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1.7 Vector Calculus 2 - Integration 
 
 
1.7.1 Ordinary Integrals of a Vector 
 
A vector can be integrated in the ordinary way to produce another vector, for example 
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1.7.2 Line Integrals 
 
Discussed here is the notion of a definite integral involving a vector function that 
generates a scalar. 
 
Let 332211 eeex xxx   be a position vector tracing out the curve C between the points 

1p  and 2p .  Let f be a vector field.  Then  
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is an example of a line integral. 
 
Example (of a Line Integral) 
 
A particle moves along a path C from the point )0,0,0(  to )1,1,1( , where C is the straight 
line joining the points, Fig. 1.7.1.  The particle moves in a force field given by 
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What is the work done on the particle? 
 

 
 

Figure 1.7.1: a particle moving in a force field 
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Solution 
The work done is 
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The straight line can be written in the parametric form txtxtx  321 ,, , so that 
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If C is a closed curve, i.e. a loop, the line integral is often denoted  
C

dxv . 

 
Note: in fluid mechanics and aerodynamics, when v is the velocity field, this integral 

C d v x  is called the circulation of v about C. 

 
 
1.7.3 Conservative Fields 
 
If for a vector f one can find a scalar   such that 
 

f      (1.7.1) 
 
then 
 

(1)  
2
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p
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dxf   is independent of the path C joining 1p  and 2p  

(2) 0
C

dxf  around any closed curve C 

 
In such a case, f is called a conservative vector field and   is its scalar potential1.  For 
example, the work done by a conservative force field f is 
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which clearly depends only on the values at the end-points 1p  and 2p , and not on the 
path taken between them. 
 
It can be shown that a vector f is conservative if and only if of curl   {▲Problem 3}. 
 

                                                 
1 in general, of course, there does not exist a scalar field   such that f ; this is not surprising since a 

vector field has three scalar components whereas   is determined from just one 
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Example (of a Conservative Force Field) 
 
The gravitational force field 3ef mg  is an example of a conservative vector field.  

Clearly, of curl , and the gravitational scalar potential is 3mgx : 
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Example (of a Conservative Force Field) 
 
Consider the force field 
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Show that it is a conservative force field, find its scalar potential and find the work done 
in moving a particle in this field from )1,2,1(   to )4,1,3( . 
 
Solution 
 
One has 
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so the field is conservative. 
 
To determine the scalar potential, let 
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Equating coefficients and integrating leads to 
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which agree if one chooses 2

2
1

3
31 ,,0 xxrxxqp  , so that 3

312
2
1 xxxx  , to which 

may be added a constant. 
 
The work done is 
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202)1,2,1()4,1,3(  W  
■  

 
Helmholtz Theory 
 
As mentioned, a conservative vector field which is irrotational, i.e. f , implies 

of  , and vice versa.  Similarly, it can be shown that if one can find a vector a such 
that af  , where a is called the vector potential, then f is solenoidal, i.e. 0 f  
{▲Problem 4}.  
 
Helmholtz showed that a vector can always be represented in terms of a scalar potential 
  and a vector potential a:2 
 

Type of Vector Condition Representation 
General  af    

Irrotational (conservative) of   f  
Solenoidal 0 f  af   

 
 
1.7.4 Double Integrals 
 
The most elementary type of two-dimensional integral is that over a plane region.  For 
example, consider the integral over a region R in the 21 xx   plane, Fig. 1.7.2.  The 
integral  
 


R

dxdx 21  

 
then gives the area of R and, just as the one dimensional integral of a function gives the 
area under the curve, the integral 
 


R

dxdxxxf 2121 ),(  

 
gives the volume under the (in general, curved) surface ),( 213 xxfx  .  These integrals 

are called double integrals.  
 
 

                                                 
2 this decomposition can be made unique by requiring that 0f   as x ; in general, if one is given f, 
then   and a can be obtained by solving a number of differential equations 
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Figure 1.7.2: integration over a region 
 
 
Change of variables in Double Integrals  
 

To evaluate integrals of the type R dxdxxxf 2121 ),( , it is often convenient to make a 

change of variable.  To do this, one must find an elemental surface area in terms of the 
new variables, 21 , tt  say, equivalent to that in the 21 , xx  coordinate system, 21dxdxdS  . 
 
The region R over which the integration takes place is the plane surface 0),( 21 xxg .  
Just as a curve can be represented by a position vector of one single parameter t (cf. 
§1.6.2), this surface can be represented by a position vector with two parameters3, 1t  and 

2t : 
 

22121211 ),(),( eex ttxttx   
 
Parameterising the plane surface in this way, one can calculate the element of surface dS  
in terms of 21 , tt  by considering curves of constant 21 , tt , as shown in Fig. 1.7.3.  The 
vectors bounding the element are 
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so the area of the element is given by  
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where J is the Jacobian of the transformation, 
 

                                                 
3 for example, the unit circle 2 2

1 2 1 0x x    can be represented by 221121 sincos eex tttt  , 10 1t , 

20 2  t  ( 21 , tt  being in this case the polar coordinates r,  , respectively) 
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The Jacobian is also often written using the notation 
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The integral can now be written as 
 


R

dtJdtttf 2121 ),(  

 

 
 

Figure 1.7.3: a surface element 
 
Example 
 

Consider a region R, the quarter unit-circle in the first quadrant, 2
12 10 xx  ,  

10 1  x .  The moment of inertia about the 1x  – axis is defined by 
 


R
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Transform the integral into the new coordinate system 21, tt  by making the substitutions4 

212211 sin,cos ttxttx  .  Then 
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4 these are the polar coordinates, 21 , tt  equal to r,  , respectively 
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so 
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1.7.5 Surface Integrals 
 
Up to now, double integrals over a plane region have been considered.  In what follows, 
consideration is given to integrals over more complex, curved, surfaces in space, such as 
the surface of a sphere.   
 
Surfaces 
 
Again, a curved surface can be parameterized by 21, tt , now by the position vector 
 

321322121211 ),(),(),( eeex ttxttxttx   

 
One can generate a curve C on the surface S by taking )(11 stt  , )(22 stt   so that C has 
position vector, Fig. 1.7.4,  
 

   )(),( 21 ststs xx   
  
A vector tangent to C at a point p on S is, from Eqn. 1.6.3, 
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Figure 1.7.4: a curved surface 
 
Many different curves C pass through p, and hence there are many different tangents, 
with different corresponding values of dsdtdsdt /,/ 21 .  Thus the partial derivatives 

21 /,/ tt  xx  must also both be tangential to C and so a normal to the surface at p is 
given by their cross-product, and a unit normal is 
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In some cases, it is possible to use a non-parametric form for the surface, for example 

cxxxg ),,( 321 , in which case the normal can be obtained simply from 

gg grad/gradn . 

 
Example (Parametric Representation and the Normal to a Sphere) 
 
The surface of a sphere of radius a can be parameterised as5 
  

 31221121 cossinsincossin eeex ttttta  ,         20,0 21  tt  

 
Here, lines of const1 t  are parallel to the 21 xx   plane (“parallels”), whereas lines of 

const2 t  are “meridian” lines, Fig. 1.7.5.  If one takes the simple expressions 

stst  2/, 21  , over 2/0  s , one obtains a curve 1C  joining )1,0,0(  and )0,0,1( , 

and passing through )2/1,2/1,2/1( , as shown. 
 

 
 

Figure 1.7.5: a sphere 
 
The partial derivatives with respect to the parameters are 
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5 these are the spherical coordinates (see §1.6.10);   21 , tt  
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and a unit normal to the spherical surface is 
 

31221121 cossinsincossin eeen ttttt   

 
For example, at 4/21  tt  (this is on the curve 1C ), one has 
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and, as expected, it is in the same direction as r. 

■  
 
Surface Integrals 
 

Consider now the integral dS
S f  where f is a vector function and S is some curved 

surface.  As for the integral over the plane region, 
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only now dS  is not “flat” and x is three dimensional.  The integral can be evaluated if 
one parameterises the surface with 21 , tt  and then writes 
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One way to evaluate this cross product is to use the relation (Lagrange’s identity, 
Problem 15, §1.3) 
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Example (Surface Area of a Sphere) 
 
Using the parametric form for a sphere given above, one obtains  
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so that 
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Flux Integrals 
 
Surface integrals often involve the normal to the surface, as in the following example. 
 
Example 
 

If 3322
2
21314 eeef xxxxx  , evaluate dS

S
 nf , where S is the surface of the cube 

bounded by 1,0;1,0;1,0 321  xxx , and n is the unit outward normal, Fig. 1.7.6. 

 

 
 

Figure 1.7.6: the unit cube 
 
Solution 
 
The integral needs to be evaluated over the six faces.  For the face with 1en  , 11 x  
and 
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Similarly for the other five sides, whence 2
3 dS

S

nf . 
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Integrals of the form dS
S nf  are known as flux integrals and arise quite often in 

applications.  For example, consider a material flowing with velocity v, in particular the 
flow through a small surface element dS  with outward unit normal n, Fig. 1.7.7.  The 
volume of material flowing through the surface in time dt  is equal to the volume of the 
slanted cylinder shown, which is the base dS  times the height.  The slanted height is (= 
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velocity × time) is dtv , and the vertical height is then dtnv  .  Thus the rate of flow is 

the volume flux (volume per unit time) through the surface element: dSnv  . 
 

 
 

Figure 1.7.7: flow through a surface element 
 
The total (volume) flux out of a surface S is then6 
 

volume flux:    dS
S
 nv     (1.7.8) 

 
Similarly, the mass flux is given by 
 

mass flux:    dS
S
 nv     (1.7.9) 

 
For more complex surfaces, one can write using Eqn. 1.7.3, 1.7.5, 
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Example (of a Flux Integral) 
 

Compute the flux integral dS
S nf , where S is the parabolic cylinder represented by 

 
30,20, 31

2
12  xxxx  

 
and 331212 2 eeef xxx  , Fig. 1.7.8. 

 
Solution 
 
Making the substitutions 2311 , txtx  , so that 2

12 tx  , the surface can be represented 

by the position vector 
 

                                                 
6 if v acts in the same direction as n, i.e. pointing outward, the dot product is positive and this integral is 
positive; if, on the other hand, material is flowing in through the surface, v and n are in opposite directions 
and the dot product is negative, so the integral is negative 

n
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dtnv  dtv
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so the integral becomes 
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Figure 1.7.8: flux through a parabolic cylinder 
 
Note: in this example, the value of the integral depends on the choice of n.  If one chooses 

n  instead of n, one would obtain 12 .  The normal in the opposite direction (on the 
“other side” of the surface) can be obtained by simply switching 1t  and 2t , since 

1221 //// tttt  xxxx . 
■  

 
Surface flux integrals can also be evaluated by first converting them into double integrals 
over a plane region.  For example, if a surface S has a projection R on the 21 xx   plane, 

then an element of surface dS  is related to the projected element 21dxdx  through (see 
Fig. 1.7.9) 
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Figure 1.7.9: projection of a surface element onto a plane region 
 
 
The Normal and Surface Area Elements 
 
It is sometimes convenient to associate a special vector Sd  with a differential element of 
surface area dS , where 
 

dSd nS   
 
so that Sd  is the vector with magnitude dS  and direction of the unit normal to the 
surface.  Flux integrals can then be written as 
 

 
SS
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1.7.6 Volume Integrals 
 
The volume integral, or triple integral, is a generalisation of the double integral. 
 
Change of Variable in Volume Integrals 
 
For a volume integral, it is often convenient to make the change of variables 

),,(),,( 321321 tttxxx  .  The volume of an element dV  is given by the triple scalar 

product (Eqns. 1.1.5, 1.3.17) 
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where the Jacobian is now 
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so that 
 

         
VV
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1.7.7 Integral Theorems 
 
A number of integral theorems and relations are presented here (without proof), the most 
important of which is the divergence theorem.  These theorems can be used to simplify 
the evaluation of line, double, surface and triple integrals.  They can also be used in 
various proofs of other important results. 
 
The Divergence Theorem 
 
Consider an arbitrary differentiable vector field ),( txv  defined in some finite region of 
physical space.  Let V be a volume in this space with a closed surface S bounding the 
volume, and let the outward normal to this bounding surface be n.  The divergence 
theorem of Gauss states that (in symbolic and index notation) 
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dSnvdVdS vnv div      Divergence Theorem    (1.7.12) 

 
and one has the following useful identities {▲Problem 10} 
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By applying the divergence theorem to a very small volume, one finds that 
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that is, the divergence is equal to the outward flux per unit volume, the result 1.6.18. 
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Stoke’s Theorem 
 
Stoke’s theorem transforms line integrals into surface integrals and vice versa.  It states 
that 
 

   
CS

dsdS τfnfcurl     (1.7.14) 

 
Here C is the boundary of the surface S, n is the unit outward normal and dsd /rτ   is 
the unit tangent vector. 
 
As has been seen, Eqn. 1.6.24, the curl of the velocity field is a measure of how much a 
fluid is rotating.  The direction of this vector is along the direction of the local axis of 
rotation and its magnitude measures the local angular velocity of the fluid.  Stoke’s 
theorem then states that the amount of rotation of a fluid can be measured by integrating 
the tangential velocity around a curve (the line integral), or by integrating the amount of 
vorticity “moving through” a surface bounded by the same curve. 
 
Green’s Theorem and Related Identities 
 
Green’s theorem relates a line integral to a double integral, and states that 
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dxdx
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dxdx 21
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 ,   (1.7.15) 

 
where R is a region in the 21 xx   plane bounded by the curve C.  In vector form, Green’s 
theorem reads as 
 

 
RC

dxdxd 213curl efxf     where    2211 eef         (1.7.16) 

 
from which it can be seen that Green’s theorem is a special case of Stoke’s theorem, for 
the case of a plane surface (region) in the 21 xx   plane. 
 
It can also be shown that (this is Green’s first identity) 
 

   dVdS
VS
   gradgradgrad 2n         (1.7.17) 

 
Note that the term gradn  is the directional derivative of   in the direction of the 
outward unit normal.  This is often denoted as n / .  Green’s first identity can be 
regarded as a multi-dimensional “integration by parts” – compare the rule 

  vduuvudv  with the identity re-written as 
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or 
 

      dVdSdV
VSV
  unuu               (1.7.18) 

 
One also has the relation (this is Green’s second identity) 
 

      dVdS
VS
   22gradgrad nn   (1.7.19) 

 
 
1.7.8 Problems 
  
1. Find the work done in moving a particle in a force field given by 

1123121 1053 eeef xxxx   along the curve 12
1  tx , 2

2 2tx  , 3
3 tx  , from 1t  

to 2t .  (Plot the curve.) 
2. Show that the following vectors are conservative and find their scalar potentials: 

(i) 332211 eeex xxx   

(ii)  2112
21 eev xxe xx   

(iii) 332
2
2112 )/()/1( eeeu xxxx   

3. Show that if  f  then of curl . 
4. Show that if af   then 0 f . 
5. Find the volume beneath the surface 03

2
2

2
1  xxx  and above the square with 

vertices )0,0( , )0,1( , )1,1(  and )1,0(  in the 21 xx  plane. 

6. Find the Jacobian (and sketch lines of constant 21, tt ) for the rotation  




cossin

sincos

212

211

ttx

ttx




 

7. Find a unit normal to the circular cylinder with parametric representation 
10,20,sincos),( 1132211121  ttttatatt eeex  

8. Evaluate dS
S   where 321 xxx   and S is the plane surface 213 xxx  , 

120 xx  , 10 1  x . 

9. Evaluate the flux integral dS
S nf  where 321 22 eeef   and S is the cone 

  axxxax  3
2
2

2
13 ,  [Hint: first parameterise the surface with 21, tt .] 

10. Prove the relations in (1.7.13).  [Hint: first write the expressions in index notation.] 
11. Use the divergence theorem to show that 

VdS
S

3 nx
, 

where V is the volume enclosed by S (and x is the position vector). 
12. Verify the divergence theorem for 3

3
32

3
21

3
1 eeev xxx   where S is the surface of the 

sphere 22
3

2
2

2
1 axxx  . 

13. Interpret the divergence theorem (1.7.12) for the case when v is the velocity field.  
See (1.6.18, 1.7.8).  Interpret also the case of 0div v . 
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14. Verify Stoke’s theorem for 312312 eeef xxx   where S is 01 2
2

2
13  xxx  (so 

that C is the circle of radius 1 in the 21 xx   plane). 

15. Verify Green’s theorem for the case of 2122
2
11 ,2 xxxx   , with C the unit 

circle 12
2

2
1  xx .  The following relations might be useful: 

0cossincossin,cossin
2

0

22

0

2

0

22

0

2  


 dddd  

16. Evaluate  
C

dxf  using Green’s theorem, where 2
3
11

3
2 eef xx   and C is the circle 

42
2

2
1  xx . 

17. Use Green’s theorem to show that the double integral of the Laplacian of p over a 
region R is equivalent to the integral of n pnp grad/  around the curve C 
bounding the region: 

ds
n

p
dxdxp

CR
 


 21
2  

[Hint: Let 1221 /,/ xpxp   . Also, show that 

2
1

1
2 een

ds

dx

ds

dx
  

is a unit normal to C, Fig. 1.7.10] 
 

 
 

Figure 1.7.10: projection of a surface element onto a plane region 
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