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1.13 Coordinate Transformation of Tensor Components 
 
This section generalises the results of §1.5, which dealt with vector coordinate 
transformations.  It has been seen in §1.5.2 that the transformation equations for the 
components of a vector are jiji uQu ′= , where [ ]Q  is the transformation matrix.  Note that 
these ijQ ’s are not the components of a tensor – these sQij '  are mapping the components 
of a vector onto the components of the same vector in a second coordinate system – a 
(second-order) tensor, in general, maps one vector onto a different vector.  The equation 

jiji uQu ′=  is in matrix element form, and is not to be confused with the index notation for 
vectors and tensors. 
 
 
1.13.1 Relationship between Base Vectors 
 
Consider two coordinate systems with base vectors ie  and ie′ .  It has been seen in the 
context of vectors that, Eqn. 1.5.9, 
 

),cos( jiijji xxQ ′≡=′⋅ee .                                      (1.13.1) 
 
Recal that the i’s and j’s here are not referring to the three different components of a 
vector, but to different vectors (nine different vectors in all). 
 
Note that the relationship 1.13.1 can also be derived as follows: 
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Dotting each side here with j′e  then gives 1.13.1.  Eqn. 1.13.2, together with the 
corresponding inverse relations, read 
 

jiji Q ee ′= ,     jjii Q ee =′                        (1.13.3) 
 
Note that the components of the transformation matrix [ ]Q  are the same as the 
components of the change of basis tensor 1.10.24-25. 
 
 
1.13.2 Tensor Transformation Rule 
 
As with vectors, the components of a (second-order) tensor will change under a change of 
coordinate system.  In this case, using 1.13.3, 
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so that (and the inverse relationship) 
 

pqqjpiijpqjqipij TQQTTQQT =′′= ,    Tensor Transformation Formulae   (1.13.5) 
 
or, in matrix form, 
 

[ ] [ ][ ][ ] [ ] [ ][ ][ ]QTQTQTQT TT , =′′=            (1.13.6) 
 
Note: 
• as with vectors, second-order tensors are often defined as mathematical entities whose 

components transform according to the rule 1.13.5. 
• the transformation rule for higher order tensors can be established in the same way, for 

example, ijk pi qj rk pqrT Q Q Q T′ = , and so on. 
 
Example (Mohr Transformation) 
 
Consider a two-dimensional space with base vectors 21 , ee .  The second order tensor S 
can be written in component form as 
 

2222122121121111 eeeeeeeeS ⊗+⊗+⊗+⊗= SSSS  
 
Consider now a second coordinate system, with base vectors 21 , ee ′′ , obtained from the 
first by a rotation θ .  The components of the transformation matrix are 
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and the components of S in the second coordinate system are [ ] [ ][ ][ ]QSQS T=′ , so 
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For S symmetric, 2112 SS = , and this simplifies to 
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    The Mohr Transformation    (1.13.7) 

■  
 
 
1.13.3 Isotropic Tensors 
 
An isotropic tensor is one whose components are the same under arbitrary rotation of the 
basis vectors, i.e. in any coordinate system. 
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All scalars are isotropic. 
 
There is no isotropic vector (first-order tensor), i.e. there is no vector u such that 

jiji uQu =  for all orthogonal [ ]Q  (except for the zero vector o).  To see this, consider the 
particular orthogonal transformation matrix 
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Q ,                                              (1.13.8) 

 
which corresponds to a rotation of 2/π  about 3e .  This implies that  
 

[ ] [ ]T312
T

321 uuuuuu −=  
 

 or 021 == uu .  The matrix corresponding to a rotation of 2/π  about 1e  is 
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Q ,                                              (1.13.9) 

 
which implies that 03 =u . 
 
The only isotropic second-order tensor is ijαδα ≡I , where α  is a constant, that is, the 
spherical tensor, §1.10.12.  To see this, first note that, by substituting Iα  into 1.13.6, it 
can be seen that it is indeed isotropic.  To see that it is the only isotropic second order 
tensor, first use 1.13.8 in 1.13.6 to get 
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which implies that 0,, 3231231321122211 ====−== TTTTTTTT .  Repeating this for 
1.13.9 implies that 0, 123311 == TTT , so 
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or IT 11T= .  Multiplying by a scalar does not affect 1.13.6, so one has Iα . 
 
The only third-order isotropic tensors are scalar multiples of the permutation tensor, 

( )kjiijk eee ⊗⊗= εE .  Using the third order transformation rule, pqrrkqjpiijk TQQQT =′ , 
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one has pqrrkqjpiijk QQQ εε =′ .  From 1.10.16e this reads ( ) ijkijk εε Qdet=′ , where Q is the 
change of basis tensor, with components ijQ .  When Q is proper orthogonal, i.e. a rotation 
tensor, one has indeed, ijkijk εε =′ .  That it is the only isotropic tensor can be established 
by carrying out a few specific rotations as done above for the first and second order 
tensors. 
 
Note that orthogonal tensors in general, i.e. having the possibility of being reflection 
tensors, with 1det −=Q , are not used in the definition of isotropy, otherwise one would 
have the less desirable ijkijk εε −=′ .  Note also that this issue does not arise with the 
second order tensor (or the fourth order tensor –see below), since the above result, that 

Iα  is the only isotropic second order tensor, holds regardless of whether Q is proper 
orthogonal or not. 
 
There are three independent fourth-order isotropic tensors – these are the tensors 
encountered in §1.12.1, Eqns. 1.12.4-5, 
 

II ⊗,, II  
 
For example, 
 

( ) ( )( ) ( )ijklklijlrkrjpiprspqlskrjqippqrslskrjqip QQQQQQQQQQQQ IIII ⊗====⊗ δδδδ  
 
The most general isotropic fourth order tensor is then a linear combination of these 
tensors: 
 

IIC γµλ ++⊗= II  Most General Isotropic Fourth-Order Tensor    (1.13.11) 
 
 
1.13.4 Invariance of Tensor Components 
 
The components of (non-isotropic) tensors will change upon a rotation of base vectors.  
However, certain combinations of these components are the same in every coordinate 
system.  Such quantities are called invariants.  For example, the following are examples 
of scalar invariants {▲Problem 2} 
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The first of these is the only independent scalar invariant of a vector.  A second-order 
tensor has three independent scalar invariants, the first, second and third principal scalar 
invariants, defined by Eqn. 1.11.17 (or linear combinations of these). 
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1.13.5 Problems 
 
1. Consider a coordinate system 321 xxox  with base vectors ie .  Let a second coordinate 

system be represented by the set { }ie′  with the transformation law 
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(a) find 1e′  in terms of the old set { }ie  of basis vectors 
(b) find the orthogonal matrix [ ]Q  and express the old coordinates in terms of the new 

ones 
(c) express the vector 321 36 eeeu +−−=  in terms of the new set { }ie′  of basis 
vectors.  

2. Show that 
(a) the trace of a tensor A, iiA=Atr , is an invariant. 
(b) jiij aaT=⋅ aTa  is an invariant. 

3. Consider Problem 7 in §1.11.  Take the tensor FFU T=  with respect to the basis 
{ }in̂  and carry out a coordinate transformation of its tensor components so that it is 
given with respect to the original { }ie  basis – in which case the matrix representation 
for U given in Problem 7, §1.11, should be obtained. 
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