Section 1.15
1.15 Tensor Calculus 2: Tensor Functions

1.15.1 Vector-valued functions of a vector
Consider a vector-valued function of a vector

a=a(b), a, =a;(b;)

This is a function of three independent variables b,, b,, b, , and there are nine partial
derivatives Oa,; /0b;. The partial derivative of the vector a with respect to b is defined to

be a second-order tensor with these partial derivatives as its components:

cab) _ % . @e. (1.15.1)
ob b, J

It follows from this that

-1
@—(a—bj or A _y 04 by s (1.15.2)

ob \oa oboa b, da, '

To show this, with a, = a,(b,), b, = b,(a,) , note that the differential can be written as

ob ob. ob. ob.
da, =gy =90 g g | S L0 g | 0P gy | 90D
ob, "’ ob, oa, ob, éa, ob, oa, ob, oa,

Since da,,da,,da, are independent, one may set da, = da, =0, so that

aal 8bj 1

ob; Oa,
Similarly, the terms inside the other brackets are zero and, in this way, one finds Eqn.
1.15.2.
1.15.2 Scalar-valued functions of a tensor

Consider a scalar valued function of a (second-order) tensor

¢ =¢(T), T:Tijei®ej
This is a function of nine independent variables, ¢ = ¢(7},), so there are nine different

partial derivatives:
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op 0p 0¢ 0p Op Op Op Op Of
87111 ’ 87—12 ’ 81—13 ’ aTZl ’ 6T22 , a]—723 ’ 67131 ’ aT’SZ , a7133

The partial derivative of ¢ with respect to T is defined to be a second-order tensor with
these partial derivatives as its components:

%=%e ®e

= ; ;| Partial Derivative with respect to a Tensor (1.15.3)
or o7, ‘

The quantity 0¢(T)/0T is also called the gradient of ¢ with respect to T.

Thus differentiation with respect to a second-order tensor raises the order by 2. This
agrees with the idea of the gradient of a scalar field where differentiation with respect to a
vector raises the order by 1.

Derivatives of the Trace and Invariants

Consider now the trace: the derivative of trA , with respect to A can be evaluated as
follows:

0\ Oy oAy oA,

0A  OA OA OA

04 o4 o4
_ 6141“1 ei®ej+6722ei®ej+6733ei®ej (1.15.4)

ij ij ij

=e Qe +e, Ve, +e, e,
=1

Similarly, one finds that { A Problem 1}

olirA) _ | o) 4o ola’) _ 3(a2)
oA oA oA (1.15.5)
olaray’) _ 2(trA) drar) 3(rA)'T

Derivatives of Trace Functions

From these and 1.11.17, one can evaluate the derivatives of the invariants { A Problem 2}:

o,
oA
oIl ,

oA
oIl

O0A

=[,I-A" Derivatives of the Invariants (1.15.6)

—(ATf —I, AT+, I=TT,A"
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Derivative of the Determinant

An important relation is

2 (detA)=(detA)A (1.15.7)

which follows directly from 1.15.6c.
Other Relations

The total differential can be written as

dp=-0-ar, +20ar, + 20-at, 4

E%:dT
oT

This total differential gives an approximation to the total increment in ¢ when the

increments of the independent variables 7,,,--- are small.

The second partial derivative is defined similarly:

2 2
¢ = ¢ e, e Ve ®e,_, (1.15.9)
oToT 071,07, oo

the result being in this case a fourth-order tensor.

Consider a scalar-valued function of a tensor, ¢(A), but now suppose that the
components of A depend upon some scalar parameter ¢: ¢ = §(A(¢)). By means of the
chain rule of differentiation,

. O0¢ dA;
= YV 1.15.10
¢ 04, dt ( )
which in symbolic notation reads (see Eqn. 1.10.10¢)
T
¢ _0p dA _ (%j aA (1.15.11)
dt OA dt OA ) dt

Identities for Scalar-valued functions of Symmetric Tensor Functions

Let C be a symmetric tensor, C = C". Then the partial derivative of ¢ = ¢(C(T)) with
respect to T can be written as { A Problem 3}
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My 21 1T
oC

oT
(2) 2—i= 2—?C for C=TT" (1.15.12)

3) %=2 %=2%T=T%+%T for C=TT and symmetric T
oT oC oC oCc oC

Scalar-valued functions of a Symmetric Tensor

Consider the expression

B= og(4) B o9l4,) (1.15.13)

If A is a symmetric tensor, there are a number of ways to consider this expression: two
possibilities are that ¢ can be considered to be

(1) a symmetric function of the 9 variables 4,
(i)  a function of 6 independent variables: ¢ = ¢(All Ay Ay Ay Ass,s A33)
where

— 1
A12 = E(Alz + A21): Alz = A21

1
A13 = 5(‘413 + A31): A13 = A31

— 1
Azs = 5(‘423 + Asz ) = A23 = A32

Looking at (1) and writing ¢ = ¢(A11 A, (le ), e, Ay, (le ), - -), one has, for example,

0p _0p oAy 0p My _0p 09 _, 0
0A,, O0A, 0A,, 0A, 0A,, 0A, 0A, 04,,

2

the last equality following from the fact that ¢ is a symmetrical function of the 4, .

Thus, depending on how the scalar function is presented, one could write

_ o9 o 5 00

1 B, = , B,=—, =——, etc.

» ! o4, " 04, 04,

. 0 10 1 0

(i1) B, = ? » B, :_T¢> 13 :_T¢= ete.
04,, 204, 204,
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1.15.3 Tensor-valued functions of a tensor

The derivative of a (second-order) tensor A with respect to another tensor B is defined as

OA o4,

oB 0B

Prq

e, Qe Qe ®e, (1.15.14)

and forms therefore a fourth-order tensor. The total differential dA can in this case be
written as

A o

dA = —: 1.15.15
B ( )
Consider now
04,
oA _ % e, ®e Qe, e,
OA 04, !
The components of the tensor are independent, so
A A 04
TN R TR S, =500, (1.15.16)
04,, 04,, o4,,
and so
2—i:ei®e(/®ei®ej:|, (1.15.17)

the fourth-order identity tensor of Eqn. 1.12.4.
Example

Consider the scalar-valued function ¢ of the tensor A and vector v (the “dot” can be
omitted from the following and similar expressions),

#(A,v)=v-Av
The gradient of ¢ with respect to v is

%zﬁ-Av+v-A@=Av+vA=(A+AT)v

ov oOv ov

On the other hand, the gradient of ¢ with respect to A is

%=V-6—AV=V~|V=V®V
OA OA
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Consider now the derivative of the inverse, A" /6A . One can differentiate A'A =0
using the product rule to arrive at

-1
0A A__A*Ia_A

OA O0A

One needs to be careful with derivatives because of the position of the indices in 1.15.14);
it looks like a post-operation of both sides with the inverse leads to

OA™' /OA =-A"'(0A/OA)A™ =-4,'A})e, ®e, ®e, ®e,. However, this is not correct
(unless A is symmetric). Using the index notation (there is no clear symbolic notation),
one has

8A-_1 a‘Am

—m 4, =—A4, 2 (el.®e.®ek®e,)

od, " 04, ’
N iAm;A;nl =4 —’Al‘n1

aAk[ o aAk[ '

o (1.15.18)
—> _lmamlz = _At;llé‘mké‘le;f:

04, '

04!
N = A A (ei®ej®ek®el)

kl
]

1.15.4 The Directional Derivative

The directional derivative was introduced in §1.6.11. The ideas introduced there can be
extended to tensors. For example, the directional derivative of the trace of a tensor A, in
the direction of a tensor T, is

0, (trA)T] = a4
de

tr(A + gT) = a4

(trA + &trT) = T (1.15.19)
0 de

=0

As a further example, consider the scalar function ¢(A) =u- Av, where u and v are
constant vectors. Then

aA¢(A,u,v)[T]=di [u-(A+&T)v]=u-Tv (1.15.20)
& &=0
Also, the gradient of ¢ with respect to A is
%=i(u~Av)=u®V (1.15.21)
OA OA
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and it can be seen that this is an example of the more general relation

o
0,9[T]=—:T 1.15.22
APLT] A ( )
which is analogous to 1.6.41. Indeed,
8x¢[w]:%-w
ox
o¢
0,9[T]|=—:T 1.15.23
APIT] A ( )

8uv[w]=2—vw
u

Example (the Directional Derivative of the Determinant)

It was shown in §1.6.11 that the directional derivative of the determinant of the 2x 2
matrix A, in the direction of a second matrix T, is

aA (det A)[T] = A11T22 + AzzTn - A12T21 - A21le

This can be seen to be equal to det A (A_T : T), which will now be proved more generally
for tensors A and T:

0, (det AYT] = di det(A + £T)

=0

d

- det[A(1 +2A™'T)|

=0

det( + £A™'T)

=0

=det A i
de

The last line here follows from (1.10.16a). Now the characteristic equation for a tensor B
is given by (1.11.4, 1.11.5),

(4, =AY, = A)A, —4)=0 = det(B - A1)

where A, are the three eigenvalues of B. Thus, setting 4 =—1 and B = eA’'T,
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(1 + /11 |gA’lT Xl + /12 |gA"T Xl + 13 |.9A"T )

=0

(1 + e, |A,,T Xl + &4, |A,,T Xl + 5/I3|A,]T)

=0

= det A (4, |y + Ay ﬂa|m)
= det A tr(A'T)

9, (det AYT] = det A a4
de

=detA i
de

and, from (1.10.10e),

0, (det AYT] = detA(A™": T) (1.15.24)

|
Example (the Directional Derivative of a vector function)

Consider the » homogeneous algebraic equations f (x) =0:

[0,
fz(xlsxzs""xn)

0
0

fn(xlaxza"'axn) 0

The directional derivative of f in the direction of some vector u is

f(z(e)) (z = x+gu)

=0

0 f(0u] =2

:(_af(z ﬂj (1.15.25)
oz de),,

=Ku

where K, called the tangent matrix of the system, is

of, Iox, of /ox, - of /ox,
of, /o of, /0. of, /0.
K:ﬁ: fz. /0% fz, Fn , 0 f[u]=(gradf)u
ox :
o, I ox, o Jox,

which can be compared to (1.15.23c¢).

Properties of the Directional Derivative

The directional derivative is a linear operator and so one can apply the usual product rule.
For example, consider the directional derivative of A™" in the direction of T:
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(A+eT)"

&=0

0, (A7 )T =%

To evaluate this, note that 0, (A"lAlT] =0, (IIT] =0, since I is independent of A. The
product rule then gives 6, (A‘l lT]A =-A"0,(A)T], so that

0, (A"T]=-A"0, A[TIA" =—A"'TA"’ (1.15.26)

Another important property of the directional derivative is the chain rule, which can be
applied when the function is of the form f(x) = f (B(x)). To derive this rule, consider (see
§1.6.11)

f(x+u)~=f(x)+0 flu], (1.15.27)

where terms of order o(u) have been neglected, i.e.

ow) _,

lim
[u

[u|—>0

The left-hand side of the previous expression can also be written as

f(B(x+u)) ~ f(B(x) + &, B[u])
f(B(x))+0,f(B)0,Blul]

Q

Comparing these expressions, one arrives at the chain rule,

o f[u] = 8,f(B)d,Blu]] Chain Rule (1.15.28)

As an application of this rule, consider the directional derivative of det A~ in the
direction T; here, fis det A~ and f = f(B(A)). Let B= A~ and f = detB. Then, from
Eqns. 1.15.24, 1.15.25, 1.10.3h, f,

0, (det A" T =0, (detBYo,A'[T]]
= (detB)B " :(-A"TA")
=—detA”(AT:(A"TA™))
——detA(AT:T)

(1.15.29)

1.15.5 Formal Treatment of Tensor Calculus

Following on from §1.6.12 and §1.14.6, a scalar function f:¥* — R is differentiable at
A € V7 if there exists a second order tensor Df(A)e V'? such that
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f(A+H)= f(A)+Df(A):H+o(H|) forall Hep? (1.15.30)

In that case, the tensor Df(A) is called the derivative of fat A. It follows from this that
Df(A) is that tensor for which

d

8Af[B]=Df(A):B=d— f(A+eB) forall Bel? (1.15.31)
2 &=0
For example, from 1.15.24,

0, (det AYT] = det A(A™" : T)=(detA AT): T (1.15.32)

from which it follows, from 1.15.31, that

9 GetA=detA A (1.15.33)
oA

which is 1.15.7.

Similarly, a tensor-valued function T:V> — V'? is differentiable at A € V' if there
exists a fourth order tensor DT(A)e V* such that

T(A + H)=T(A)+ DT(A)H +o(H|) forall Hep? (1.15.34)

In that case, the tensor DT(A) is called the derivative of T at A. It follows from this that
DT(A) is that tensor for which

9, T[B]=DT(A):B = di T(A+¢&B) forall Bel’ (1.15.35)
& &=0

1.15.6 Problems

1. Evaluate the derivatives (use the chain rule for the last two of these)
o(trA®)  ara®)  a(rAa)?)  al(tra)?)
oA~ 0A oA oA
2. Derive the derivatives of the invariants, Eqn. 1.15.5. [Hint: use the Cayley-Hamilton
theorem, Eqn. 1.11.15, to express the derivative of the third invariant in terms of the
third invariant.]

3. (a) Consider the scalar valued function ¢ = ¢(C(F)), where C = F'F. Use the chain
rule

b 2

__09 o g
oF oC_ OF. /

mn ij

to show that
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%:217%’ %:2}7% o¢
OF oC OF; oCy,
(b) Show also that
3 _ b _, 0

ou oC oC
for C = UU with U symmetric.
[Hint: for (a), use the index notation: first evaluate 0C,, /OF) using the product rule,

then evaluate 0¢/0F; using the fact that C is symmetric. ]

4. Show that
(a) agA ‘B=—A"'BA™ R (b) aaLA A®A = A QA™
5. Show that
OA"

‘B=B"
O0A

6. By writing the norm of a tensor |A

trace (see 1.10.10), show that
dal_ A

oA |A

, 1.10.14, where A is symmetric, in terms of the

7. Evaluate
i) o,(A*)T]
Gi) 0, (trA*T] (see 1.10.10c)
8. Derive 1.15.29 by using the definition of the directional derivative and the relation
1.15.7, d(det A)/0A = (det A)A™".
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