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1.11 The Eigenvalue Problem and Polar Decomposition 
 
 
1.11.1 Eigenvalues, Eigenvectors and Invariants of a Tensor 
 
Consider a second-order tensor A.  Suppose that one can find a scalar   and a (non-zero) 
normalised, i.e. unit, vector n̂  such that 
 

nnA ˆˆ         (1.11.1) 
 
In other words, A transforms the vector n̂  into a vector parallel to itself, Fig. 1.11.1.  If 
this transformation is possible, the scalars are called the eigenvalues (or principal 
values) of the tensor, and the vectors are called the eigenvectors (or principal directions 
or principal axes) of the tensor.  It will be seen that there are three vectors n̂  (to each of 
which corresponds some scalar  ) for which the above holds. 
 

 
 

Figure 1.11.1: the action of a tensor A on a unit vector 
 
Equation 1.11.1 can be solved for the eigenvalues and eigenvectors by rewriting it as 
 

  0ˆ  nIA             (1.11.2) 
 
or, in terms of a Cartesian coordinate system, 
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In full,  
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       (1.11.3) 

 
Dividing out the base vectors, this is a set of three homogeneous equations in three 
unknowns (if one treats   as known).  From basic linear algebra, this system has a 
solution (apart from 0ˆ in ) if and only if the determinant of the coefficient matrix is 

zero, i.e. if  
 

An̂ n̂
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Evaluating the determinant, one has the following cubic characteristic equation of A, 
 

0IIIIII 23  AAA   Tensor Characteristic Equation  (1.11.5) 
 
where 
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                 (1.11.6) 

 
It can be seen that there are three roots 321 ,,  , to the characteristic equation.  Solving 

for  , one finds that 
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The eigenvalues (principal values) i  must be independent of any coordinate system and, 

from Eqn. 1.11.5, it follows that the functions AAA III,II,I  are also independent of any 
coordinate system.  They are called the principal scalar invariants (or simply 
invariants) of the tensor. 
 
Once the eigenvalues are found, the eigenvectors (principal directions) can be found by 
solving 
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   (1.11.8) 

 
for the three components of the principal direction vector 321 ˆ,ˆ,ˆ nnn , in addition to the 

condition that  1ˆˆˆˆ  ii nnnn .  There will be three vectors iin en ˆˆ  , one corresponding to 

each of the three principal values. 
 
Note: a unit eigenvector n̂  has been used in the above discussion, but any vector parallel 
to n̂ , for example n̂ , is also an eigenvector (with the same eigenvalue  ): 

       ˆ ˆ ˆ ˆ       A n An n n  
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Example (of Eigenvalues and Eigenvectors of a Tensor) 
 
A second order tensor T is given with respect to the axes 321 xxOx  by the values 
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Determine (a) the principal values, (b) the principal directions (and sketch them). 
  
Solution: 
(a) 
The principal values are the solution to the characteristic equation 
 

0)15)(5)(10(

1120

1260

005













 
 
which yields the three principal values 15,5,10 321   . 

(b) 
The eigenvectors are now obtained from   0 jijij nT  .  First, for 101  , 
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and using also the equation 1ii nn  leads to 321 )5/4()5/3(ˆ een  .  Similarly, for 

52   and 153  , one has, respectively, 
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which yield 12ˆ en   and 323 )5/3()5/4(ˆ een  .  The principal directions are sketched in 

Fig. 1.11.2. 
 
Note: the three components of a principal direction, 1 2 3, ,n n n , are the direction cosines 

between that direction and the three coordinate axes respectively.  For example, for 1  

with  1 2 30, 3 / 5, 4 / 5n n n    , the angles made with the coordinate axes 1 2 3, ,x x x , are 

0, 127o and 37o. 
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Figure 1.11.2: eigenvectors of the tensor T 
■  

 
 
1.11.2 Real Symmetric Tensors 
 
Suppose now that A is a real symmetric tensor (real meaning that its components are 
real).  In that case it can be proved (see below) that1 

(i) the eigenvalues are real 
(ii) the three eigenvectors form an orthonormal basis  in̂ . 

 
In that case, the components of A can be written relative to the basis of principal 
directions as (see Fig. 1.11.3) 
 

 jiijA nnA ˆˆ                                                    (1.11.9) 

 

 
 

Figure 1.11.3: eigenvectors forming an orthonormal set 
 
The components of A in this new basis can be obtained from Eqn. 1.9.4, 
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where i  is the eigenvalue corresponding to the basis vector in̂ .  Thus2  

                                                 
1 this was the case in the previous example – the tensor is real symmetric and the principal directions are 
orthogonal 

1n̂

2n̂
3n̂

1e

2e

3e

3x

1x

2x

3n̂1n̂

2n̂



Section 1.11 

Solid Mechanics Part III                                                                                Kelly 100

 





3

1

ˆˆ
i

iii nnA   Spectral Decomposition   (1.11.11) 

 
This is called the spectral decomposition (or spectral representation) of A.  In matrix 
form, 
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A      (1.11.12) 

 
For example, the tensor used in the previous example can be written in terms of the basis 
vectors in the principal directions as 
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T ,         basis: ji nn ˆˆ   

 
To prove that real symmetric tensors have real eigenvalues and orthonormal eigenvectors, 
take 321 ˆ,ˆ,ˆ nnn  to be the eigenvectors of an arbitrary tensor A, with components 

iii nnn 321 ˆ,ˆ,ˆ , which are solutions of (the 9 equations – see Eqn. 1.11.2) 
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    (1.11.13) 

 
Dotting the first of these by 1n̂  and the second by 1n̂ , leads to 
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Using the fact that TA A , subtracting these equations leads to 
 

  0ˆˆ 2112  nn               (1.11.14) 
 
Assume now that the eigenvalues are not all real.  Since the coefficients of the 
characteristic equation are all real, this implies that the eigenvalues come in a complex 
conjugate pair, say 1  and 2 , and one real eigenvalue 3 .  It follows from Eqn. 1.11.13 

that the components of 1n̂  and 2n̂  are conjugates of each other, say iban 1ˆ , 

iban 2ˆ , and so 
 

                                                                                                                                                  
2 it is necessary to introduce the summation sign here, because the summation convention is only used when 
two indices are the same – it cannot be used when there are more than two indices the same 
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    0ˆˆ 22

21  bababann ii  

 
It follows from 1.11.14 that 012    which is a contradiction, since this cannot be true 
for conjugate pairs.  Thus the original assumption regarding complex roots must be false 
and the eigenvalues are all real.  With three distinct eigenvalues, Eqn. 1.11.14 (and 
similar) show that the eigenvectors form an orthonormal set.  When the eigenvalues are 
not distinct, more than one set of eigenvectors may be taken to form an orthonormal set 
(see the next subsection). 
 
Equal Eigenvalues 
 
There are some special tensors for which two or three of the principal directions are 
equal.  When all three are equal,   321 , one has IA  , and the tensor is 

spherical: every direction is a principal direction, since nnInA ˆˆˆ    for all n̂ .   When 
two of the eigenvalues are equal, one of the eigenvectors will be unique but the other two 
directions will be arbitrary – one can choose any two principal directions in the plane 
perpendicular to the uniquely determined direction, in order to form an orthonormal set. 
 
Eigenvalues and Positive Definite Tensors 
 
Since nnA ˆˆ  , then   nnnAn ˆˆˆˆ .  Thus if A is positive definite, Eqn. 1.10.38, the 
eigenvalues are all positive. 
 
In fact, it can be shown that a tensor is positive definite if and only if its symmetric part 
has all positive eigenvalues. 
 
Note: if there exists a non-zero eigenvector corresponding to a zero eigenvalue, then the 
tensor is singular.  This is the case for the skew tensor W, which is singular.  Since 

ωoωωWω 0  (see , §1.10.11), the axial vector ω  is an eigenvector 
corresponding to a zero eigenvalue of W. 
 
 
1.11.3 Maximum and Minimum Values 
 
The diagonal components of a tensor A, 332211, AAA , have different values in different 

coordinate systems.  However, the three eigenvalues include the extreme (maximum and 
minimum) possible values that any of these three components can take, in any coordinate 
system.  To prove this, consider an arbitrary set of unit base vectors 321 ,, eee , other than 

the eigenvectors.  From Eqn. 1.9.4, the components of A in a new coordinate system with 
these base vectors are jiijA Aee   Express 1e  using the eigenvectors as a basis, 
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Then 
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Without loss of generality, let 321   .  Then, with 1222   , one has 
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which proves that the eigenvalues include the largest and smallest possible diagonal 
element of A. 
 
 
1.11.4 The Cayley-Hamilton Theorem 
 
The Cayley-Hamilton theorem states that a tensor A (not necessarily symmetric) 
satisfies its own characteristic equation 1.11.5: 
 

0IAAA AAA  IIIIII 23    (1.11.15) 
 
This can be proved as follows: one has nnA ˆˆ  , where   is an eigenvalue of A and n̂  
is the corresponding eigenvector.  A repeated application of A to this equation leads to 

nnA ˆˆ nn  .  Multiplying 1.11.5 by n̂  then leads to 1.11.15. 
 
The third invariant in Eqn. 1.11.6 can now be written in terms of traces by a double 
contraction of the Cayley-Hamilton equation with I, and by using the definition of the 
trace, Eqn.1.10.6: 
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             (1.11.16) 

 
The three invariants of a tensor can now be listed as 
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     Invariants of a Tensor  (1.11.17) 

 
The Deviatoric Tensor 
 
Denote the eigenvalues of the deviatoric tensor devA, Eqn. 1.10.36, 321 ,, sss  and the 

principal scalar invariants by 321 ,, JJJ .  The characteristic equation analogous to Eqn. 

1.11.5 is then 
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and the deviatoric invariants are3 
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            (1.11.19) 

 
From Eqn. 1.10.37,  
 

01 J            (1.11.20) 
 

The second invariant can also be expressed in the useful forms {▲Problem 4} 
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and, in terms of the eigenvalues of A, {▲Problem 5} 
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Further, the deviatoric invariants are related to the tensor invariants through {▲Problem 
6} 
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1.11.5 Coaxial Tensors 
 
Two tensors are coaxial if they have the same eigenvectors.  It can be shown that a 
necessary and sufficient condition that two tensors A and B be coaxial is that their simple 
contraction is commutative, BAAB  . 
 
Since for a tensor T, TTTT 11   , a tensor and its inverse are coaxial and have the same 
eigenvectors. 
 
 
 
 

                                                 
3 there is a convention (adhered to by most authors) to write the characteristic equation for a general tensor 

with a AII  term and that for a deviatoric tensor with a sJ 2  term (which ensures that 02 J  - see 

1.11.22 below)  ; this means that the formulae for J2 in Eqn. 1.11.19 are the negative of those for AII  in 

Eqn. 1.11.6 
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1.11.6 Fractional Powers of Tensors 
 
Integer powers of tensors were defined in §1.9.2.  Fractional powers of tensors can be 
defined provided the tensor is real, symmetric and positive definite (so that the 
eigenvalues are all positive). 
 
Contracting both sides of nnT ˆˆ   with T repeatedly gives ˆ ˆn nT n n .  It follows that, if 
T has eigenvectors in̂  and corresponding eigenvalues i , then nT  is coaxial, having the 

same eigenvectors, but corresponding eigenvalues n
i .  Because of this, fractional powers 

of tensors  are defined as follows: mT , where m is any real number, is that tensor which 
has the same eigenvectors as T but which has corresponding eigenvalues m

i .  For 

example, the square root of the positive definite tensor 
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and the inverse is 
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These new tensors are also positive definite. 
 
 
1.11.7 Polar Decomposition of Tensors 
 
Any (non-singular second-order) tensor F can be split up multiplicatively into an arbitrary 
proper orthogonal tensor R ( IRR T , 1det R ) and a tensor U as follows: 
 

RUF   Polar Decomposition     (1.11.26) 
 
The consequence of this is that any transformation of a vector a according to Fa  can be 
decomposed into two transformations, one involving a transformation U, followed by a 
rotation R. 
 
The decomposition is not, in general, unique; one can often find more than one 
orthogonal tensor R which will satisfy the above relation.  In practice, R is chosen such 
that U is symmetric.  To this end, consider FFT .  Since 
 

0
2T  FvFvFvFvFv , 

 
FFT  is positive definite.  Further, jkji FFFFT  is clearly symmetric, i.e. the same result 

is obtained upon an interchange of i and k.  Thus the square-root of FFT  can be taken: let 
U in 1.11.26 be given by 
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  2/1TFFU             (1.11.27) 
 
and U is also symmetric positive definite.  Then, with 1.10.3e, 
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Thus if U is symmetric, R is orthogonal.  Further, from (1.10.16a,b) and (1.100.18d), 

FU detdet   and 1det/detdet  UFR  so that R is proper orthogonal.  It can also be 
proved that this decomposition is unique. 
 
An alternative decomposition is given by 
 

VRF            (1.11.29) 
 
Again, this decomposition is unique and R is proper orthogonal, this time with 
 

  2/1TFFV               (1.11.30) 
 
 
1.11.8 Problems 
 
1. Find the eigenvalues, (normalised) eigenvectors and principal invariants of  

1221 eeeeIT   
2. Derive the spectral decomposition 1.11.11 by writing the identity tensor as 

ii nnI ˆˆ  , and writing AIA  .  [Hint: in̂  is an eigenvector.] 

3. Derive the characteristic equation and Cayley-Hamilton equation for a 2-D space.  Let 

A be a second order tensor with square root AS  .  By using the Cayley-Hamilton 
equation for S, and relating SS tr,det  to AA tr,det  through the corresponding 

eigenvalues, show that 
AA

IAA
A

det2tr

det




 . 

4. The second invariant of a deviatoric tensor is given by Eqn. 1.11.19b,  
 1332212 ssssssJ   

By squaring the relation 03211  sssJ , derive Eqn. 1.11.21, 
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2
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2
12

1
2 sssJ   

5. Use Eqns. 1.11.21 (and your work from Problem 4) and the fact that 2121 ss   , 
etc. to derive Eqn. 1.11.22. 

6. Use the fact that 0321  sss  to show that 
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where iim A3
1 .  Hence derive Eqns. 1.11.23. 

7. Consider the tensor 
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(a) Verify that the polar decomposition for F is RUF   where 
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(verify that R is proper orthogonal). 
(b) Evaluate FbFa, , where T]0,1,1[a , T]0,1,0[b  by evaluating the individual 

transformations UbUa,  followed by    UbRUaR , .  Sketch the vectors and their 
images.  Note how R rotates the vectors into their final positions.  Why does U 
only stretch a but stretches and rotates b? 

(c) Evaluate the eigenvalues i  and eigenvectors in̂  of the tensor FFT .  Hence 

determine the spectral decomposition (diagonal matrix representation) of FFT .  

Hence evaluate FFU T  with respect to the basis  in̂  – again, this will be a 

diagonal matrix. 


