Section 1.3

1.3 Cartesian Vectors

So far the discussion has been in symbolic notation', that is, no reference to ‘axes’ or
‘components’ or ‘coordinates’ is made, implied or required. The vectors exist
independently of any coordinate system. It turns out that much of vector (tensor)
mathematics is more concise and easier to manipulate in such notation than in terms of
corresponding component notations. However, there are many circumstances in which
use of the component forms of vectors (and tensors) is more helpful — or essential. In this
section, vectors are discussed in terms of components — component form.

1.3.1 The Cartesian Basis

Consider three dimensional (Euclidean) space. In this space, consider the three unit
vectors €, €,, €; having the properties

e -e,=e,-e, =¢,-¢ =0, (1.3.1)

e e =e,-e,=6,-e,=1, (1.3.2)

so that they are unit vectors. Such a set of orthogonal unit vectors is called an
orthonormal set, Fig. 1.3.1. Note further that this orthonormal system {el ,€, ,83} is

right-handed, by which is meant e, xe, =e, (or €, xe, =e, or €, xe, =e,).

This set of vectors {e,,€,,e, | forms a basis, by which is meant that any other vector can
be written as a linear combination of these vectors, i.e. in the form

a=ae, +ae, +a,e, (1.3.3)

Figure 1.3.1: an orthonormal set of base vectors and Cartesian components

! or absolute or invariant or direct or vector notation
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By repeated application of Eqn. 1.1.2 to a vector a, and using 1.3.2, the scalars in 1.3.3
can be expressed as (see Fig. 1.3.1)

a=ae, a=ae, a=ae (1.3.4)

The scalars a,, a, and a, are called the Cartesian components of a in the given basis
{e,.e,.e,}. The unit vectors are called base vectors when used for this purpose.

Note that it is not necessary to have three mutually orthogonal vectors, or vectors of unit
size, or a right-handed system, to form a basis — only that the three vectors are not co-
planar. The right-handed orthonormal set is often the easiest basis to use in practice, but
this is not always the case — for example, when one wants to describe a body with curved
boundaries (e.g., see §1.6.10).

The dot product of two vectors U and v, referred to the above basis, can be written as

u-v=_(ue, +u,e, +ue,) (v, +v,e, +V.e,)
= ulvl(el 'el)"'ulvz(el -62)+U1V3(el 'es)
+u,v (e, -e,)+u,v, (e, -e,)+u,v,e, -e,) (1.3.5)
UV, (e3 'e1)+u3V2 (es 'ez)+u3V3 (es 'e3)
=Uu\v, +U,V, +U,V,

Similarly, the cross product is

UxV=(ue, +U,e, +u,e;)x(v,e, +V,e, +V.e,)
=uVv, (el Xel)+ulv2(e1 Xe2)+ulv3(e1 Xe3)
+u,v, (e, xe, )+u,v, (e, xe, )+u,v;(e, xe,) (1.3.6)
+U,v, (e xe, )+ U,v, (e, xe, )+ u,v,(e, xe,)

= (uzvs —Uu;V, )el _(U1V3 —U3V1)92 +(U1V2 _U2V1)93

This 1s often written in the form

: (1.3.7)

el e2 e3
ul u2 3
Vl V2 V3
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1.3.2 The Index Notation

The expression for the cross product in terms of components, Eqn. 1.3.6, is quite lengthy
— for more complicated quantities things get unmanageably long. Thus a short-hand
notation is used for these component equations, and this index notation” is described
here.

In the index notation, the expression for the vector a in terms of the components
a,, a,,a, and the corresponding basis vectors €,,€,,€, 1s written as

3
a=ag +a,e, +ae; =y ae (1.3.8)
i=1

This can be simplified further by using Einstein’s summation convention, whereby the
summation sign is dropped and it is understood that for a repeated index (i in this case) a
summation over the range of the index (3 in this case’) is implied. Thus one writes
a=a,e;. This can be further shortened to, simply, a,.

The dot product of two vectors written in the index notation reads

u-v=uyv,| Dot Product (1.3.9)

The repeated index i is called a dummy index, because it can be replaced with any other
letter and the sum is the same; for example, this could equally well be written as
U-v=u,v, or uyV,.

For the purpose of writing the vector cross product in index notation, the permutation
symbol (or alternating symbol) &;, can be introduced:

+1 if (i, J,k) is an even permutation of (1,2,3)
gy =1~ 1 if (i, j,k) is an odd permutation of (1,2,3) (1.3.10)

0  if two or moreindices are equal

For example (see Fig. 1.3.2),

&y =+l
& =1
£y =0

% or indicial or subscript or suffix notation
3 2 in the case of a two-dimensional space/analysis
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2

~_

a8

Figure 1.3.2: schematic for the permutation symbol (clockwise gives +1)

Note that
Eix = Eji =& = —E€jik = i = —Ei (1.3.11)
and that, in terms of the base vectors { A Problem 7},
€, X8, = &,8, (1.3.12)
and { AProblem 7}

gy = & %€, )-e,. (1.3.13)

The cross product can now be written concisely as { A Problem 8}

UxV=gyUV,e, Cross Product (1.3.14)

Introduce next the Kronecker delta symbol 6. , defined by

J 2

0, 1#]
5"_ :{ o (1.3.15)
I, 1=

Note that 0,, =1 but, using the index notation, 6; =3. The Kronecker delta allows one

to write the expressions defining the orthonormal basis vectors (1.3.1, 1.3.2) in the
compact form

-e;. =0, | Orthonormal Basis Rule (1.3.16)

The triple scalar product (1.1.4) can now be written as

(u x V)'W = ( ijkuivjek)'wmem

= UiV Wi Oy

SIJkUiVjWk
ul u2 u3

vy v, v, (1.3.17)
Wl W2 W3
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Note that, since the determinant of a matrix is equal to the determinant of the transpose of
a matrix, this is equivalent to

u v, w
LW, (13.18)
3 W3

—

\Y
\Y

Here follow some useful formulae involving the permutation and Kronecker delta symbol
{ AProblem 13}:

Cijk€xpqg = 5ip5jq _5iq5ip (1.3.19)

Eikijp = 25pk

Finally, here are some other important identities involving vectors; the third of these is
called Lagrange’s identity* { A Problem 15}:

(axb)-(axb)=a’|b|" - (a-by’

ax(bxc)=(a-c)o—(a-bl
(axb)-xd)=| | E:; (13.20)
(a><b)><(c><d):[a-(bxd)]c—[a-(bxc)]d

[a-(oxc)ld=[d-(bxc)a+[a:-(dxc)b+[a-(bxd)k

1.3.3 Matrix Notation for Vectors

The symbolic notation v and index notation V,e; (or simply Vv, ) can be used to denote a

vector. Another notation is the matrix notation: the vector v can be represented by a
3x1 matrix (a column vector):

Matrices will be denoted by square brackets, so a shorthand notation for this
matrix/vector would be [v]. The elements of the matrix [v] can be written in the element

form v;. The element form for a matrix is essentially the same as the index notation for
the vector it represents.

* to be precise, the special case of 1.3.20c, 1.3.20a, is Lagrange’s identity
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Formally, a vector can be represented by the ordered triplet of real numbers, (V1 Wy, V5 )

The set of all vectors can be represented by R’, the set of all ordered triplets of real
numbers:

R ={(v,,V,,V,)|V,,V,,V, € R} (1.3.21)

It is important to note the distinction between a vector and a matrix: the former is a
mathematical object independent of any basis, the latter is a representation of the vector
with respect to a particular basis — use a different set of basis vectors and the elements of
the matrix will change, but the matrix is still describing the same vector. Said another
way, there is a difference between an element (vector) v of Euclidean vector space and an

ordered triplet v, € R*. This notion will be discussed more fully in the next section.

As an example, the dot product can be written in the matrix notation as
Vl

[UTIV]:[Ul U, U]V,

T 3

“Short” “fllll”
matrix notation matrix notation

Here, the notation [UT] denotes the 1x3 matrix (the row vector). The resultisa 1x1
matrix, i.e. a scalar, in element form u,v; .

1.3.4 Cartesian Coordinates

Thus far, the notion of an origin has not been used. Choose a point 0 in Euclidean (point)
space, to be called the origin. An origin together with a right-handed orthonormal basis
{ei} constitutes a (rectangular) Cartesian coordinate system, Fig. 1.3.3.

V (point)

e3 A
V=V-0 (vector)
R

0 (poin‘S

Figure 1.3.3: a Cartesian coordinate system
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A second point Vv then defines a position vector v—o, Fig. 1.3.3. The components of the
vector V-0 are called the (rectangular) Cartesian coordinates of the point v °. For
brevity, the vector v —0 is simply labelled v, that is, one uses the same symbol for both
the position vector and associated point.

1.3.5 Problems

10.
11.
12.
13.
14.

15.
16.

Evaluate u-v where u=e, +3e, —2e,, v=4e, —2¢e, +4e,.

Prove that for any vector u, u=(u-e,)e, +(u-e,)e, +(u-e,)e,. [Hint: write U in
component form. ]

Find the projection of the vector u =e, —2e, + €, on the vector

V=4e —4e, +7e,.
Find the angle between u =3e, +2e, —6e, and v =4e, —3e, +e,.

Write down an expression for a unit vector parallel to the resultant of two vectors u
and Vv (in symbolic notation). Find this vector when u = 2e, +4e, —5e,,

vV =g, +2e, +3e,; (in component form). Check that your final vector is indeed a

unit vector.

Evaluate ux v, where u=-e, —2e, +2e,, v=2e, —2e, +e;.

Verify that e; xe; = &;,e,. Hence, by dotting each side with e, , show that

Eix = (ei xej)-ek.

Show that Ux Vv =g U;v;e, .

The triple scalar product is given by (u X V) "W = &, U;V;W, . Expand this equation
and simplify, so as to express the triple scalar product in full (non-index) component
form.

Write the following in index notation: |V

, V€, V-e,.

Show that &;;ab; is equivalentto a-b.

Verify that &, &, =6.

Verify that &, &,,, = 6,,0;, — 6,0, and hence show that &, &;, =25, .
Evaluate or simplify the following expressions:
(@) 8y (b) 5ij5ij (c) 5ij5jk (d) 51;k5sjvk

Prove Lagrange’s identity 1.3.20c.

If e is a unit vector and a an arbitrary vector, show that
a=(a-efe+ex(axe)

which is another representation of Eqn. 1.1.2, where a can be resolved into

components parallel and perpendicular to e.

> That is, “components” are used for vectors and “coordinates” are used for points
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