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1.9 Cartesian Tensors 
 
As with the vector, a (higher order) tensor is a mathematical object which represents 
many physical phenomena and which exists independently of any coordinate system.  In 
what follows, a Cartesian coordinate system is used to describe tensors. 
 
 
1.9.1 Cartesian Tensors 
 
A second order tensor and the vector it operates on can be described in terms of Cartesian 
components.  For example, cba )(  , with 3212 eeea  , 321 2 eeeb   and 

321 eeec  , is 

 

321 224)()( eeecbacba   

 
Example (The Unit Dyadic or Identity Tensor) 
 
The identity tensor, or unit tensor, I, which maps every vector onto itself, has been 
introduced in the previous section.  The Cartesian representation of I is 

 

ii eeeeeeee  332211        (1.9.1) 

 
This follows from 
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Note also that the identity tensor can be written as  jiij eeI   , in other words the 

Kronecker delta gives the components of the identity tensor in a Cartesian coordinate 
system. 

■  
 
 
Second Order Tensor as a Dyadic 
 
In what follows, it will be shown that a second order tensor can always be written as a 
dyadic involving the Cartesian base vectors ei 

1. 
 
Consider an arbitrary second-order tensor T which operates on a to produce b, baT )( , 

or beT )( iia .  From the linearity of T, 

 

                                                 
1 this can be generalised to the case of non-Cartesian base vectors, which might not be orthogonal nor of 
unit magnitude (see §1.16) 
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beTeTeT  )()()( 332211 aaa  
 
Just as T transforms a into b, it transforms the base vectors ei into some other vectors; 
suppose that weTveTueT  )(,)(,)( 321 , then 
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and so 
 

321 eweveuT      (1.9.2) 

 
which is indeed a dyadic. 
 
Cartesian components of a Second Order Tensor 
 
The second order tensor T can be written in terms of components and base vectors as 
follows: write the vectors u, v and w in (1.9.2) in component form, so that 
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Introduce nine scalars ijT  by letting 321 ,, iiiiii TwTvTu  , so that 
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 Second-order Cartesian Tensor (1.9.3) 

 
These nine scalars ijT  are the components of the second order tensor T in the Cartesian 

coordinate system.  In index notation, 
 

 jiijT eeT   

 
Thus whereas a vector has three components, a second order tensor has nine components.  
Similarly, whereas the three vectors  ie  form a basis for the space of vectors, the nine 

dyads  ji ee   form a basis for the space of tensors, i.e. all second order tensors can be 

expressed as a linear combination of these basis tensors. 
 
It can be shown that the components of a second-order tensor can be obtained directly 
from {▲Problem 1} 
 

jiijT Tee        Components of a Tensor         (1.9.4) 
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which is the tensor expression analogous to the vector expression ue  iiu .  Note that, 

in Eqn. 1.9.4, the components can be written simply as jiTee  (without a “dot”), since 

jiji eTeTee  . 

 
Example (The Stress Tensor) 
 
Define the traction vector t acting on a surface element within a material to be the force 
acting on that element2 divided by the area of the element, Fig. 1.9.1.  Let n  be a vector 
normal to the surface.  The stress σ  is defined to be that second order tensor which maps 
n onto t, according to 
 

σnt    The Stress Tensor  (1.9.5) 
 

 
 

Figure 1.9.1: stress acting on a plane 
 
If one now considers a coordinate system with base vectors ie , then jiij eeσ   and, 

for example, 
 

3312211111 eeeσe    

 
Thus the components 11 , 21  and 31  of the stress tensor are the three components of 

the traction vector which acts on the plane with normal 1e . 
 
Augustin-Louis Cauchy was the first to regard stress as a linear map of the normal vector 
onto the traction vector; hence the name “tensor”, from the French for stress, tension. 
 

■  
 
 
 

                                                 
2 this force would be due, for example, to intermolecular forces within the material: the particles on one side 
of the surface element exert a force on the particles on the other side 
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Higher Order Tensors 
 
The above can be generalised to tensors of order three and higher.  The following notation 
will be used: 
 

, ,   …  0th-order tensors (“scalars”) 
a, b, c  … 1st-order tensors (“vectors”) 
A, B, C … 2nd-order tensors (“dyadics”) 
A, B, C … 3rd-order tensors (“triadics”) 
A, B, C  … 4th-order tensors (“tetradics”) 

 
An important third-order tensor is the permutation tensor, defined by 
 

kjiijk eee  E          (1.9.6) 

 
whose components are those of the permutation symbol, Eqns. 1.3.10-1.3.13. 
 
A fourth-order tensor can be written as 
 

lkjiijklA eeee A      (1.9.7) 

 
It can be seen that a zeroth-order tensor (scalar) has 130   component, a first-order tensor 
has 331   components, a second-order tensor has 932   components, so A  has 2733   
components and A has 81 components. 
 
 
1.9.2 Simple Contraction 
 
Tensor/vector operations can be written in component form, for example, 
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    (1.9.8) 

 
This operation is called simple contraction, because the order of the tensors is contracted 
– to begin there was a tensor of order 2 and a tensor of order 1, and to end there is a 
tensor of order 1 (it is called “simple” to distinguish it from “double” contraction – see 
below).  This is always the case – when a tensor operates on another in this way, the order 
of the result will be two less than the sum of the original orders. 
 
An example of simple contraction of two second order tensors has already been seen in 
Eqn. 1.8.4a; the tensors there were simple tensors (dyads).  Here is another example: 
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               (1.9.9) 

 
From the above, the simple contraction of two second order tensors results in another 
second order tensor.  If one writes TSA  , then the components of the new tensor are 
related to those of the original tensors through kjikij STA  . 

 
Note that, in general, 
 

         BAAB    

       BCACAB    … associative                         (1.9.10) 

  ACABCBA    … distributive 
 
The associative and distributive properties follow from the fact that a tensor is by 
definition a linear operator, §1.8.2; they apply to tensors of any order, for example,  
 

   BvAvAB                                                 (1.9.11) 
 
To deal with tensors of any order, all one has to remember is how simple tensors operate 
on each other – the two vectors which are beside each other are the ones which are 
“dotted” together: 
 

   
     

     
     febadcfedcba
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               (1.9.12) 

 
An example involving a higher order tensor is  
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Note the relation (analogous to the vector relation        a b c d a b c d , which 

follows directly from the dyad definition 1.8.3) {▲Problem 10} 
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     CDABDCBA                                         (1.9.13) 

         
Powers of Tensors 
 
Integral powers of tensors are defined inductively by IT 0 , TTT 1 nn , so, for 
example, 
 

TTT 2  The Square of a Tensor  (1.9.14) 
 

TTTT 3 , etc. 
 
 
1.9.3 Double Contraction 
 
Double contraction, as the name implies, contracts the tensors twice as much a simple 
contraction.  Thus, where the sum of the orders of two tensors is reduced by two in the 
simple contraction, the sum of the orders is reduced by four in double contraction.  The 
double contraction is denoted by a colon (:), e.g. ST : . 
 
First, define the double contraction of simple tensors (dyads) through 
 

      dbcadcba  :     (1.9.15) 
 
So in double contraction, one takes the scalar product of four vectors which are adjacent 
to each other, according to the following rule: 

For example, 
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   (1.9.16) 

 
which is, as expected, a scalar. 
 
Here is another example, the contraction of the two second order tensors I (see Eqn. 
1.9.1) and vu ,  
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       faecdbfedcba  :
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so that the scalar product of two vectors can be written in the form of a double contraction 
involving the Identity Tensor. 
 
An example of double contraction involving the permutation tensor 1.9.6 is {▲Problem 
11} 
 

 :   u v u vE      (1.9.18) 

 
It can be shown that the components of a fourth order tensor are given by (compare with 
Eqn. 1.9.4) 
 

   lkjiijklA eeee  :: A     (1.9.19) 

 
In summary then, 
 

    BA :        
     b:A  

    cB :A  

     CB :A  
 
Note the following identities: 
 

     
     

         CBDADACBDCBA

CBABACCBA

ACBCBACBA

:::

:::

:::





                 (1.9.20) 

 
Note: There are many operations that can be defined and performed with tensors.  The 
two most important operations, the ones which arise most in practice, are the simple and 
double contractions defined above.  Other possibilities are: 
(a) double contraction with two “horizontal” dots,  T S ,  bA , etc., which is based on 

the definition of the following operation as applied to simple tensors: 
                 a b c d e f b e c d a f  

(b) operations involving one cross   :              a b c d a d b c  

(c) “double” operations involving the cross    and dot: 

       

       

       

     
    
    

a b c d a c b d

a b c d a c b d

a b c d a c b d

 

 
 
1.9.4 Index Notation 
 
The index notation for single and double contraction of tensors of any order can easily be 
remembered.  From the above, a single contraction of two tensors implies that the indices 
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“beside each other” are the same3, and a double contraction implies that a pair of indices 
is repeated.  Thus, for example, in both symbolic and index notation: 
 

ijkijk

ijkmkijm

cBA

CBA





cB

B
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CA
                  (1.9.21) 

 
 
1.9.5 Matrix Notation 
 
Here the matrix notation of §1.4 is extended to include second-order tensors4.  The 
Cartesian components of a second-order tensor can conveniently be written as a 33  
matrix,  
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The operations involving vectors and second-order tensors can now be written in terms of 
matrices, for example, 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
The tensor product can be written as (see §1.4.1) 
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which is consistent with the definition of the dyadic transformation, Eqn. 1.8.3. 
 
 
 

                                                 
3 compare with the “beside each other rule” for matrix multiplication given in §1.4.1 
4 the matrix notation cannot be used for higher-order tensors 
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1.9.6 Problems 
 
1. Use Eqn. 1.9.3 to show that the component 11T  of a tensor T can be evaluated from 

11Tee , and that 2112 TeeT  (and so on, so that jiijT Tee ). 

2. Evaluate aT  using the index notation (for a Cartesian basis).  What is this operation 
called?  Is your result equal to Ta , in other words is this operation commutative?  
Now carry out this operation for two vectors, i.e. ba  .  Is it commutative in this case? 

3. Evaluate the simple contractions bA  and BA , with respect to a Cartesian coordinate 
system (use index notation). 

4. Evaluate the double contraction B:A  (use index notation). 
5. Show that, using a Cartesian coordinate system and the index notation, that the double 

contraction b:A  is a scalar.  Write this scalar out in full in terms of the components 
of A  and b. 

6. Consider the second-order tensors 

33232231

33322211
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Compute DF  and DF : . 
7. Consider the second-order tensor  

3322122111 243 eeeeeeeeeeD  . 

Determine the image of the vector 321 524 eeer   when D operates on it. 

8. Write the following out in full – are these the components of scalars, vectors or 
second order tensors? 

(a) iiB  

(b) kkjC  

(c) mnB  

(d) ijji Aba  

9. Write    dcba  :  in terms of the components of the four vectors.  What is the 
order of the resulting tensor? 

10. Verify Eqn. 1.9.13. 
11. Show that  :   u v u vE  – see (1.9.6, 1.9.18).  [Hint: use the definition of the 

cross product in terms of the permutation symbol, (1.3.14), and the fact that 

kjiijk   .] 

 


