Section 1.10

1.10 Special Second Order Tensors & Properties of
Second Order Tensors

In this section will be examined a number of special second order tensors, and special
properties of second order tensors, which play important roles in tensor analysis. Many
of the concepts will be familiar from Linear Algebra and Matrices. The following will be
discussed:

The Identity tensor

Transpose of a tensor

Trace of a tensor

Norm of a tensor

Determinant of a tensor

Inverse of a tensor

Orthogonal tensors

Rotation Tensors

Change of Basis Tensors
Symmetric and Skew-symmetric tensors
Axial vectors

e Spherical and Deviatoric tensors
e Positive Definite tensors

1.10.1 The Identity Tensor

The linear transformation which transforms every tensor into itself is called the identity
tensor. This special tensor is denoted by I so that, for example,

Ia=a for any vector a

In particular, Ie, =e , Ie, =e,, Ie; =e,, from which it follows that, for a Cartesian

coordinate system, /, =J,. In matrix form,

100
[f]=]0 10 (1.10.1)
001

1.10.2 The Transpose of a Tensor

The transpose of a second order tensor A with components 4, is the tensor A" with

components A4 ; so the transpose swaps the indices,

A=4e ®e,, Al = A,e, ®e,| Transpose of a Second-Order Tensor (1.10.2)
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In matrix notation,
A, A, A A, 4, A

[A] =4, 4y Ay, [AT ] =4, 4, 4
A, A, A A, A, A

Some useful properties and relations involving the transpose are { A Problem 2} :

(A7) =a
(aA+ fB)" =aA" + fB”
u®v) =v®u
_ T _ T
Tu=uT ', uT =T u (1.10.3)
(AB)' =B"A"
A:B=A":B'

W®V)A =u®(A"v)
A:(BC)=(B"A):C=(AC"):B
A formal definition of the transpose which does not rely on any particular coordinate

system is as follows: the transpose of a second-order tensor is that tensor which satisfies
the identity

u-Av=v-A'u (1.10.4)

for all vectors u and v. To see that Eqn. 1.10.4 implies 1.10.2, first note that, for the
present purposes, a convenient way of writing the components 4, of the second-order
tensor A is (A)U . From Eqn. 1.9.4, (A)y =e, - Ae; and the components of the transpose
can be written as (AT)l.j =e, ~ATej . Then, from 1.10.4,

(AT)E/ =e, ~ATej =e, -Ae, =(A)ﬁ =A,.

1.10.3 The Trace of a Tensor

The trace of a second order tensor A, denoted by trA, is a scalar equal to the sum of the
diagonal elements of its matrix representation. Thus (see Eqn. 1.4.3)

trA = A4, Trace (1.10.5)

A more formal definition, again not relying on any particular coordinate system, is

Trace (1.10.6)

!'as mentioned in §1.9, from the linearity of tensors, uA -v = u- Av and, for this reason, this expression is
usually written simply as uAv
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and Eqn. 1.10.5 follows from 1.10.6 { AProblem 4}. For the dyad u® v { AProblem 5},

trflu®@v)=u-v (1.10.7)
Another example is
tr(E*)=1:E’
=5,le,®e,):E,E, (e, ®e,) (1.10.8)
- Einqi

This and other important traces, and functions of the trace are listed here { A Problem 6}:

trA =4,
2
trA” = 4,4,
trA’ = 4,4, A, (1.10.9)

(rA) = 4,4,
(rA) = 4,44,

u J

Some useful properties and relations involving the trace are { A Problem 7}:

trAT = trA

= trA + trB (1.10.10)

The double contraction of two tensors was earlier defined with respect to Cartesian
coordinates, Eqn. 1.9.16. This last expression allows one to re-define the double
contraction in terms of the trace, independent of any coordinate system.

Consider again the real vector space of second order tensors ¥ * introduced in §1.8.5.
The double contraction of two tensors as defined by 1.10.10e clearly satisfies the
requirements of an inner product listed in §1.2.2. Thus this scalar quantity serves as an

inner product for the space V*:

(A.B)=A:B=1t(A"B) (1.10.11)

and generates an inner product space.

Just as the base vectors {e, } form an orthonormal set in the inner product (vector dot

product) of the space of vectors V, so the base dyads {ei ®e j} form an orthonormal set in

the inner product 1.10.11 of the space of second order tensors ¥ . For example,
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(e, ®e e, ®e)=(e, e ):(e, D¢ )=1 (1.10.12)

Similarly, just as the dot product is zero for orthogonal vectors, when the double
contraction of two tensors A and B is zero, one says that the tensors are orthogonal,

A:B=tr(ATB)=0, A,B orthogonal (1.10.13)

1.10.4 The Norm of a Tensor

Using 1.2.8 and 1.10.11, the norm of a second order tensor A, denoted by |A| (or ||A ), 18

defined by

Al=vA:A (1.10.14)

This is analogous to the norm |a| of a vector a, va-a.

1.10.5 The Determinant of a Tensor

The determinant of a second order tensor A is defined to be the determinant of the
matrix [A] of components of the tensor:

All Alz A13
detA =det| 4,, 4, A,
A31 A32 A33
=& AnA;n A (1.10.15)
= gijkAliAszak

Some useful properties of the determinant are { A Problem 8}

det(AB) = det AdetB

detA" =detA
A)=ca’detA
det(cA) = " det (1.10.16)
detu®v)=0

&, (detA)=¢, 4,4, 4,

(TaxTb)-Te = (detT)[(axb)-¢]

Note that det A, like trA, is independent of the choice of coordinate system / basis.
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1.10.6 The Inverse of a Tensor
The inverse of a second order tensor A, denoted by A", is defined by
AAT'=1=A""A (1.10.17)

The inverse of a tensor exists only if it is non-singular (a singular tensor is one for
which det A = 0), in which case it is said to be invertible.

Some useful properties and relations involving the inverse are:

A=A
((Z;:;l ig/f:‘? (1.10.18)

det(A™) = (detA)™

Since the inverse of the transpose is equivalent to the transpose of the inverse, the
following notation is used:

AT=(A"H" =AD" (1.10.19)

1.10.7 Orthogonal Tensors
An orthogonal tensor Q is a linear vector transformation satisfying the condition
Qu-Qv=u-v (1.10.20)

for all vectors u and v. Thus u is transformed to Qu , v is transformed to Qv and the dot
product u- v is invariant under the transformation. Thus the magnitude of the vectors
and the angle between the vectors is preserved, Fig. 1.10.1.

u

Q Qu
R@ — /\ 0
Qv

Figure 1.10.1: An orthogonal tensor

Since

Qu-QV:uQT-Qv:u-(QTQ)-v (1.10.21)
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it follows that for u-v to be preserved under the transformation, Q" Q = I, which is also
used as the definition of an orthogonal tensor. Some useful properties of orthogonal
tensors are { A Problem 10}:

QQT =1= QTQ, Qiijk = 5[; = Qkiij

Q'=Q" (1.10.22)
detQ =+1

1.10.8 Rotation Tensors

If for an orthogonal tensor, detQ = +1, Q is said to be a proper orthogonal tensor,
corresponding to a rotation. If detQ =—1, Q is said to be an improper orthogonal
tensor, corresponding to a reflection. Proper orthogonal tensors are also called rotation
tensors.

1.10.9 Change of Basis Tensors

Consider a rotation tensor Q which rotates the base vectors e,,e,,e, into a second set,
e;,e),el, Fig. 1.10.2.

e =Qe, =123 (1.10.23)

Such a tensor can be termed a change of basis tensor from {e, | to {e/}. The transpose
Q" rotates the base vectors e/ back to e, and is thus change of basis tensor from {e! } to
{e,}. The components of Q in the e, coordinate system are, from 1.9.4, O, =€, Qe; and
so, from 1.10.23,

Q:Qije‘®ej9 Q,.jzei-e'j, (1.10.24)
which are the direction cosines between the axes (see Fig. 1.5.4).

!

e, €;
—_—
e, Q
!
¢

Figure 1.10.2: Rotation of a set of base vectors

Solid Mechanics Part II1 89 Kelly



Section 1.10

The change of basis tensor can also be expressed in terms of the base vectors from both
bases:

Q=¢ e, (1.10.25)

from which the above relations can easily be derived, for example e/ = Qe,, QQ" =1,
etc.

Consider now the operation of the change of basis tensor on a vector:
Qv =v,(Qe,)=ve] (1.10.26)

Thus Q transforms v into a second vector v', but this new vector has the same
components with respect to the basis e/, as v has with respect to the basis e;, v/ =v,.

Note the difference between this and the coordinate transformations of §1.5: here there
are two different vectors, v and v'.

Example

Consider the two-dimensional rotation tensor

Q= 0 _l<e e )Ee'®e
+1 0" P

which corresponds to a rotation of the base vectors through 7 /2. The vector v=[1 1]
then transforms into (see Fig. 1.10.3)

Figure 1.10.3: a rotated vector

Similarly, for a second order tensor A, the operation

QAQ" =Q(4,e, ®e, Q" = 4,(Qe, ®e,Q" )= 4,(Qe, ®Qe, )= 4,¢, ®¢
(1.10.27)
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results in a new tensor which has the same components with respect to the e/, as A has

with respect to the e,, 4 = 4.

J

1.10.10 Symmetric and Skew Tensors

A tensor T is said to be symmetric if it is identical to the transposed tensor, T = T', and
skew (antisymmetric) if T=-T".

Any tensor A can be (uniquely) decomposed into a symmetric tensor S and a skew tensor
W, where

symA=S=_(A+AT)
21 (1.10.28)
skewA = W :E(A—AT)
and
S=8", W=-W' (1.10.29)
In matrix notation one has
Sll S12 S13 0 VV]Z VV]3
[S]: S S Sul, [W] W, 0 Wy (1.10.30)
S13 S23 S33 _Wl3 _W23 0
Some useful properties of symmetric and skew tensors are { A Problem 13}:
S:B=S:B"=S:1(B+B")
W:B=-W:B"=W:1(-B")
S:W=0 (1.10.31)
tr(SW) =0
v-Wv=0

detW =0 (has no inverse)

where v and B denote any arbitrary vector and second-order tensor respectively.

Note that symmetry and skew-symmetry are tensor properties, independent of coordinate
system.
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1.10.11 Axial Vectors

A skew tensor W has only three independent coefficients, so it behaves “like a vector”
with three components. Indeed, a skew tensor can always be written in the form

Wu=0mxu (1.10.32)

where u is any vector and ® characterises the axial (or dual) vector of the skew tensor
W. The components of W can be obtained from the components of ® through

VVij =€, 'Wej =€, '(mxej):ei '(a)kek Xej)
=e, -(a)kskjpep): i Oy (1.10.33)
=-&

ik Px

If one knows the components of W, one can find the components of @ by inverting this
equation, whence { A Problem 14}

o=-W,e +W,e, -W,e, (1.10.34)
Example (of an Axial Vector)

Decompose the tensor

1 2 3
r-lr]-la 2

1 1 1
into its symmetric and skew parts. Also find the axial vector for the skew part. Verify
that Wa=wmxa for a=e, +e;.

Solution
One has
2 3] [1 4 1] 1 3 2
S—%[T+TT]=% 4 2 1|+2 2 1ft=|3 2 1
11 1] [3 11 2 1 1
1 2 3] [1 4 1] 0 -1 1
1 11
W=—[T—T]=— 4 2 1|-12 2 1|i=l1 o0
2 2
111 |3 1 1] [-1 0

The axial vector is

o=-W,e +W,e,-W,e, =¢, +e,
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and it can be seen that

0o -1 111 1 Wa=Wl.j(el.®ej)(el+e3)=Wi].(5jl+5j3)el.=(VK1+VK3)ei
10 0}0|=1]|or =W +W)e, + (W +Wyy)e, + Wy +W33)e,
-1 0 0]l -1 =e +e,—¢e,
and
€ €, €

The Spin Tensor

The velocity of a particle rotating in a rigid body motion is given by v = @ x x, where ®
is the angular velocity vector and x is the position vector relative to the origin on the axis
of rotation (see Problem 9, §1.1). If the velocity can be written in terms of a skew-
symmetric second order tensor w, such that wx = v, then it follows from wx = @ x x
that the angular velocity vector @ is the axial vector of w. In this context, w is called
the spin tensor.

1.10.12 Spherical and Deviatoric Tensors

Every tensor A can be decomposed into its so-called spherical part and its deviatoric
part, i.e.

A =sphA +devA (1.10.35)
where
sphA = L(trA )l
_%(All + 4, + A33) 0 0
= 0 %(All +4, +A33) 0
L 0 0 %(All +4, +A33)
devA = A —sphA
_A11 _%(An + Azz + A33) AIZ A13
= AZI Azz - %(An + Azz + A33) A23
L A31 A32 A33 _%(An + Azz + A33)

(1.10.36)
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Any tensor of the form ol is known as a spherical tensor, while devA is known as a
deviator of A, or a deviatoric tensor.

Some important properties of the spherical and deviatoric tensors are

tr(devA) =0
sph(devA) =0 (1.10.37)
devA :sphB =0

1.10.13 Positive Definite Tensors
A positive definite tensor A is one which satisfies the relation

VAV>0, Vv=#o (1.10.38)

The tensor is called positive semi-definite if vAv>0.

In component form,

2 2
vy, = A, v + 4,vv, + Ay + Ay vy + Ay e (1.10.39)

and so the diagonal elements of the matrix representation of a positive definite tensor
must always be positive.

It can be shown that the following conditions are necessary for a tensor A to be positive
definite (although they are not sufficient):

(i) the diagonal elements of [A] are positive

(i) the largest element of [A] lies along the diagonal
(i) detA >0

(iv) A,+A; >24, fori# j (nosum over i, ;)

These conditions are seen to hold for the following matrix representation of an example
positive definite tensor:

0 0

A necessary and sufficient condition for a tensor to be positive definite is given in the
next section, during the discussion of the eigenvalue problem.

One of the key properties of a positive definite tensor is that, since det A > 0, positive
definite tensors are always invertible.

An alternative definition of positive definiteness is the equivalent expression
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A:vOV>0 (1.10.40)

1.10.14 Problems

AN

Show that the components of the (second-order) identity tensor are given by 1, =4,,.
Show that

(a) (W®V)A =u®(A"v)

(b) A:(BC)=(B"A):C=(AC"):B

Use (1.10.4) to show that I" =1.

Show that (1.10.6) implies (1.10.5) for the trace of a tensor.
Show that tr(u ® V) =u-v.

Formally derive the index notation for the functions
trA®, trA’, (trA)?, (trA)’
Show that A : B = tr(A"B).
Prove (1.10.16f), (Tax Tb)-Te = (det T)[(axb)-¢].
Show that (A™')" : A =3. [Hint: one way of doing this is using the result from

Problem 7.]

10.
11.

12.

13.
14.

15.

16.

Use 1.10.16b and 1.10.18d to prove 1.10.22c, detQ = +1.
Use the explicit dyadic representation of the rotation tensor, Q =e’ ®e,, to show that
the components of Q in the “second”, ox/x,x;, coordinate system are the same as
those in the first system [hint: use the rule Q) =e; - Qe’,]
Consider the tensor D with components (in a certain coordinate system)

/N2 12 —1/2

0 12 1/42

/N2 -1/2 172
Show that D is a rotation tensor (just show that D is proper orthogonal).
Show that tr(SW) =0.
Multiply across (1.10.32), W, = —¢,,
use the relation 1.3.19b, ¢,,6,, =26, .]
Show that 1(a®b —b ®a) is a skew tensor W. Show that its axial vector is
0= %(b xa). [Hint: first prove that (b-u)a—(a-u)b =ux(axb)=(bxa)xu.]
Find the spherical and deviatoric parts of the tensor A for which 4, =1.

w,, by &,, to show that @ =3¢, W,e, . [Hint:
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