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1.3 Cartesian Vectors 
 
So far the discussion has been in symbolic notation1, that is, no reference to ‘axes’ or 
‘components’ or ‘coordinates’ is made, implied or required.  The vectors exist 
independently of any coordinate system.  It turns out that much of vector (tensor) 
mathematics is more concise and easier to manipulate in such notation than in terms of 
corresponding component notations.  However, there are many circumstances in which 
use of the component forms of vectors (and tensors) is more helpful – or essential.  In this 
section, vectors are discussed in terms of components – component form. 
 
 
1.3.1 The Cartesian Basis 
 
Consider three dimensional (Euclidean) space.  In this space, consider the three unit 
vectors 321 ,, eee  having the properties 

 
0133221  eeeeee ,    (1.3.1) 

 
so that they are mutually perpendicular (mutually orthogonal), and 
 

1332211  eeeeee ,    (1.3.2) 

 
so that they are unit vectors.  Such a set of orthogonal unit vectors is called an 
orthonormal set, Fig. 1.3.1.  Note further that this orthonormal system  321 ,, eee  is 

right-handed, by which is meant 321 eee   (or 132 eee   or 213 eee  ). 

 
This set of vectors  321 ,, eee  forms a basis, by which is meant that any other vector can 

be written as a linear combination of these vectors, i.e. in the form 
 

332211 eeea aaa                                           (1.3.3) 

          

 
 

Figure 1.3.1: an orthonormal set of base vectors and Cartesian components 
 

                                                 
1 or absolute or invariant or direct or vector notation 

1e
2e

3e

33 ea a
a

22 ea a

11 ea a
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By repeated application of Eqn. 1.1.2 to a vector a, and using 1.3.2, the scalars in 1.3.3 
can be expressed as (see Fig. 1.3.1) 
 

1 1 2 2 3 3, ,a a a     a e a e a e                                   (1.3.4)  

 
The scalars 21, aa  and 3a  are called the Cartesian components of a in the given basis 

 321 ,, eee .  The unit vectors are called base vectors when used for this purpose. 

 
Note that it is not necessary to have three mutually orthogonal vectors, or vectors of unit 
size, or a right-handed system, to form a basis – only that the three vectors are not co-
planar.  The right-handed orthonormal set is often the easiest basis to use in practice, but 
this is not always the case – for example, when one wants to describe a body with curved 
boundaries (e.g., see §1.6.10). 
 
The dot product of two vectors u and v, referred to the above basis, can be written as 
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  (1.3.5) 

 
Similarly, the cross product is 
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  (1.3.6) 

 
This is often written in the form 
 

321

321

321

vvv

uuu

eee

vu  ,     (1.3.7) 

 
that is, the cross product is equal to the determinant of the 33  matrix 
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1.3.2 The Index Notation 
 
The expression for the cross product in terms of components, Eqn. 1.3.6, is quite lengthy 
– for more complicated quantities things get unmanageably long.  Thus a short-hand 
notation is used for these component equations, and this index notation2 is described 
here. 
 
In the index notation, the expression for the vector a in terms of the components 

321 ,, aaa  and the corresponding basis vectors 321 ,, eee  is written as 

 





3

1
332211

i
iiaaaa eeeea        (1.3.8) 

 
This can be simplified further by using Einstein’s summation convention, whereby the 
summation sign is dropped and it is understood that for a repeated index (i in this case) a 
summation over the range of the index (3 in this case3) is implied.  Thus one writes 

iia ea  .  This can be further shortened to, simply, ia . 

 
The dot product of two vectors written in the index notation reads  
 

iivu vu  Dot Product        (1.3.9) 

 
The repeated index i is called a dummy index, because it can be replaced with any other 
letter and the sum is the same; for example, this could equally well be written as 

jj vu vu  or kk vu . 

 
For the purpose of writing the vector cross product in index notation, the permutation 
symbol (or alternating symbol) ijk  can be introduced: 

 












equal are indices moreor   twoif0

)3,2,1( ofn permutatio oddan  is ),,( if1

)3,2,1( ofn permutatioeven an  is ),,( if1

kji

kji

ijk      (1.3.10) 

 
For example (see Fig. 1.3.2), 
 

    

0

1

1

122

132

123









 

 

                                                 
2 or indicial or subscript or suffix notation 
3 2 in the case of a two-dimensional space/analysis 
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Figure 1.3.2: schematic for the permutation symbol (clockwise gives +1) 
 
Note that 
 

ikjkjijikkijjkiijk                   (1.3.11) 

 
and that, in terms of the base vectors {▲Problem 7},  
 

                               kijkji eee              (1.3.12) 

 
and {▲Problem 7} 
 

  kjiijk eee  .                   (1.3.13) 

 
The cross product can now be written concisely as {▲Problem 8} 
 

kjiijk vu evu   Cross Product     (1.3.14) 

 
Introduce next the Kronecker delta symbol ij , defined by 

 









ji

ji
ij ,1

,0
      (1.3.15) 

 
Note that 111   but, using the index notation, 3ii .  The Kronecker delta  allows one 

to write the expressions defining the orthonormal basis vectors (1.3.1, 1.3.2) in the 
compact form 
 

ijji ee      Orthonormal Basis Rule          (1.3.16) 

 
The triple scalar product (1.1.4) can now be written as 
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          (1.3.17) 
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23
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Note that, since the determinant of a matrix is equal to the determinant of the transpose of 
a matrix, this is equivalent to 
 

 
333

222

111

wvu

wvu

wvu

 wvu        (1.3.18) 

 
Here follow some useful formulae involving the permutation and Kronecker delta symbol 
{▲Problem 13}: 
 

pkijpijk

jpiqjqipkpqijk





2


                   (1.3.19) 

 
Finally, here are some other important identities involving vectors; the third of these is 
called Lagrange’s identity4 {▲Problem 15}: 
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



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 222

    (1.3.20) 

 
 
1.3.3 Matrix Notation for Vectors 
 
The symbolic notation v  and index notation iiv e  (or simply iv ) can be used to denote a 

vector.  Another notation is the matrix notation: the vector v can be represented by a 
13  matrix (a column vector): 

 

















3

2

1

v

v

v

 
 
Matrices will be denoted by square brackets, so a shorthand notation for this 
matrix/vector would be  v .  The elements of the matrix  v  can be written in the element 

form iv .  The element form for a matrix is essentially the same as the index notation for 

the vector it represents. 
 

                                                 
4 to be precise, the special case of 1.3.20c, 1.3.20a, is Lagrange’s identity 
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Formally, a vector can be represented by the ordered triplet of real numbers,  321 ,, vvv .  

The set of all vectors can be represented by 3R , the set of all ordered triplets of real 
numbers: 
 

  RvvvvvvR  321321
3 ,,|,,                                 (1.3.21) 

 
It is important to note the distinction between a vector and a matrix: the former is a 
mathematical object independent of any basis, the latter is a representation of the vector 
with respect to a particular basis – use a different set of basis vectors and the elements of 
the matrix will change, but the matrix is still describing the same vector.  Said another 
way, there is a difference between an element (vector) v of Euclidean vector space and an 
ordered triplet 3Rvi  .  This notion will be discussed more fully in the next section. 

 
As an example, the dot product can be written in the matrix notation as 

 
 
Here, the notation  Tu  denotes the 31  matrix (the row vector).  The result is a 11  

matrix, i.e. a scalar, in element form iivu . 

 
 
1.3.4 Cartesian Coordinates 
 
Thus far, the notion of an origin has not been used.  Choose a point o in Euclidean (point) 
space, to be called the origin.  An origin together with a right-handed orthonormal basis 
 ie  constitutes a (rectangular) Cartesian coordinate system, Fig. 1.3.3. 

          

 
 

Figure 1.3.3: a Cartesian coordinate system 
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A second point v then defines a position vector ov  , Fig. 1.3.3.  The components of the 
vector ov   are called the (rectangular) Cartesian coordinates of the point v 5.  For 
brevity, the vector ov   is simply labelled v, that is, one uses the same symbol for both 
the position vector and associated point. 
 
 
1.3.5 Problems 
 
1. Evaluate vu   where 321 23 eeeu  , 321 424 eeev  . 

2. Prove that for any vector u, 332211 )()()( eeueeueeuu  .  [Hint: write u in 

component form.] 
3. Find the projection of the vector 321 2 eeeu   on the vector 

321 744 eeev  . 

4. Find the angle between 321 623 eeeu   and 321 34 eeev  . 

5. Write down an expression for a unit vector parallel to the resultant of two vectors u 
and v (in symbolic notation).  Find this vector when 321 542 eeeu  , 

321 32 eeev   (in component form).  Check that your final vector is indeed a 

unit vector. 
6. Evaluate vu , where 321 22 eeeu  , 321 22 eeev  . 

7. Verify that mijmji eee  .  Hence, by dotting each side with ke , show that 

  kjiijk eee  . 

8. Show that kjiijk vu evu  . 

9. The triple scalar product is given by   kjiijk wvu wvu .  Expand this equation 

and simplify, so as to express the triple scalar product in full (non-index) component 
form. 

10. Write the following in index notation: v , 1ev  , kev  . 

11. Show that jiij ba  is equivalent to ba  . 

12. Verify that 6ijkijk . 

13. Verify that jpiqjqipkpqijk    and hence show that pkijpijk  2 . 

14. Evaluate or simplify the following expressions: 
(a) kk     (b) ijij     (c) jkij     (d) kjjk v31   

15. Prove Lagrange’s identity 1.3.20c. 
16. If e is a unit vector and a an arbitrary vector, show that 

   eaeeeaa   
which is another representation of Eqn. 1.1.2, where a can be resolved into 
components parallel and perpendicular to e.  

                                                 
5 That is, “components” are used for vectors and “coordinates” are used for points 


