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1.6 Vector Calculus 1 - Differentiation 
 
Calculus involving vectors is discussed in this section, rather intuitively at first and more 
formally toward the end of this section.  
 
 
1.6.1 The Ordinary Calculus 
 
Consider a scalar-valued function of a scalar, for example the time-dependent density 
of a material )(t  .  The calculus of scalar valued functions of scalars is just the 
ordinary calculus.  Some of the important concepts of the ordinary calculus are reviewed 
in Appendix B to this Chapter, §1.B.2. 
 
 
1.6.2 Vector-valued Functions of a scalar 
 
Consider a vector-valued function of a scalar, for example the time-dependent 
displacement of a particle )(tuu  .  In this case, the derivative is defined in the usual 
way, 
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which turns out to be simply the derivative of the coefficients1, 
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Partial derivatives can also be defined in the usual way.  For example, if u is a function of 
the coordinates, ),,( 321 xxxu , then 
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Differentials of vectors are also defined in the usual way, so that when 321 ,, uuu  undergo 

increments 332211 ,, uduuduudu  , the differential of u is 

 

332211 eeeu dududud   

 
and the differential and actual increment u  approach one another as 

0,, 321  uuu . 

 
 
 

                                                 
1 assuming that the base vectors do not depend on t 
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Space Curves 
 
The derivative of a vector can be interpreted geometrically as shown in Fig. 1.6.1: u  is 
the increment in u consequent upon an increment t  in t.  As t changes, the end-point of 
the vector )(tu  traces out the dotted curve   shown – it is clear that as 0t , u  
approaches the tangent to  , so that dtd /u  is tangential to  .  The unit vector tangent to 
the curve is denoted by τ : 
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Figure 1.6.1: a space curve; (a) the tangent vector, (b) increment in arc length 
 
Let s be a measure of the length of the curve  , measured from some fixed point on  .  
Let s  be the increment in arc-length corresponding to increments in the coordinates, 

 T321 ,, uuu u , Fig. 1.6.1b.  Then, from the ordinary calculus (see  Appendix 

1.B),  
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Thus the unit vector tangent to the curve can be written as 
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If u is interpreted as the position vector of a particle and t is interpreted as time, then 

dtd /uv   is the velocity vector of the particle as it moves with speed dtds /  along  . 
 
Example (of particle motion) 
 
A particle moves along a curve whose parametric equations are 2

1 2tx  , ttx 42
2  , 

533  tx  where t is time.  Find the component of the velocity at time 1t  in the 

direction 321 23 eeea  . 

 
Solution 
 
The velocity is 
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The component in the given direction is av ˆ , where â  is a unit vector in the direction of 

a, giving 7/148 . 
■  

 
Curvature 
 
The scalar curvature )(s  of a space curve is defined to be the magnitude of the rate of 
change of the unit tangent vector: 
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Note that τ  is in a direction perpendicular to τ , Fig. 1.6.2.  In fact, this can be proved 
as follows: since τ  is a unit vector, ττ   is a constant ( 1 ), and so   0/  dsd ττ , but 
also,  
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and so τ  and dsd /τ  are perpendicular.  The unit vector defined in this way is called the 
principal normal vector: 
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ds

dτ
ν
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                                                          (1.6.5) 

 
 

 
 

Figure 1.6.2: the curvature 
 
This can be seen geometrically in Fig. 1.6.2: from Eqn. 1.6.5, τ  is a vector of 
magnitude s  in the direction of the vector normal to τ .  The radius of curvature R is 
defined as the reciprocal of the curvature; it is the radius of the circle which just touches 
the curve at s, Fig. 1.6.2. 
 
Finally, the unit vector perpendicular to both the tangent vector and the principal normal 
vector is called the unit binormal vector: 
 

ντb                                                      (1.6.6) 
 
The planes defined by these vectors are shown in Fig. 1.6.3; they are called the rectifying 
plane, the normal plane and the osculating plane. 
 

 
 
Figure 1.6.3: the unit tangent, principal normal and binormal vectors and associated 

planes 
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Rules of Differentiation 
 
The derivative of a vector is also a vector and the usual rules of differentiation apply, 
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Also, it is straight forward to show that {▲Problem 2} 
 

    a
va

vava
va

vav 
dt

d

dt

d

dt

d

dt

d

dt

d

dt

d
        (1.6.8) 

 
(The order of the terms in the cross-product expression is important here.) 
 
 
1.6.3 Fields 
 
In many applications of vector calculus, a scalar or vector can be associated with each 
point in space x.  In this case they are called scalar or vector fields.  For example 
 

)(x  temperature a scalar field (a scalar-valued function of position) 
)(xv  velocity a vector field (a vector valued function of position) 

 
These quantities will in general depend also on time, so that one writes ),( tx  or ),( txv .  
Partial differentiation of scalar and vector fields with respect to the variable t is 
symbolised by t / .  On the other hand, partial differentiation with respect to the 
coordinates is symbolised by ix / .  The notation can be made more compact by 

introducing the subscript comma to denote partial differentiation with respect to the 
coordinate variables, in which case ii x /,  , kjijki xxuu  /2

, , and so on. 

 
 
1.6.4 The Gradient of a Scalar Field 
 
Let )(x  be a scalar field.  The gradient of   is a vector field defined by (see Fig. 1.6.4) 
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     Gradient of a Scalar Field (1.6.9) 

 
The gradient   is of considerable importance because if one takes the dot product of 

  with xd , it gives the increment in  : 
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Figure 1.6.4: the gradient of a vector 
 
If one writes xd  as eex dxd  , where e is a unit vector in the direction of dx, then 
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This quantity is called the directional derivative of  , in the direction of e, and will be 
discussed further in §1.6.11. 
 
The gradient of a scalar field is also called the scalar gradient, to distinguish it from the 
vector gradient (see later)2, and is also denoted by 
 

 grad      (1.6.12) 

 
Example (of the Gradient of a Scalar Field) 
 
Consider a two-dimensional temperature field 2

2
2
1 xx  .  Then 

 

2211 22 ee xx 
  

For example, at )0,1( , 1 , 12e  and at  )1,1( , 2 , 21 22 ee  , Fig. 1.6.5.  
Note the following: 

(i)   points in the direction normal to the curve const.  
(ii) the direction of maximum rate of change of   is in the direction of   

                                                 
2 in this context, a gradient is a derivative with respect to a position vector, but the term gradient is used 
more generally than this, e.g. see §1.14 

 

x

xd





Section 1.6 

Solid Mechanics Part III                                                                                Kelly 36

(iii) the direction of zero d  is in the direction perpendicular to   
 

 
 

Figure 1.6.5: gradient of a temperature field 
 
The curves   const., 21 xx  are called isotherms (curves of constant temperature).  In 
general, they are called iso-curves (or iso-surfaces in three dimensions).  

■  
 
Many physical laws are given in terms of the gradient of a scalar field.  For example, 
Fourier’s law of heat conduction relates the heat flux q (the rate at which heat flows 
through a surface of unit area3) to the temperature gradient through 
 

 kq      (1.6.13) 
 
where k is the thermal conductivity of the material, so that heat flows along the direction 
normal to the isotherms. 
 
The Normal to a Surface 
 
In the above example, it was seen that   points in the direction normal to the curve  

const.   Here it will be seen generally how and why the gradient can be used to obtain 
a normal vector to a surface. 
 
Consider a surface represented by the scalar function cxxxf ),,( 321 , c a constant4, and 

also a space curve C lying on the surface, defined by the position vector 

332211 )()()( eeer txtxtx  .  The components of r must satisfy the equation of the 

surface, so ctxtxtxf ))(),(),(( 321 .  Differentiation gives 
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3 the flux is the rate of flow of fluid, particles or energy through a given surface; the flux density is the flux 
per unit area but, as here, this is more commonly referred to simply as the flux 
4 a surface can be represented by the equation cxxxf ),,( 321 ; for example, the expression 
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which is equivalent to the equation   0/grad  dtdf r  and, as seen in §1.6.2, dtd /r  is a 
vector tangential to the surface. Thus fgrad  is normal to the tangent vector; fgrad  must 
be normal to all the tangents to all the curves through p, so it must be normal to the plane 
tangent to the surface. 
 
Taylor’s Series 
 
Writing   as a function of three variables (omitting time t), so that ),,( 321 xxx  , then 

  can be expanded in a three-dimensional Taylor’s series: 
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Neglecting the higher order terms, this can be written as 
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which is equivalent to 1.6.9, 1.6.10. 
 
 
1.6.5 The Nabla Operator 
 
The symbolic vector operator   is called the Nabla operator5.  One can write this in 
component form as 
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One can generalise the idea of the gradient of a scalar field by defining the dot product 
and the cross product of the vector operator   with a vector field   , according to the 
rules 
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The following terminology is used: 
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5 or del or the Gradient operator 
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These latter two are discussed in the following sections. 
 
 
1.6.6 The Divergence of a Vector Field 
 
From the definition (1.6.15), the divergence of a vector field )(xa  is the scalar field 
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   Divergence of a Vector Field    (1.6.17) 

 
Differential Elements & Physical interpretations of the Divergence 
 
Consider a flowing compressible6 material with velocity field ),,( 321 xxxv .  Consider 

now a differential element of this material, with dimensions 321 ,, xxx  , with bottom 

left-hand corner at ),,( 321 xxx , fixed in space and through which the material flows7, Fig. 

1.6.6. 
 
The component of the velocity in the 1x  direction, 1v , will vary over a face of the element 
but, if the element is small, the velocities will vary linearly as shown; only the 
components at the four corners of the face are shown for clarity. 
 
Since [distance = time   velocity], the volume of material flowing through the right-hand 
face in time t  is t  times the “volume” bounded by the four corner velocities (between 
the right-hand face and the plane surface denoted by the dotted lines); it is straightforward 
to show that this volume is equal to the volume shown to the right, Fig. 1.6.6b, with 
constant velocity equal to the average velocity avev , which occurs at the centre of the face.  

Thus the volume of material flowing out is8 tvxx ave 32  and the volume flux, i.e. the 

rate of volume flow, is avevxx 32 .  Now 
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Using a Taylor’s series expansion, and neglecting higher order terms, 
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6 that is, it can be compressed or expanded 
7 this type of fixed volume in space, used in analysis, is called a control volume 
8 the velocity will change by a small amount during the time interval t .  One could use the average 

velocity in the calculation, i.e.  ),(),( 112
1 ttvtv  xx , but in the limit as 0t , this will reduce to 

),(1 tv x  
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with the partial derivatives evaluated at ),,( 321 xxx , so the volume flux out is 
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Figure 1.6.6: a differential element; (a) flow through a face, (b) volume of material 
flowing through the face 

 
The net volume flux out (rate of volume flow out through the right-hand face minus the 
rate of volume flow in through the left-hand face) is then  11321 / xvxxx   and the net 

volume flux per unit volume is 11 / xv  .  Carrying out a similar calculation for the other 
two coordinate directions leads to 
 

net unit volume flux out of an elemental volume:   vdiv
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which is the physical meaning of the divergence of the velocity field. 
 
If 0div v , there is a net flow out and the density of material is decreasing.  On the other 
hand, if 0div v , the inflow equals the outflow and the density remains constant – such a 
material is called incompressible9.  A flow which is divergence free is said to be 
isochoric.  A vector v for which 0div v  is said to be solenoidal. 
 
Notes: 
 The above result holds only in the limit when the element shrinks to zero size – so that 

the extra terms in the Taylor series tend to zero and the velocity field varies in a linear 
fashion over a face 

 consider the velocity at a fixed point in space, ( , )tv x .  The velocity at a later time, 
( , )t t v x , actually gives the velocity of a different material particle.  This is shown in 

Fig. 1.6.7 below: the material particles 3,2,1  are moving through space and whereas 
),( txv  represents the velocity of particle 2, ( , )t t v x  now represents the velocity of 

particle 1, which has moved into position x.  This point is important in the consideration 
of the kinematics of materials, to be discussed in Chapter 2 

                                                 
9 a liquid, such as water, is a material which is incompressible 
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Figure 1.6.7: moving material particles 
 
Another example would be the divergence of the heat flux vector q.  This time suppose 
also that there is some generator of heat inside the element (a source), generating at a rate 
of r per unit volume, r being a scalar field.  Again, assuming the element to be small, one 
takes r to be acting at the mid-point of the element, and one considers ),( 12

1
1 xxr  .  

Assume a steady-state heat flow, so that the (heat) energy within the elemental volume 
remains constant with time – the law of balance of (heat) energy then requires that the net 
flow of heat out must equal the heat generated within, so 
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Dividing through by 321 xxx   and taking the limit as 0,, 321  xxx , one obtains 

 
rqdiv      (1.6.19) 
 

Here, the divergence of the heat flux vector field can be interpreted as the heat generated 
(or absorbed) per unit volume per unit time in a temperature field.  If the divergence is 
zero, there is no heat being generated (or absorbed) and the heat leaving the element is 
equal to the heat entering it. 
 
 
1.6.7 The Laplacian 
 
Combining Fourier’s law of heat conduction (1.6.13),  kq , with the energy 
balance equation (1.6.19), rqdiv , and assuming the conductivity is constant, leads to 
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  (1.6.20) 
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This expression is called the Laplacian of  .  By introducing the Laplacian 
operator  2 , one has 
 

k

r
 2       (1.6.21) 

 
This equation governs the steady state heat flow for constant conductivity.  In general, the 
equation a 2  is called Poisson’s equation.  When there are no heat sources (or 

sinks), one has Laplace’s equation, 02   .  Laplace’s and Poisson’s equation arise in 
many other mathematical models in mechanics, electromagnetism, etc. 
 
 
1.6.8 The Curl of a Vector Field 
 
From the definition 1.6.15 and 1.6.14, the curl of a vector field )(xa  is the vector field 
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    Curl of a Vector Field     (1.6.22) 

 
It can also be expressed in the form 
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    (1.6.23) 

 
Note: the divergence and curl of a vector field are independent of any coordinate system 
(for example, the divergence of a vector and the length and direction of acurl  are 
independent of the coordinate system in use) – these will be re-defined without reference 
to any particular coordinate system when discussing tensors (see §1.14). 
 
Physical interpretation of the Curl 
 
Consider a particle with position vector r and moving with velocity rωv  , that is, 
with an angular velocity   about an axis in the direction of ω .  Then {▲Problem 7} 
 

  ωrωv 2curl                        (1.6.24) 
 
Thus the curl of a vector field is associated with rotational properties.  In fact, if v is the 
velocity of a moving fluid, then a small paddle wheel placed in the fluid would tend to 
rotate in regions where 0curl v , in which case the velocity field v is called a vortex 
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field.  The paddle wheel would remain stationary in regions where 0curl v , in which 
case the velocity field v is called irrotational. 
 
 
1.6.9 Identities 
 
Here are some important identities of vector calculus {▲Problem 8}: 
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1.6.10 Cylindrical and Spherical Coordinates 
 
Cartesian coordinates have been used exclusively up to this point.  In many practical 
problems, it is easier to carry out an analysis in terms of cylindrical or spherical 
coordinates.  Differentiation in these coordinate systems is discussed in what follows10. 
 
Cylindrical Coordinates 
 
Cartesian and cylindrical coordinates are related through (see Fig. 1.6.8) 
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Then the Cartesian partial derivatives become 
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10 this section also serves as an introduction to the more general topic of Curvilinear Coordinates covered 
in §1.16-§1.19 
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Figure 1.6.8: cylindrical coordinates 
 
The base vectors are related through 
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so that from Eqn. 1.6.14, after some algebra, the Nabla operator in cylindrical coordinates 
reads as {▲Problem 9} 
 

zrr zr 










 eee


1
                       (1.6.30) 

 
which allows one to take the gradient of a scalar field in cylindrical coordinates: 
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Cartesian base vectors are independent of position.  However, the cylindrical base 
vectors, although they are always of unit magnitude, change direction with position.  In 
particular, the directions of the base vectors ee ,r  depend on  , and so these base 

vectors have derivatives with respect to  : from Eqn. 1.6.29, 
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with all other derivatives of the base vectors with respect to zr ,,  equal to zero. 
 
The divergence can now be evaluated: 
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Similarly the curl of a vector and the Laplacian of a scalar are {▲Problem 10} 
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Spherical Coordinates 
 
Cartesian and spherical coordinates are related through (see Fig. 1.6.9) 
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and the base vectors are related through 
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Figure 1.6.9: spherical coordinates 
 
In this case the non-zero derivatives of the base vectors are 
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and it can then be shown that {▲Problem 11} 
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1.6.11 The Directional Derivative 
 
Consider a function  x .  The directional derivative of   in the direction of some vector 
w is the change in   in that direction.  Now the difference between its values at position 
x and wx   is, Fig. 1.6.10,  
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Figure 1.6.10: the directional derivative 
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An approximation to d  can be obtained by introducing a parameter   and by 

considering the function  wx   ; one has    xwx    0  and 

   wxwx     1 . 

 
If one treats   as a function of  , a Taylor’s series about 0  gives 
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or, writing it as a function of wx  , 
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By setting 1 , the derivative here can be seen to be a linear approximation to the 
increment d , Eqn. 1.6.39.  This is defined as the directional derivative of the function 

)(x  at the point x in the direction of w, and is denoted by 
 

 wxwx 






0

][
d

d
    The Directional Derivative        (1.6.40) 

 
The directional derivative is also written as  xwD . 

 
The power of the directional derivative as defined by Eqn. 1.6.40 is its generality, as seen 
in the following example. 
 
Example (the Directional Derivative of the Determinant) 
 
Consider the directional derivative of the determinant of the 22  matrix A, in the 
direction of a second matrix T (the word “direction” is obviously used loosely in this 
context).  One has 
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The Directional Derivative and The Gradient 
 
Consider a scalar-valued function   of a vector z.  Let z be a function of a parameter  , 

       321 ,, zzz .  Then 
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Thus, with wxz  , 
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                   (1.6.41) 

 
which can be compared with Eqn. 1.6.11.  Note that for Eqns. 1.6.11 and 1.6.41 to be 
consistent definitions of the directional derivative, w here should be a unit vector. 
 
 
1.6.12 Formal Treatment of Vector Calculus 
 
The calculus of vectors is now treated more formally in what follows, following on from 
the introductory section in §1.2.  Consider a vector h, an element of the Euclidean vector 
space E, Eh .  In order to be able to speak of limits as elements become “small” or 
“close” to each other in this space, one requires a norm.  Here, take the standard 
Euclidean norm on E, Eqn. 1.2.8, 
 

hhhhh  ,                                              (1.6.42) 

 
Consider next a scalar function REf : .  If there is a constant 0M  such that 

  hh Mf   as oh  , then one writes 

 
   hh Of     as   oh                                            (1.6.43) 

 
This is called the Big Oh (or Landau) notation.  Eqn. 1.6.43 states that  hf  goes to 

zero at least as fast as h .  An expression such as  

 
     hhh Ogf                                                (1.6.44) 

 
then means that    hh gf   is smaller than h  for h  sufficiently close to o. 

 
Similarly, if  
 

 
0

h

hf
   as   oh                                           (1.6.45) 

 
 then one writes    hh of   as oh  .  This implies that  hf  goes to zero faster than 

h . 
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A field is a function which is defined in a Euclidean (point) space 3E .  A scalar field is 
then a function REf 3: .  A scalar field is differentiable at a point 3Ex  if there 

exists a vector   EDf x  such that 
 

       hhxxhx oDfff     for all   Eh                     (1.6.46) 

 
In that case, the vector  xDf  is called the derivative (or gradient) of f at x (and is given 

the symbol  xf ). 
 
Now setting wh   in 1.6.46, where Ew  is a unit vector, dividing through by   and 
taking the limit as 0 , one has the equivalent statement  
 

   wxwx 
 




f
d

d
f

0

   for all   Ew                     (1.6.47) 

 
which is 1.6.41.  In other words, for the derivative to exist, the scalar field must have a 
directional derivative in all directions at x. 
 
Using the chain rule as in §1.6.11, Eqn. 1.6.47 can be expressed in terms of the Cartesian 
basis  ie , 
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                                 (1.6.48) 

 
This must be true for all w and so, in a Cartesian basis,  
 

  i
ix

f
f ex




                                                    (1.6.49) 

 
which is Eqn. 1.6.9. 
 
 
1.6.13 Problems 
 
1. A particle moves along a curve in space defined by 

      3
32

2
2

1
3 3844 eeer tttttt   

Here, t is time.  Find 
(i) a unit tangent vector at 2t  
(ii) the magnitudes of the tangential and normal components of acceleration at 2t  

2. Use the index notation (1.3.12) to show that   a
va

vav 
dt

d

dt

d

dt

d
.  Verify this 

result for 21
2

3
2

1 ,3 eeaeev tttt  .  [Note: the permutation symbol and the unit 

vectors are independent of t; the components of the vectors are scalar functions of t 
which can be differentiated in the usual way, for example by using the product rule of 
differentiation.] 
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3. The density distribution throughout a material is given by xx  1 . 
(i) what sort of function is this? 
(ii) the density is given in symbolic notation - write it in index notation  
(iii) evaluate the gradient of   
(iv) give a unit vector in the direction in which the density is increasing the most 
(v) give a unit vector in any direction in which the density is not increasing 
(vi) take any unit vector other than the base vectors and the other vectors you used 

above and calculate dxd /  in the direction of this unit vector 
(vii) evaluate and sketch all these quantities for the point (2,1). 
In parts (iii-iv), give your answer in (a) symbolic, (b) index, and (c) full notation. 

4. Consider the scalar field defined by zyxx 232  . 
(i) find the unit normal to the surface of constant   at the origin (0,0,0) 
(ii) what is the maximum value of the directional derivative of   at the origin? 

(iii) evaluate dxd /  at the origin if )( 31 eex  dsd . 

5. If 312211321 eeeu xxxxxx  , determine udiv  and ucurl .  

6. Determine the constant a so that the vector 
      331232121 23 eeev axxxxxx   

is solenoidal. 
7. Show that ωv 2curl   (see also Problem 9 in §1.1). 
8. Verify the identities (1.6.25-26). 
9. Use (1.6.14) to derive the Nabla operator in cylindrical coordinates (1.6.30). 
10. Derive Eqn. (1.6.34), the curl of a vector and the Laplacian of a scalar in the 

cylindrical coordinates. 
11. Derive (1.6.38), the gradient, divergence and Laplacian in spherical coordinates. 
12. Show that the directional derivative )(D uv  of the scalar-valued function of a vector 

uuu )( , in the direction v, is vu 2 . 
13. Show that the directional derivative of the functional 
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in the direction of )(x  is given by 
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