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1.12 Higher Order Tensors 
 
In this section are discussed some important higher (third and fourth) order tensors. 
 
 
1.12.1 Fourth Order Tensors 
 
After second-order tensors, the most commonly encountered tensors are the fourth order 
tensors A , which have 81 components.  Some properties and relations involving these 
tensors are listed here. 
 
 
Transpose 
 
The transpose of a fourth-order tensor A , denoted by TA , by analogy with the definition 
for the transpose of a second order tensor 1.10.4, is defined by 
 

BCCB :::: T AA       (1.12.1) 
 

for all second-order tensors B and C.  It has the property   AA 
TT  and its components 

are klijijkl )()( T AA  .  It also follows that 

 

  ABBA  T        (1.12.2) 
 
Identity Tensors 
 
There are two fourth-order identity tensors.  They are defined as follows: 
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And have components 
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For a symmetric second order tensor S, SSS  :: II . 
 
Another important fourth-order tensor is II  , 
 

jjiilkjiklij eeeeeeeeII       (1.12.5) 

 
Functions of the trace can be written in terms of these tensors {▲Problem 1}: 
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Projection Tensors 
 
The symmetric and skew-symmetric parts of a second order tensor A can be written in 
terms of the identity tensors: 
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The deviator of A, 1.10.36, can be written as 
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which defines P̂ , the so-called fourth-order projection tensor.  From Eqns. 1.10.6, 

1.10.37a, it has the property that 0::ˆ IAP .  Note also that it has the property 

PPPPP ˆˆ::ˆ:ˆˆ  n .   For example, 
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The tensors     2//2, IIII   in Eqn. 1.12.7 are also projection tensors, projecting the 
tensor A onto its symmetric and skew-symmetric parts. 
 
 
1.12.2 Higher-Order Tensors and Symmetry 
 
A higher order tensor possesses complete symmetry if the interchange of any indices is 
immaterial, for example if 
 

 )()()( kjijikkjiikjkjiijk AAA eeeeeeeeeA
 

 
It is symmetric in two of its indices if the interchange of these indices is immaterial.  For 
example the above tensor A  is symmetric in j and k if 
 

)()( kjiikjkjiijk AA eeeeee A
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This applies also to antisymmetry.  For example, the permutation tensor  

 kjiijk eee  E  is completely antisymmetric, since  kijikjijk  . 

 
A fourth-order tensor C  possesses the minor symmetries if 
 

ijlkijkljiklijkl CCCC  ,                     (1.12.10) 

 
in which case it has only 36 independent components.  The first equality here is for left 
minor symmetry, the second is for right minor symmetry. 
 
It possesses the major symmetries if it also satisfies 
 

klijijkl CC                  (1.12.11) 

 
in which case it has only 21 independent components.  From 1.12.1, this can also be 
expressed as 
 

ABBA :::: CC           (1.12.12) 
 

for arbitrary second-order tensors A, B.  Note that II ,, II  possess the major symmetries 
{▲Problem 2}. 
 
 
1.12.3 Problems 
 
1. Derive the relations 1.12.6. 

2. Use 1.12.12 to show that II ,, II  possess the major symmetries. 
 


