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1.15 Tensor Calculus 2: Tensor Functions 
 
 
1.15.1 Vector-valued functions of a vector 
 
Consider a vector-valued function of a vector 
 

)(),( jii baa == baa  
 
This is a function of three independent variables 321 ,, bbb , and there are nine partial 
derivatives ji ba ∂∂ / .  The partial derivative of the vector  a with respect to b is defined to 
be a second-order tensor with these partial derivatives as its components: 
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It follows from this that   
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To show this, with )(),( jiijii abbbaa == , note that the differential can be written as 
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Since 321 ,, dadada  are independent, one may set 032 == dada , so that 
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Similarly, the terms inside the other brackets are zero and, in this way, one finds Eqn. 
1.15.2. 
  
 
1.15.2 Scalar-valued functions of a tensor 
 
Consider a scalar valued function of a (second-order) tensor 
 

jiijT eeTT ⊗== ),(φφ . 
This is a function of nine independent variables, )( ijTφφ = , so there are nine different 
partial derivatives: 
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The partial derivative of φ  with respect to T is defined to be a second-order tensor with 
these partial derivatives as its components: 
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   Partial Derivative with respect to a Tensor    (1.15.3) 

 
The quantity TT ∂∂ /)(φ  is also called the gradient of φ  with respect to T. 
 
Thus differentiation with respect to a second-order tensor raises the order by 2.  This 
agrees with the idea of the gradient of a scalar field where differentiation with respect to a 
vector raises the order by 1. 
 
Derivatives of the Trace and Invariants 
 
Consider now the trace: the derivative of Atr , with respect to A can be evaluated as 
follows:  
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Similarly, one finds that {▲Problem 1} 
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Derivatives of Trace Functions 
 

From these and 1.11.17, one can evaluate the derivatives of the invariants {▲Problem 2}: 
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   Derivatives of the Invariants   (1.15.6) 
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Derivative of the Determinant 
 
An important relation is 
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which follows directly from 1.15.6c.  
 
Other Relations 
 
The total differential can be written as 
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This total differential gives an approximation to the total increment in φ  when the 
increments of the independent variables ,11T  are small. 
 
The second partial derivative is defined similarly: 
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the result being in this case a fourth-order tensor. 
 
Consider a scalar-valued function of a tensor, )(Aφ , but now suppose that the 
components of A depend upon some scalar parameter t: ))(( tAφφ = .  By means of the 
chain rule of differentiation, 
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which in symbolic notation reads (see Eqn. 1.10.10e) 
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Identities for Scalar-valued functions of Symmetric Tensor Functions 
 
Let C be a symmetric tensor, TCC = .  Then the partial derivative of ( ))(TCφφ =  with 
respect to T can be written as {▲Problem 3} 
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Scalar-valued functions of a Symmetric Tensor 
 
Consider the expression 
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If A is a symmetric tensor, there are a number of ways to consider this expression: two 
possibilities are that φ  can be considered to be 

(i) a symmetric function of the 9 variables ijA  

(ii) a function of 6 independent variables: ( )332322131211 ,,,,, AAAAAAφφ =  
where 
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Looking at (i) and writing ( ) ( )( ) ,,,, 1221121211 AAAAAφφ = , one has, for example,  
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the last equality following from the fact that φ  is a symmetrical function of the ijA . 
 
Thus, depending on how the scalar function is presented, one could write 
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1.15.3 Tensor-valued functions of a tensor 
 
The derivative of a (second-order) tensor A with respect to another tensor B is defined as 
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and forms therefore a fourth-order tensor.  The total differential Ad  can in this case be 
written as 
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Consider now  
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The components of the tensor are independent, so 
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and so 
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the fourth-order identity tensor of Eqn. 1.12.4. 
 
Example 
 
Consider the scalar-valued function φ  of the tensor A and vector v (the “dot” can be 
omitted from the following and similar expressions), 
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The gradient of φ  with respect to v is 
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On the other hand, the gradient of φ  with respect to A is 
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■  
 
Consider now the derivative of the inverse, AA ∂∂ − /1 .  One can differentiate 0AA =−1  
using the product rule to arrive at 
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One needs to be careful with derivatives because of the position of the indices in 1.15.14); 
it looks like a post-operation of both sides with the inverse leads to 

( ) lkjijlik AA eeeeAAAAAA ⊗⊗⊗−=∂∂−=∂∂ −−−−− 11111 // .  However, this is not correct 
(unless A is symmetric).  Using the index notation (there is no clear symbolic notation), 
one has 
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■  
 
 
1.15.4 The Directional Derivative 
 
The directional derivative was introduced in §1.6.11.  The ideas introduced there can be 
extended to tensors.  For example, the directional derivative of the trace of a tensor A, in 
the direction of a tensor T, is 
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As a further example, consider the scalar function AvuA ⋅=)(φ , where u and v are 
constant vectors.  Then 
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Also, the gradient of φ  with respect to A is 
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and it can be seen that this is an example of the more general relation 
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which is analogous to 1.6.41.  Indeed,  
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Example (the Directional Derivative of the Determinant) 
 
It was shown in §1.6.11 that the directional derivative of the determinant of the 22×  
matrix A, in the direction of a second matrix T, is  
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This can be seen to be equal to ( )TAA :det T− , which will now be proved more generally 
for tensors A and T: 
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The last line here follows from (1.10.16a).  Now the characteristic equation for a tensor B 
is given by (1.11.4, 1.11.5), 
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where iλ  are the three eigenvalues of B.  Thus, setting 1−=λ  and TAB 1−= ε , 
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and, from (1.10.10e),  
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Example (the Directional Derivative of a vector function) 
 
Consider the n homogeneous algebraic equations ( ) oxf = : 
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The directional derivative of f in the direction of some vector u is 
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where K, called the tangent matrix of the system, is 
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which can be compared to (1.15.23c). 

■  
 
Properties of the Directional Derivative 
 
The directional derivative is a linear operator and so one can apply the usual product rule.  
For example, consider the directional derivative of 1−A  in the direction of T: 
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To evaluate this, note that ( ) ( ) 0TITAA AA =∂=∂ − ][][1 , since I is independent of A.  The 
product rule then gives ( ) ( ) ][][ 11 TAAATA AA ∂−=∂ −− , so that 
 

( ) 11111 ][][ −−−−− −=∂−=∂ TAAATAATA AA      (1.15.26) 
 
Another important property of the directional derivative is the chain rule, which can be 
applied when the function is of the form ( )( )xBfxf ˆ)( = .  To derive this rule, consider (see 
§1.6.11) 
 

][)()( ufxfuxf x∂+≈+ ,      (1.15.27) 
 
where terms of order )(uo  have been neglected, i.e. 
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The left-hand side of the previous expression can also be written as 
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Comparing these expressions, one arrives at the chain rule, 
 

( ) ]][[ˆ][ uBBfuf xBx ∂∂=∂    Chain Rule             (1.15.28) 
 
As an application of this rule, consider the directional derivative of 1det −A  in the 
direction T; here, f is 1det −A  and ( ))(ˆˆ ABff = .  Let 1−= AB  and Bf detˆ = .  Then, from 
Eqns. 1.15.24, 1.15.25, 1.10.3h, f, 
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1.15.5 Formal Treatment of Tensor Calculus 
 
Following on from §1.6.12 and §1.14.6, a scalar function RVf →2:  is differentiable at 

2V∈A  if there exists a second order tensor ( ) 2VDf ∈A  such that 
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( ) ( ) ( ) ( )HHAAHA oDfff ++=+ :    for all   2V∈H                (1.15.30) 

 
In that case, the tensor ( )ADf  is called the derivative of f at A.  It follows from this that 

( )ADf  is that tensor for which 
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For example, from 1.15.24, 
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from which it follows, from 1.15.31, that 
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which is 1.15.7. 
 
Similarly, a tensor-valued function 22: VV →T  is differentiable at 2V∈A  if there 
exists a fourth order tensor ( ) 4VD ∈AT  such that 
 

( ) ( ) ( ) ( )HHATATHAT oD ++=+    for all   2V∈H                (1.15.34) 
 
In that case, the tensor ( )ATD  is called the derivative of T at A.  It follows from this that 

( )ATD  is that tensor for which 
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1.15.6 Problems 
 
1. Evaluate the derivatives (use the chain rule for the last two of these) 
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2. Derive the derivatives of the invariants, Eqn. 1.15.5.  [Hint: use the Cayley-Hamilton 
theorem, Eqn. 1.11.15, to express the derivative of the third invariant in terms of the 
third invariant.] 

3. (a) Consider the scalar valued function ( )( )FCφφ = , where FFC T= .  Use the chain 
rule 
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to show that 
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(b) Show also that 
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=
∂
∂ φφφ 22  

for UUC =  with U symmetric. 
[Hint: for (a), use the index notation: first evaluate ijmn FC ∂∂ /  using the product rule, 
then evaluate ijF∂∂ /φ  using the fact that C is symmetric.] 

4. Show that 
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5. Show that 
T

T
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A

A
=

∂
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6. By writing the norm of a tensor A , 1.10.14, where A is symmetric, in terms of the 
trace (see 1.10.10), show that 

A
A

A
A

=
∂
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7. Evaluate 
(i) ( ) ][2 TAA∂  
(ii) ( ) ][tr 2 TAA∂  (see 1.10.10e) 

8. Derive 1.15.29 by using the definition of the directional derivative and the relation 
1.15.7, ( ) ( ) Tdet/det −=∂∂ AAAA . 
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