

The left-hand side of the previous expression can also be written as

$$
\begin{aligned}
\hat{\mathbf{f}}(\mathbf{B}(\mathbf{x}+\mathbf{u})) & \approx \hat{\mathbf{f}}\left(\mathbf{B}(\mathbf{x})+\partial_{\mathbf{x}} \mathbf{B}[\mathbf{u}]\right) \\
& \approx \hat{\mathbf{f}}(\mathbf{B}(\mathbf{x}))+\partial_{\mathbf{B}} \hat{\mathbf{f}}(\mathbf{B})\left[\partial_{\mathbf{x}} \mathbf{B}[\mathbf{u}]\right]
\end{aligned}
$$

Comparing these expressions, one arrives at the chain rule,

$$
\begin{equation*}
\partial_{\mathbf{x}} \mathbf{f}[\mathbf{u}]=\partial_{\mathbf{B}} \hat{\mathbf{f}}(\mathbf{B})\left[\partial_{\mathbf{x}} \mathbf{B}[\mathbf{u}]\right] \quad \text { Chain Rule } \tag{1.15.28}
\end{equation*}
$$

As an application of this rule, consider the directional derivative of $\operatorname{det} \mathbf{A}^{-1}$ in the direction \mathbf{T}; here, \mathbf{f} is $\operatorname{det} \mathbf{A}^{-1}$ and $\hat{\mathbf{f}}=\hat{\mathbf{f}}(\mathbf{B}(\mathbf{A}))$. Let $\mathbf{B}=\mathbf{A}^{-1}$ and $\hat{\mathbf{f}}=\operatorname{det} \mathbf{B}$. Then, from Eqns. 1.15.24, 1.15.25, 1.10.3h, f,

$$
\begin{align*}
\left.\partial_{\mathbf{A}}\left(\operatorname{det} \mathbf{A}^{-1}\right) \mathbf{T}\right] & =\partial_{\mathbf{B}}(\operatorname{det} \mathbf{B})\left[\partial_{\mathbf{A}} \mathbf{A}^{-1}[\mathbf{T}]\right] \\
& =(\operatorname{det} \mathbf{B})\left(\mathbf{B}^{-\mathrm{T}}:\left(-\mathbf{A}^{-1} \mathbf{T} \mathbf{A}^{-1}\right)\right) \\
& =-\operatorname{det} \mathbf{A}^{-1}\left(\mathbf{A}^{\mathrm{T}}:\left(\mathbf{A}^{-1} \mathbf{T} \mathbf{A}^{-1}\right)\right) \tag{1.15.29}\\
& =-\operatorname{det} \mathbf{A}^{-1}\left(\mathbf{A}^{-\mathrm{T}}: \mathbf{T}\right)
\end{align*}
$$

1.15.5 Formal Treatment of Tensor Calculus

Following on from §1.6.12 and §1.14.6, a scalar function $f: V^{2} \rightarrow R$ is differentiable at $\mathbf{A} \in V^{2}$ if there exists a second order tensor $D f(\mathbf{A}) \in V^{2}$ such that

$$
\begin{equation*}
f(\mathbf{A}+\mathbf{H})=f(\mathbf{A})+D f(\mathbf{A}): \mathbf{H}+o(\|\mathbf{H}\|) \text { for all } \mathbf{H} \in V^{2} \tag{1.15.30}
\end{equation*}
$$

In that case, the tensor $\operatorname{Df}(\mathbf{A})$ is called the derivative of f at \mathbf{A}. It follows from this that $D f(\mathbf{A})$ is that tensor for which

$$
\begin{equation*}
\partial_{\mathbf{A}} f[\mathbf{B}]=D f(\mathbf{A}): \mathbf{B}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} f(\mathbf{A}+\varepsilon \mathbf{B}) \quad \text { for all } \quad \mathbf{B} \in V^{2} \tag{1.15.31}
\end{equation*}
$$

For example, from 1.15.24,

$$
\begin{equation*}
\partial_{\mathbf{A}}(\operatorname{det} \mathbf{A})[\mathbf{T}]=\operatorname{det} \mathbf{A}\left(\mathbf{A}^{-\mathrm{T}}: \mathbf{T}\right)=\left(\operatorname{det} \mathbf{A} \mathbf{A}^{-\mathrm{T}}\right): \mathbf{T} \tag{1.15.32}
\end{equation*}
$$

from which it follows, from 1.15.31, that

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{A}} \operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A} \mathbf{A}^{-\mathrm{T}} \tag{1.15.33}
\end{equation*}
$$

which is 1.15.7.
Similarly, a tensor-valued function $\mathbf{T}: V^{2} \rightarrow V^{2}$ is differentiable at $\mathbf{A} \in V^{2}$ if there exists a fourth order tensor $D \mathbf{T}(\mathbf{A}) \in V^{4}$ such that

$$
\begin{equation*}
\mathbf{T}(\mathbf{A}+\mathbf{H})=\mathbf{T}(\mathbf{A})+D \mathbf{T}(\mathbf{A}) \mathbf{H}+o(\|\mathbf{H}\|) \text { for all } \mathbf{H} \in V^{2} \tag{1.15.34}
\end{equation*}
$$

In that case, the tensor $D \mathbf{T}(\mathbf{A})$ is called the derivative of \mathbf{T} at \mathbf{A}. It follows from this that $D \mathbf{T}(\mathbf{A})$ is that tensor for which

$$
\begin{equation*}
\partial_{\mathbf{A}} \mathbf{T}[\mathbf{B}]=D \mathbf{T}(\mathbf{A}): \mathbf{B}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathbf{T}(\mathbf{A}+\varepsilon \mathbf{B}) \quad \text { for all } \quad \mathbf{B} \in V^{2} \tag{1.15.35}
\end{equation*}
$$

1.15.6 Problems

1. Evaluate the derivatives (use the chain rule for the last two of these)

$$
\frac{\partial\left(\operatorname{tr} \mathbf{A}^{2}\right)}{\partial \mathbf{A}}, \frac{\partial\left(\operatorname{tr} \mathbf{A}^{3}\right)}{\partial \mathbf{A}}, \frac{\partial\left((\operatorname{tr} \mathbf{A})^{2}\right)}{\partial \mathbf{A}}, \frac{\partial\left((\operatorname{tr} \mathbf{A})^{2}\right)}{\partial \mathbf{A}}
$$

2. Derive the derivatives of the invariants, Eqn. 1.15.5. [Hint: use the Cayley-Hamilton theorem, Eqn. 1.11.15, to express the derivative of the third invariant in terms of the third invariant.]
3. (a) Consider the scalar valued function $\phi=\phi(\mathbf{C}(\mathbf{F}))$, where $\mathbf{C}=\mathbf{F}^{\mathrm{T}} \mathbf{F}$. Use the chain rule

$$
\frac{\partial \phi}{\partial \mathbf{F}}=\frac{\partial \phi}{\partial C_{m n}} \frac{\partial C_{m n}}{\partial F_{i j}} \mathbf{e}_{i} \otimes \mathbf{e}_{j}
$$

to show that

$$
\frac{\partial \phi}{\partial \mathbf{F}}=2 \mathbf{F} \frac{\partial \phi}{\partial \mathbf{C}}, \quad \frac{\partial \phi}{\partial F_{i j}}=2 F_{i k} \frac{\partial \phi}{\partial C_{k j}}
$$

(b) Show also that

$$
\frac{\partial \phi}{\partial \mathbf{U}}=2 \mathbf{U} \frac{\partial \phi}{\partial \mathbf{C}}=2 \frac{\partial \phi}{\partial \mathbf{C}} \mathbf{U}
$$

for $\mathbf{C}=\mathbf{U} \mathbf{U}$ with \mathbf{U} symmetric.
[Hint: for (a), use the index notation: first evaluate $\partial C_{m n} / \partial F_{i j}$ using the product rule, then evaluate $\partial \phi / \partial F_{i j}$ using the fact that \mathbf{C} is symmetric.]
4. Show that
(a) $\frac{\partial \mathbf{A}^{-1}}{\partial \mathbf{A}}: \mathbf{B}=-\mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1}$,
(b) $\frac{\partial \mathbf{A}^{-1}}{\partial \mathbf{A}}: \mathbf{A} \otimes \mathbf{A}^{-1}=-\mathbf{A}^{-1} \otimes \mathbf{A}^{-1}$
5. Show that

$$
\frac{\partial \mathbf{A}^{\mathrm{T}}}{\partial \mathbf{A}}: \mathbf{B}=\mathbf{B}^{\mathrm{T}}
$$

6. By writing the norm of a tensor $|\mathbf{A}|, 1.10 .14$, where \mathbf{A} is symmetric, in terms of the trace (see 1.10.10), show that

$$
\frac{\partial|\mathbf{A}|}{\partial \mathbf{A}}=\frac{\mathbf{A}}{|\mathbf{A}|}
$$

7. Evaluate
(i) $\quad \partial_{\mathbf{A}}\left(\mathbf{A}^{2}\right)[\mathbf{T}]$
(ii) $\left.\quad \partial_{\mathbf{A}}\left(\operatorname{tr} \mathbf{A}^{2}\right) \mathbf{T}\right]$ (see 1.10.10e)
8. Derive 1.15 .29 by using the definition of the directional derivative and the relation 1.15.7, $\partial(\operatorname{det} \mathbf{A}) / \partial \mathbf{A}=(\operatorname{det} \mathbf{A}) \mathbf{A}^{-\mathrm{T}}$.
