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1.10 Special Second Order Tensors & Properties of 
Second Order Tensors 

 
In this section will be examined a number of special second order tensors, and special 
properties of second order tensors, which play important roles in tensor analysis.  Many 
of the concepts will be familiar from Linear Algebra and Matrices.  The following will be 
discussed: 
 
• The Identity tensor 
• Transpose of a tensor 
• Trace of a tensor 
• Norm of a tensor 
• Determinant of a tensor 
• Inverse of a tensor 
• Orthogonal tensors 
• Rotation Tensors 
• Change of Basis Tensors 
• Symmetric and Skew-symmetric tensors 
• Axial vectors 
• Spherical and Deviatoric tensors 
• Positive Definite tensors 
 
 
1.10.1 The Identity Tensor 
 
The linear transformation which transforms every tensor into itself is called the identity 
tensor.  This special tensor is denoted by I so that, for example, 
 

aIa =   for any vector a 
 
In particular, 332211 ,, eIeeIeeIe === , from which it follows that, for a Cartesian 
coordinate system, ijijI δ= .  In matrix form, 
 

[ ]















=

100
010
001

I         (1.10.1) 

 
 
1.10.2 The Transpose of a Tensor 
 
The transpose of a second order tensor A with components ijA  is the tensor TA  with 
components jiA ; so the transpose swaps the indices, 
 

jijijiij AA eeAeeA ⊗=⊗= T,   Transpose of a Second-Order Tensor   (1.10.2) 
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In matrix notation, 
 

[ ] [ ]
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=
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AAA
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AA  

 
Some useful properties and relations involving the transpose are {▲Problem 2}: 
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         (1.10.3) 

 
A formal definition of the transpose which does not rely on any particular coordinate 
system is as follows: the transpose of a second-order tensor is that tensor which satisfies 
the identity1 
 

uAvAvu T⋅=⋅         (1.10.4) 
 
for all vectors u and v.  To see that Eqn. 1.10.4 implies 1.10.2, first note that, for the 
present purposes, a convenient way of writing the components ijA  of the second-order 
tensor A is ( )ijA .  From Eqn. 1.9.4, ( ) jiij AeeA ⋅=  and the components of the transpose 

can be written as ( ) jiij eAeA TT ⋅= .  Then, from 1.10.4, 

( ) ( ) jijiijjiij A==⋅=⋅= AAeeeAeA TT . 
 
 
1.10.3 The Trace of a Tensor 
 
The trace of a second order tensor A, denoted by Atr , is a scalar equal to the sum of the 
diagonal elements of its matrix representation.  Thus (see Eqn. 1.4.3) 
 

iiA=Atr  Trace         (1.10.5) 
 
A more formal definition, again not relying on any particular coordinate system, is 
 

AIA :tr =  Trace       (1.10.6) 

 
1 as mentioned in §1.9, from the linearity of tensors, AvuvuA ⋅=⋅  and, for this reason, this expression is 
usually written simply as uAv  
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and Eqn. 1.10.5 follows from 1.10.6 {▲Problem 4}.  For the dyad vu⊗  {▲Problem 5},  
 

( ) vuvu ⋅=⊗tr       (1.10.7) 
 
Another example is 
 

( ) ( )
qiiq

rpqrpqjiij

EE
EE

=

⊗⊗=
=

eeee
EIE

:
:)tr( 22

δ   (1.10.8) 

 
This and other important traces, and functions of the trace are listed here {▲Problem 6}: 
 

( )
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A
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A

                (1.10.9) 

 
Some useful properties and relations involving the trace are {▲Problem 7}: 
 

( ) ( )
( )
( )

( ) ( ) ( ) ( )TTTT

T

trtrtrtr:
trtr

trtrtr
trtr
trtr

BAABABBABA
AA

BABA
BAAB

AA

====

=
+=+

=
=

αα
      (1.10.10) 

 
The double contraction of two tensors was earlier defined with respect to Cartesian 
coordinates, Eqn. 1.9.16.  This last expression allows one to re-define the double 
contraction in terms of the trace, independent of any coordinate system. 
 
Consider again the real vector space of second order tensors 2V  introduced in §1.8.5.  
The double contraction of two tensors as defined by 1.10.10e clearly satisfies the 
requirements of an inner product listed in §1.2.2.  Thus this scalar quantity serves as an 
inner product for the space 2V : 
 

( )BABABA Ttr:, =≡                                       (1.10.11) 
  
and generates an inner product space. 
 
Just as the base vectors { }ie  form an orthonormal set in the inner product (vector dot 
product) of the space of vectors V, so the base dyads { }ji ee ⊗  form an orthonormal set in 

the inner product 1.10.11 of the space of second order tensors 2V .  For example, 
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( ) ( ) 1:, 11111111 =⊗⊗=⊗⊗ eeeeeeee                         (1.10.12) 

 
Similarly, just as the dot product is zero for orthogonal vectors, when the double 
contraction of two tensors A and B is zero, one says that the tensors are orthogonal, 
  

( ) 0tr: T == BABA ,     BA,  orthogonal                     (1.10.13) 
 
 
1.10.4 The Norm of a Tensor 
 
Using 1.2.8 and 1.10.11, the norm of a second order tensor A, denoted by A  (or A ), is 
defined by 
 

AAA :=               (1.10.14) 
 
This is analogous to the norm a  of a vector a, aa ⋅ . 
 
 
1.10.5 The Determinant of a Tensor 
 
The determinant of a second order tensor A is defined to be the determinant of the 
matrix [ ]A  of components of the tensor: 
 

kjiijk

kjiijk

AAA
AAA

AAA
AAA
AAA

321

321

333231

232221

131211

detdet

ε

ε

=

=
















=A

      (1.10.15) 

 
Some useful properties of the determinant are {▲Problem 8} 
 

( )
( )

( ) ( ) ( )[ ]cbaTTcTbTa
A
vu

AA
AA

BAAB

⋅×=⋅×

=
=⊗
=

=

=

det
det

0det
det)det(

detdet
detdet)det(

3

T

krjqipijkpqr AAAεε

αα        (1.10.16) 

 
Note that Adet , like Atr , is independent of the choice of coordinate system / basis. 
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1.10.6 The Inverse of a Tensor 
 
The inverse of a second order tensor A, denoted by 1−A , is defined by 
 

AAIAA 11 −− ==      (1.10.17) 
 
The inverse of a tensor exists only if it is non-singular (a singular tensor is one for 
which 0det =A ), in which case it is said to be invertible. 
 
Some useful properties and relations involving the inverse are: 
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)(det)det(
)(

)/1()(
)(

−−

−−−

−−

−−

=

=

=

=

AA
ABAB

AA
AA

αα
                  (1.10.18) 

 
Since the inverse of the transpose is equivalent to the transpose of the inverse, the 
following notation is used: 
 

1TT1T )()( −−− =≡ AAA           (1.10.19) 
 
 

1.10.7 Orthogonal Tensors 
 
An orthogonal tensor Q is a linear vector transformation satisfying the condition 
 

vuQvQu ⋅=⋅          (1.10.20) 
 
for all vectors u and v.  Thus u is transformed to Qu , v is transformed to Qv  and the dot 
product vu ⋅  is invariant under the transformation.  Thus the magnitude of the vectors 
and the angle between the vectors is preserved, Fig. 1.10.1.  
 

 
 

Figure 1.10.1: An orthogonal tensor 
 
Since  
 

( )T T⋅ = ⋅ = ⋅ ⋅Qu Qv uQ Qv u Q Q v                            (1.10.21) 
 

θ
v

u

θ

Q

Qv

Qu
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it follows that for vu ⋅  to be preserved under the transformation, IQQ =T , which is also 
used as the definition of an orthogonal tensor.  Some useful properties of orthogonal 
tensors are {▲Problem 10}: 
 

1det

,
T1

TT

±=
=

====
−

Q
QQ

QQIQQ kjkiijjkik QQQQ δ

               (1.10.22) 

 
 
1.10.8 Rotation Tensors 
 
If for an orthogonal tensor, 1det +=Q , Q is said to be a proper orthogonal tensor, 
corresponding to a rotation.  If 1det −=Q , Q is said to be an improper orthogonal 
tensor, corresponding to a reflection.  Proper orthogonal tensors are also called rotation 
tensors. 
 
 
1.10.9 Change of Basis Tensors 
 
Consider a rotation tensor Q which rotates the base vectors 321 ,, eee  into a second set, 

321 ,, eee ′′′ , Fig. 1.10.2.   
 

3,2,1==′ iii Qee        (1.10.23) 
 
Such a tensor can be termed a change of basis tensor from { }ie  to { }ie′ .  The transpose  
QT rotates the base vectors ie′  back to ie  and is thus change of basis tensor from { }ie′  to 
{ }ie .  The components of Q in the ie  coordinate system are, from 1.9.4, jiijQ Qee=  and 
so, from 1.10.23, 
 

jiijjiij QQ eeeeQ ′⋅=⊗= , ,      (1.10.24) 
 
which are the direction cosines between the axes (see Fig. 1.5.4). 
 

 
 

Figure 1.10.2: Rotation of a set of base vectors 
 

2e Q

3e

1e

1e′

2e′

3e′



Section 1.10 

Solid Mechanics Part III                                                                                Kelly 90 

The change of basis tensor can also be expressed in terms of the base vectors from both 
bases: 
 

ii eeQ ⊗′= ,     (1.10.25) 
 
from which the above relations can easily be derived, for example ii Qee =′ , IQQ =T , 
etc. 
 
Consider now the operation of the change of basis tensor on a vector: 
 

( ) iiii vv eQeQv ′==                                        (1.10.26) 
 
Thus Q transforms v into a second vector v′ , but this new vector has the same 
components with respect to the basis ie′ , as v has with respect to the basis ie , ii vv =′ .  
Note the difference between this and the coordinate transformations of §1.5: here there 
are two different vectors, v and v′ . 
 
Example 
 
Consider the two-dimensional rotation tensor  
 

( ) iiji eeeeQ ⊗′≡⊗







+

−
=

01
10

 

 
which corresponds to a rotation of the base vectors through 2/π .  The vector [ ]T11=v  
then transforms into (see Fig. 1.10.3) 
 

ii eeQv ′







+
+

=







+
−

=
1
1

1
1

 

 

 
 

Figure 1.10.3: a rotated vector 
 

■  
 
Similarly, for a second order tensor A, the operation 
 

( ) ( ) ( ) jiijjiijjiijjiij AAAA eeQeQeQeQeQeeQQAQ ′⊗′=⊗=⊗=⊗= TTT  
(1.10.27) 

 

vQv

1e

2e1e′

2e′
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results in a new tensor which has the same components with respect to the ie′ , as A has 
with respect to the ie , ijij AA =′ . 
 
 
1.10.10 Symmetric and Skew Tensors 
 
A tensor T is said to be symmetric if it is identical to the transposed tensor, TTT = , and 
skew (antisymmetric) if TTT −= . 
 
Any tensor A can be (uniquely) decomposed into a symmetric tensor S and a skew tensor 
W, where 
 

( )

( )T

T

2
1skew

2
1sym

AAWA

AASA

−=≡

+=≡
       (1.10.28) 

 
and 
 

TT , WWSS −==     (1.10.29) 
 
In matrix notation one has 
 

[ ] [ ]
















−−
−=
















=

0
0

0
,

2313

2312

1312

332313

232212

131211

WW
WW
WW

W
SSS
SSS
SSS

S   (1.10.30) 

 
Some useful properties of symmetric and skew tensors are {▲Problem 13}: 
 

( )
( )

( )

( )inverse no has0det
0
0tr

0:
:::

:::
T

2
1T

T
2
1T

=
=⋅
=

=

−=−=

+==

W
Wvv
SW
WS

BWBWBW

BBSBSBS

   (1.10.31) 

 
where v and B denote any arbitrary vector and second-order tensor respectively. 
 
Note that symmetry and skew-symmetry are tensor properties, independent of coordinate 
system. 
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1.10.11 Axial Vectors 
 
A skew tensor W has only three independent coefficients, so it behaves “like a vector” 
with three components.  Indeed, a skew tensor can always be written in the form 
 

uωWu ×=       (1.10.32) 
 
where u is any vector and ω  characterises the axial (or dual) vector of the skew tensor 
W.  The components of W can be obtained from the components of ω  through 
 

( ) ( )
( )

kijk

kkjipkjpki

jkkijijiijW

ωε

ωεεω

ω

−=

=⋅=

×⋅=×⋅=⋅=

ee
eeeeωeWee

  (1.10.33) 

 
If one knows the components of W, one can find the components of ω  by inverting this 
equation, whence {▲Problem 14} 
 

312213123 eeeω WWW −+−=     (1.10.34) 
 
Example (of an Axial Vector) 
 
Decompose the tensor 
 

[ ]















==

111
124
321

ijTT

 
 
into its symmetric and skew parts.  Also find the axial vector for the skew part.  Verify 
that aωWa ×=  for 1 3= +a e e . 
 
Solution 
 
One has  
 

[ ]















=
































+
















=+=

112
123
231

113
122
141

111
124
321

2
1

2
1 TTTS

 

T

1 2 3 1 4 1 0 1 1
1 1 4 2 1 2 2 1 1 0 0
2 2

1 1 1 3 1 1 1 0 0

  −     
       = − = − =        
      −      

W T T  

 
The axial vector is 
 

32312213123 eeeeeω +=−+−= WWW  
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and it can be seen that 
 

0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

−     
     =     
     − −     

  or 

321

333312232111311

313131

)()()(
)()())((

eee
eee

eeeeeeWa

−+=
+++++=

+=+=+⊗=

WWWWWW
WWWW iiiijjijjiij δδ

 

 
and 
 

321

321

101
110 eee
eee

aω −+==×

 
■  

 
 
The Spin Tensor 
 
The velocity of a particle rotating in a rigid body motion is given by xωv ×= , where ω  
is the angular velocity vector and x is the position vector relative to the origin on the axis 
of rotation (see Problem 9, §1.1).  If the velocity can be written in terms of a skew-
symmetric second order tensor w , such that vwx = , then it follows from xωwx ×=  
that the angular velocity vector ω  is the axial vector of w .  In this context, w  is called 
the spin tensor. 
 
 
1.10.12 Spherical and Deviatoric Tensors 
 
Every tensor A can be decomposed into its so-called spherical part and its deviatoric 
part, i.e. 
 

AAA devsph +=        (1.10.35) 
 
where 
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      (1.10.36) 
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Any tensor of the form Iα  is known as a spherical tensor, while Adev  is known as a 
deviator of A, or a deviatoric tensor. 
 
Some important properties of the spherical and deviatoric tensors are 
 

0sph:dev
0)dev(sph
0)dev(tr

=
=
=

BA
A
A

         (1.10.37) 

 
 
1.10.13 Positive Definite Tensors 
 
A positive definite tensor A is one which satisfies the relation 
 

0>vAv ,      ov ≠∀                   (1.10.38)  
 
The tensor is called positive semi-definite if 0≥vAv . 
 
In component form, 
 

+++++= 2
222122131132112

2
111 vAvvAvvAvvAvAvAv jiji                (1.10.39) 

 
and so the diagonal elements of the matrix representation of a positive definite tensor 
must always be positive. 
 
It can be shown that the following conditions are necessary for a tensor A to be positive 
definite (although they are not sufficient): 
 
(i)  the diagonal elements of [ ]A  are positive 
(ii)  the largest element of [ ]A  lies along the diagonal 
(iii) 0det >A  
(iv)  ijjjii AAA 2>+  for ji ≠  (no sum over ji, ) 
 
These conditions are seen to hold for the following matrix representation of an example 
positive definite tensor: 
 

[ ]















−=

100
041
022

A  

 
A necessary and sufficient condition for a tensor to be positive definite is given in the 
next section, during the discussion of the eigenvalue problem. 
 
One of the key properties of a positive definite tensor is that, since 0det >A , positive 
definite tensors are always invertible. 
 
An alternative definition of positive definiteness is the equivalent expression 
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 0: >⊗ vvA                                               )40.10.1(  

 
 
1.10.14 Problems 
 
1. Show that the components of the (second-order) identity tensor are given by ijijI δ= . 
2. Show that 

(a) )()( T vAuAvu ⊗=⊗  
(b) ( ) ( ) ( ) BACCABBCA ::: TT ==  

3. Use (1.10.4) to show that II =T . 
4. Show that (1.10.6) implies (1.10.5) for the trace of a tensor. 
5. Show that ( ) vuvu ⋅=⊗tr . 
6. Formally derive the index notation for the functions  

3232 )tr(,)tr(,tr,tr AAAA  
7. Show that )(tr: TBABA = .  
8. Prove (1.10.16f), ( ) ( ) ( )[ ]cbaTTcTbTa ⋅×=⋅× det . 
9. Show that 3:)( T1 =− AA .  [Hint: one way of doing this is using the result from 

Problem 7.] 
10. Use 1.10.16b and 1.10.18d to prove 1.10.22c, 1det ±=Q . 
11. Use the explicit dyadic representation of the rotation tensor, ii eeQ ⊗′= , to show that 

the components of Q in the “second”, 321 xxxo ′′′ , coordinate system are the same as 
those in the first system [hint: use the rule jiijQ eQe ′⋅′=′ ] 

12. Consider the tensor D with components (in a certain coordinate system) 

















−

−

2/12/12/1
2/12/10
2/12/12/1

 

Show that D is a rotation tensor (just show that D is proper orthogonal).  
13. Show that ( ) 0tr =SW . 
14. Multiply across (1.10.32), kijkijW ωε−= , by ijpε  to show that kijijkW eω ε2

1−= .  [Hint: 
use the relation 1.3.19b, pkijkijp δεε 2= .] 

15. Show that ( )abba ⊗−⊗2
1  is a skew tensor W.  Show that its axial vector is 

( )abω ×= 2
1 .  [Hint: first prove that ( ) ( ) ( ) ( ) uabbaubuaaub ××=××=⋅−⋅ .] 

16. Find the spherical and deviatoric parts of the tensor A for which 1=ijA . 
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