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8.1 Introduction to Plasticity 
 
 
8.1.1 Introduction 
 
The theory of linear elasticity is useful for modelling materials which undergo small 
deformations and which return to their original configuration upon removal of load. 
Almost all real materials will undergo some permanent deformation, which remains after 
removal of load.  With metals, significant permanent deformations will usually occur 
when the stress reaches some critical value, called the yield stress, a material property.   
 
Elastic deformations are termed reversible; the energy expended in deformation is stored 
as elastic strain energy and is completely recovered upon load removal.  Permanent 
deformations involve the dissipation of energy; such processes are termed irreversible, in 
the sense that the original state can be achieved only by the expenditure of more energy. 
 
The classical theory of plasticity grew out of the study of metals in the late nineteenth 
century.  It is concerned with materials which initially deform elastically, but which 
deform plastically upon reaching a yield stress.  In metals and other crystalline materials 
the occurrence of plastic deformations at the micro-scale level is due to the motion of 
dislocations and the migration of grain boundaries on the micro-level.  In sands and other 
granular materials plastic flow is due both to the irreversible rearrangement of individual 
particles and to the irreversible crushing of individual particles.  Similarly, compression 
of bone to high stress levels will lead to particle crushing.  The deformation of micro-
voids and the development of micro-cracks is also an important cause of plastic 
deformations in materials such as rocks. 
 
A good part of the discussion in what follows is concerned with the plasticity of metals; 
this is the ‘simplest’ type of plasticity and it serves as a good background and 
introduction to the modelling of plasticity in other material-types.  There are two broad 
groups of metal plasticity problem which are of interest to the engineer and analyst.  The 
first involves relatively small plastic strains, often of the same order as the elastic strains 
which occur.  Analysis of problems involving small plastic strains allows one to design 
structures optimally, so that they will not fail when in service, but at the same time are not 
stronger than they really need to be.  In this sense, plasticity is seen as a material failure1. 
 
The second type of problem involves very large strains and deformations, so large that the 
elastic strains can be disregarded.  These problems occur in the analysis of metals 
manufacturing and forming processes, which can involve extrusion, drawing, forging, 
rolling and so on.  In these latter-type problems, a simplified model known as perfect 
plasticity is usually employed (see below), and use is made of special limit theorems 
which hold for such models. 
 
Plastic deformations are normally rate independent, that is, the stresses induced are 
independent of the rate of deformation (or rate of loading). This is in marked 

                                                 
1  two other types of failure, brittle fracture, due to dynamic crack growth, and the buckling of some 
structural components, can be modelled reasonably accurately using elasticity theory (see, for example, Part 
I, §6.1, Part II, §5.3) 
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contrast to classical Newtonian fluids for example, where the stress levels are 
governed by the rate of deformation through the viscosity of the fluid. 
 
Materials commonly known as “plastics” are not plastic in the sense described here.  
They, like other polymeric materials, exhibit viscoelastic behaviour where, as the 
name suggests, the material response has both elastic and viscous components.  Due 
to their viscosity, their response is, unlike the plastic materials, rate-dependent.  
Further, although the viscoelastic materials can suffer irrecoverable deformation, 
they do not have any critical yield or threshold stress, which is the characteristic 
property of plastic behaviour.  When a material undergoes plastic deformations, i.e. 
irrecoverable and at a critical yield stress, and these effects are rate dependent, the 
material is referred to as being viscoplastic. 
 
Plasticity theory began with Tresca in 1864, when he undertook an experimental program 
into the extrusion of metals and published his famous yield criterion discussed later on.  
Further advances with yield criteria and plastic flow rules were made in the years which 
followed by Saint-Venant, Levy, Von Mises, Hencky and Prandtl.  The 1940s saw the 
advent of the classical theory;  Prager, Hill, Drucker and Koiter amongst others brought 
together many fundamental aspects of the theory into a single framework.  The arrival of 
powerful computers in the 1980s and 1990s provided the impetus to develop the theory 
further, giving it a more rigorous foundation based on thermodynamics principles, and 
brought with it the need to consider many numerical and computational aspects to the 
plasticity problem. 
 
 
8.1.2 Observations from Standard Tests 
 
In this section, a number of phenomena observed in the material testing of metals will be 
noted.  Some of these phenomena are simplified or ignored in some of the standard 
plasticity models discussed later on. 
 
At issue here is the fact that any model of a component with complex geometry, loaded in 
a complex way and undergoing plastic deformation, must involve material parameters 
which can be obtained in a straight forward manner from simple laboratory tests, such as 
the tension test described next. 
 
The Tension Test 
 
Consider the following key experiment, the tensile test, in which a small, usually 
cylindrical, specimen is gripped and stretched, usually at some given rate of stretching 
(see Part I, §5.2.1).  The force required to hold the specimen at a given stretch is recorded, 
Fig. 8.1.1.  If the material is a metal, the deformation remains elastic up to a certain force 
level, the yield point of the material.  Beyond this point, permanent plastic deformations 
are induced.  On unloading only the elastic deformation is recovered and the specimen 
will have undergone a permanent elongation (and consequent lateral contraction). 
 
In the elastic range the force-displacement behaviour for most engineering materials 
(metals, rocks, plastics, but not soils) is linear.  After passing the elastic limit (point A in 
Fig. 8.1.1), the material “gives” and is said to undergo plastic flow.  Further increases in 
load are usually required to maintain the plastic flow and an increase in displacement; this 
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phenomenon is known as work-hardening or strain-hardening.  In some cases, after an 
initial plastic flow and hardening, the force-displacement curve decreases, as in some 
soils; the material is said to be softening.  If the specimen is unloaded from a plastic state 
(B) it will return along the path BC shown, parallel to the original elastic line.  This is 
elastic recovery.  The strain which remains upon unloading is the permanent plastic 
deformation.  If the material is now loaded again, the force-displacement curve will re-
trace the unloading path CB until it again reaches the plastic state.  Further increases in 
stress will cause the curve to follow BD. 
 
Two important observations concerning the above tension test (on most metals) are the 
following: 
(1) after the onset of plastic deformation, the material will be seen to undergo negligible 

volume change, that is, it is incompressible. 
(2) the force-displacement curve is more or less the same regardless of the rate at which 

the specimen is stretched (at least at moderate temperatures). 
 

 
  

Figure 8.1.1: force/displacement curve for the tension test 
 
 
Nominal and True Stress and Strain 
 
There are two different ways of describing the force F which acts in a tension test.  First, 
normalising with respect to the original cross sectional area of the tension test specimen 

0A , one has the nominal stress or engineering stress, 

 

0A

F
n             (8.1.1) 

 
Alternatively, one can normalise with respect to the current cross-sectional area A, 
leading to the true stress, 
 

A

F
          (8.1.2) 

elastic 
loading 

hardening 

0

A

B
D

C

unload load

plastic 
deformation 

elastic 
deformation 

force 

displacement 

Yield point 



Section 8.1 

Solid Mechanics Part II                                                                                Kelly 244

 
in which F and A are both changing with time.  For very small elongations, within the 
elastic range say, the cross-sectional area of the material undergoes negligible change and 
both definitions of stress are more or less equivalent. 
 
Similarly, one can describe the deformation in two alternative ways.  Denoting the 
original specimen length by 0l  and the current length by l, one has the engineering strain 

 

0

0

l

ll 
               (8.1.3) 

 
Alternatively, the true strain is based on the fact that the “original length” is continually 
changing; a small change in length dl  leads to a strain increment ldld /  and the 
total strain is defined as the accumulation of these increments: 
 









 

0

ln
0

l

l

l

dll

l

t                    (8.1.4) 

 
The true strain is also called the logarithmic strain or Hencky strain.  Again, at small 
deformations, the difference between these two strain measures is negligible.  The true 
strain and engineering strain are related through 

 
    1lnt             (8.1.5) 

 
Using the assumption of constant volume for plastic deformation and ignoring the very 
small elastic volume changes, one has also {▲Problem 3} 
 

0l

l
n  .          (8.1.6) 

 
The stress-strain diagram for a tension test can now be described using the true 
stress/strain or nominal stress/strain definitions, as in Fig. 8.1.2.  The shape of the 
nominal stress/strain diagram, Fig. 8.1.2a, is of course the same as the graph of force 
versus displacement (change in length) in Fig. 8.1.1.  A here denotes the point at which 
the maximum force the specimen can withstand has been reached.  The nominal stress at 
A is called the Ultimate Tensile Strength (UTS) of the material.  After this point, the 
specimen “necks”, with a very rapid reduction in cross-sectional area somewhere about 
the centre of the specimen until the specimen ruptures, as indicated by the asterisk. 
 
Note that, during loading into the plastic region, the yield stress increases.  For example, 
if one unloads and re-loads (as in Fig. 8.1.1), the material stays elastic up until a stress 
higher than the original yield stress Y.  In this respect, the stress-strain curve can be 
regarded as a yield stress versus strain curve. 
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Figure 8.1.2: typical stress/strain curves; (a) engineering stress and strain, (b) true 
stress and strain 

 
 
Compression Test 
 
A compression test will lead to similar results as the tensile stress.  The yield stress in 
compression will be approximately the same as (the negative of) the yield stress in 
tension.  If one plots the true stress versus true strain curve for both tension and 
compression (absolute values for the compression), the two curves will more or less 
coincide.  This would indicate that the behaviour of the material under compression is 
broadly similar to that under tension.  If one were to use the nominal stress and strain, 
then the two curves would not coincide; this is one of a number of good reasons for using 
the true definitions. 
 
The Bauschinger Effect 
 
If one takes a virgin sample and loads it in tension into the plastic range, and then unloads 
it and continues on into compression, one finds that the yield stress in compression is not 
the same as the yield strength in tension, as it would have been if the specimen had not 
first been loaded in tension.  In fact the yield point in this case will be significantly less 
than the corresponding yield stress in tension.  This reduction in yield stress is known as 
the Bauschinger effect. The effect is illustrated in Fig. 8.1.3.  The solid line depicts the 
response of a real material.  The dotted lines are two extreme cases which are used in 
plasticity models; the first is the isotropic hardening model, in which the yield stress in 
tension and compression are maintained equal, the second being kinematic hardening, in 
which the total elastic range is maintained constant throughout the deformation. 
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Figure 8.1.3: The Bauschinger effect 
 
The presence of the Bauschinger effect complicates any plasticity theory.  However, it is 
not an issue provided there are no reversals of stress in the problem under study. 
 
Hydrostatic Pressure 
 
Careful experiments show that, for metals, the yield behaviour is independent of 
hydrostatic pressure.  That is, a stress state pzzyyxx    has negligible effect on 

the yield stress of a material, right up to very high pressures.  Note however that this is 
not true for soils or rocks. 
 
 
8.1.3 Assumptions of Plasticity Theory 
 
Regarding the above test results then, in formulating a basic plasticity theory with which 
to begin, the following assumptions are usually made: 
 
(1) the response is independent of rate effects 
(2) the material is incompressible in the plastic range 
(3) there is no Bauschinger effect 
(4) the yield stress is independent of hydrostatic pressure 
(5) the material is isotropic 
 
The first two of these will usually be very good approximations, the other three may or 
may not be, depending on the material and circumstances.  For example, most metals can 
be regarded as isotropic.  After large plastic deformation however, for example in rolling, 
the material will have become anisotropic: there will be distinct material directions and 
asymmetries. 
 
Together with these, assumptions can be made on the type of hardening and on whether 
elastic deformations are significant.  For example, consider the hierarchy of models 
illustrated in Fig. 8.1.4 below, commonly used in theoretical analyses.  In (a) both the 
elastic and plastic curves are assumed linear.  In (b) work-hardening is neglected and the 
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yield stress is constant after initial yield.  Such perfectly-plastic models are particularly 
appropriate for studying processes where the metal is worked at a high temperature – such 
as hot rolling – where work hardening is small.  In many areas of applications the strains 
involved are large, e.g. in metal working processes such as extrusion, rolling or drawing, 
where up to 50% reduction ratios are common.  In such cases the elastic strains can be 
neglected altogether as in the two models (c) and (d).  The rigid/perfectly-plastic model 
(d) is the crudest of all – and hence in many ways the most useful.  It is widely used in 
analysing metal forming processes, in the design of steel and concrete structures and in 
the analysis of soil and rock stability.   
 

0 0

 

 

Y Y

 
      
     (a)  Linear Elastic-Plastic          (b)  Elastic/Perfectly-Plastic 
 

0 0

 

 

Y Y

 
      (c)  Rigid/Linear Hardening           (d)  Rigid-Perfectly-Plastic 
 

Figure 8.1.4: Simple models of elastic and plastic deformation 
 
 
8.1.4 The Tangent and Plastic Modulus 
 
Stress and strain are related through  E  in the elastic region, E being the Young’s 
modulus, Fig. 8.1.5.  The tangent modulus K is the slope of the stress-strain curve in the 
plastic region and will in general change during a deformation.  At any instant of strain, 
the increment in stress d  is related to the increment in strain d  through2 
 

 Kdd            (8.1.7) 
 

                                                 
2 the symbol   here represents the true strain (the subscript t has been dropped for clarity); as mentioned, 
when the strains are small, it is not necessary to specify which strain is in use since all strain measures are 
then equivalent 
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Figure 8.1.5: The tangent modulus 
 
After yield, the strain increment consists of both elastic, e , and plastic, pd , strains: 
 

pe ddd               (8.1.8) 
 
The stress and plastic strain increments are related by the plastic modulus H: 
 

pdHd             (8.1.9) 
 
and it follows that  {▲Problem 4} 
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8.1.5 Friction Block Models 
 
Some additional insight into the way plastic materials respond can be obtained from 
friction block models.  The rigid perfectly plastic model can be simulated by a Coulomb 
friction block, Fig. 8.1.6.  No strain occurs until   reaches the yield stress Y.  Then there 
is movement – although the amount of movement or plastic strain cannot be determined 
without more information being available.  The stress cannot exceed the yield stress in 
this model: 
 

Y          (8.1.11) 

 
If unloaded, the block stops moving and the stress returns to zero, leaving a permanent 
strain, Fig. 8.1.6b.  
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Figure 8.1.6: (a) Friction block model for the rigid perfectly plastic material, (b) 
response of the rigid-perfectly plastic model 

 
 
The linear elastic perfectly plastic model incorporates a free spring with modulus E in 
series with a friction block, Fig. 8.1.7.  The spring stretches when loaded and the block 
also begins to move when the stress reaches Y, at which time the spring stops stretching, 
the maximum possible stress again being Y.  Upon unloading, the block stops moving and 
the spring contracts. 
 

 
 

Figure 8.1.7: Friction block model for the elastic perfectly plastic material 
 
The linear elastic plastic model with linear strain hardening incorporates a second, 
hardening, spring with stiffness H, in parallel with the friction block, Fig. 8.1.8.  Once the 
yield stress is reached, an ever increasing stress needs to be applied in order to keep the 
block moving – and elastic strain continues to occur due to further elongation of the free 
spring.  The stress is then split into the yield stress, which is carried by the moving block, 
and an overstress Y  carried by the hardening spring. 
 
Upon unloading, the block “locks” – the stress in the hardening spring remains constant 
whilst the free spring contracts.  At zero stress, there is a negative stress taken up by the 
friction block, equal and opposite to the stress in the hardening spring. 
 
The slope of the elastic loading line is E.  For the plastic hardening line, 
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It can be seen that H is the plastic modulus. 
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Figure 8.1.8: Friction block model for a linear elastic-plastic material with linear 
strain hardening; (a) stress-free, (b) elastic strain, (c) elastic and plastic strain, (d) 

unloading 
 
 
 
8.1.6 Problems 
 
1. Give two differences between plastic and viscoelastic materials. 
 
2. A test specimen of initial length 01.0 m is extended to length 0101.0 m.  What is the 

percentage difference between the engineering and true strains (relative to the 
engineering strain)?  What is this difference when the specimen is extended to length 

015.0 m? 
 
3. Derive the relation 8.1.6, 0// lln  . 

 
4. Derive Eqn. 8.1.10. 
 
5. Which is larger, H or K?  In the case of a perfectly-plastic material? 
 
6. The Ramberg-Osgood model of plasticity is given by 
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where E is the Young’s modulus and b and n are model constants (material 
parameters) obtained from a curve-fitting of the uniaxial stress-strain curve. 
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(i) Find the tangent and plastic moduli in terms of plastic strain p  (and the 
material constants). 

(ii) A material with model 
parameters 4n , 

GPa70E  and 
MPa800b  is strained 

in tension to 02.0p  
and is subsequently 
unloaded and put into 
compression.  Find the 
stress at the initiation of 
compressive yield 
assuming isotropic 
hardening. 

[Note that the yield stress is actually zero in this model, although the plastic strain at 
relatively low stress levels is small for larger values of n.] 

 
7. Consider the plasticity model shown below. 

(i) What is the elastic modulus? 
(ii) What is the yield stress? 
(iii) What are the tangent and plastic moduli? 
Draw a typical loading and unloading curve. 

 
 
8. Draw the stress-strain diagram for a cycle of loading and unloading to the rigid - 

plastic model shown here.  Take the maximum load reached to be 1max 4Y  and 

12 2YY  .  What is the permanent deformation after complete removal of the load? 

[Hint: split the cycle into the following regions: (a) 10 Y  , (b) 11 3YY   , (c) 

11 43 YY   , then unload, (d) 11 34 YY   , (e) 11 23 YY   , (f) 02 1  Y .] 
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8.2 Stress Analysis for Plasticity 
 
 
This section follows on from the analysis of three dimensional stress carried out in §7.2.  
The plastic behaviour of materials is often independent of a hydrostatic stress and this 
feature necessitates the study of the deviatoric stress. 
 
 
8.2.1 Deviatoric Stress 
 
Any state of stress can be decomposed into a hydrostatic (or mean) stress Imσ  and a 
deviatoric stress s, according to 
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where 
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In index notation, 
 

ijijmij s+= δσσ                                             (8.2.4) 
 
In a completely analogous manner to the derivation of the principal stresses and the 
principal scalar invariants of the stress matrix, §7.2.4, one can determine the principal 
stresses and principal scalar invariants of the deviatoric stress matrix.  The former are 
denoted 321 ,, sss  and the latter are denoted by 321 ,, JJJ .  The characteristic equation 
analogous to Eqn. 7.2.23 is 
 

032
2

1
3 =−−− JsJsJs           (8.2.5) 

 
and the deviatoric invariants are (compare with 7.2.24, 7.2.26)1 
                                                 
1 unfortunately, there is a convention (adhered to by most authors) to write the characteristic equation for 
stress with a σ2I+  term and that for deviatoric stress with a sJ 2−  term; this means that the formulae for 

J2 in Eqn. 8.2.5 are the negative of those for 2I  in Eqn. 7.2.24 



Section 8.2 

Solid Mechanics Part II                                                                                Kelly 253

 

( )
( )

321

312312
2
1233

2
3122

2
23113322113

133221

2
31

2
23

2
121133332222112

321

3322111

2
sss

ssssssssssssJ
ssssss

sssssssssJ
sss

sssJ

=
+−−−=

++−=
−−−++−=

++=
++=

            (8.2.6) 

 
Since the hydrostatic stress remains unchanged with a change of coordinate system, the 
principal directions of stress coincide with the principal directions of the deviatoric stress, 
and the decomposition can be expressed with respect to the principal directions as  
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Note that, from the definition Eqn. 8.2.3, the first invariant of the deviatoric stress, the 
sum of the normal stresses, is zero: 
 

01 =J            (8.2.8) 
 

The second invariant can also be expressed in the useful forms {▲Problem 3} 
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and, in terms of the principal stresses, {▲Problem 4} 
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Further, the deviatoric invariants are related to the stress tensor invariants through 
{▲Problem 5} 
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A State of Pure Shear 
 
The stress state at a point is one of pure shear if for any one coordinate axes through the 
point one has only shear stress acting, i.e. the stress matrix is of the form 
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Applying the stress transformation rule 7.2.16 to this stress matrix and using the fact that 
the transformation matrix Q is orthogonal, i.e. IQQQQ == TT , one finds that the first 
invariant is zero, 0332211 =′+′+′ σσσ .  Hence the deviatoric stress is one of pure shear. 
 
 
8.2.2 The Octahedral Stresses 
 
Examine now a material element subjected to principal stresses 321 ,, σσσ  as shown in 
Fig. 8.2.1.  By definition, no shear stresses act on the planes shown. 
 

 
 

Figure 8.2.1: stresses acting on a material element 
 
Consider next the octahedral plane; this is the plane shown shaded in Fig. 8.2.2, whose 
normal an  makes equal angles with the principal directions.  It is so-called because it cuts 
a cubic material element (with faces perpendicular to the principal directions) into a 
triangular plane and eight of these triangles around the origin form an octahedron.  
 

 
 

Figure 8.2.2: the octahedral plane 
 

Next, a new Cartesian coordinate system is constructed with axes parallel and 
perpendicular to the octahedral plane, Fig. 8.2.3.  One axis runs along the unit normal an ; 
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this normal has components ( )3/1,3/1,3/1  with respect to the principal axes.  The 
angle 0θ  the normal direction makes with the 1 direction can be obtained from 

01 cosθ=⋅en a , where ( )0,0,11 =e  is a unit vector in the 1 direction, Fig. 8.2.3.  To 
complete the new coordinate system, any two perpendicular unit vectors which lie in 
(parallel to) the octahedral plane can be chosen.  Choose one which is along the 
projection of the 1 axis down onto the octahedral plane.  The components of this vector 
are {▲Problem 6} ( )6/1,6/1,3/2 −−=cn .  The final unit vector bn  is chosen so 
that it forms a right hand Cartesian coordinate system with an  and cn , i.e. cba nnn =× .  
In summary, 
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cba nnn           (8.2.13) 

 

 
 

Figure 8.2.3: a new Cartesian coordinate system 
 
To express the stress state in terms of components in the cba ,,  directions, construct the 
stress transformation matrix: 
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and the new stress components are 
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Now consider the stress components acting on the octahedral plane, acabaa σσσ ,, , 
Fig. 8.2.4.  Recall from Cauchy’s law, Eqn. 7.2.9, that these are the components of 
the traction vector )( ant  acting on the octahedral plane, with respect to the (a,b,c) 
axes: 
 

cacbabaaa
a nnnt n σσσ ++=)(                      (8.2.16) 

 

 
 

Figure 8.2.4: the stress vector σ  and its components 
 
The magnitudes of the normal and shear stresses acting on the octahedral plane are called 
the octahedral normal stress octσ  and the octahedral shear stress octτ .  Referring to 
Fig. 8.2.4, these can be expressed as {▲Problem 7} 
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     (8.2.17) 

 
The octahedral normal and shear stresses on all 8 octahedral planes around the origin are 
the same. 
 
Note that the octahedral normal stress is simply the hydrostatic stress.  This implies that 
the deviatoric stress has no normal component in the direction an  and only contributes to 
shearing on the octahedral plane.  Indeed, from Eqn. 8.2.15,  
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The σ ’s on the right here can be replaced with s ’s since jiji ss −=−σσ . 
 
 
8.2.3 Problems 
 
1. What are the hydrostatic and deviatoric stresses for the uniaxial stress 011 σσ = ?  

What are the hydrostatic and deviatoric stresses for the state of pure shear τσ =12 ?  
In both cases, verify that the first invariant of the deviatoric stress is zero: 01 =J . 

 

2. For the stress state 
⎥
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333231

232221

131211

σσσ
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, calculate 

(a) the hydrostatic stress 
(b) the deviatoric stresses 
(c) the deviatoric invariants 

 
3. The second invariant of the deviatoric stress is given by Eqn. 8.2.6,  

( )1332212 ssssssJ ++−=  
By squaring the relation 03211 =++= sssJ , derive Eqn. 8.2.9, 

( )2
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2
2

2
12

1
2 sssJ ++=  

 
4. Use Eqns. 8.2.9 (and your work from Problem 3) and the fact that 2121 ss −=−σσ , 

etc. to derive 8.2.10, 
( ) ( ) ( )[ ]2
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2 σσσσσσ −+−+−=J  
 
5. Use the fact that 03211 =++= sssJ  to show that 
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Hence derive Eqns. 8.2.11, 
( ) ( )321

3
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1
32

2
13

1
2 2792,3 IIIIJIIJ +−=−=  

 
6. Show that a unit normal cn  in the octahedral plane in the direction of the projection 

of the 1 axis down onto the octahedral plane has coordinates ( )
6

1
6

1
3
2 ,, −− , Fig. 

8.2.3.  To do this, note the geometry shown below and the fact that when the 1 axis is 
projected down, it remains at equal angles to the 2 and 3 axes. 
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7. Use Eqns. 8.2.15 to derive Eqns. 8.2.17.  
 
8. For the stress state of problem 2, calculate the octahedral normal stress and the 

octahedral shear stress 
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8.3 Yield Criteria in Three Dimensional Plasticity 
 
The question now arises: a material yields at a stress level Y in a uniaxial tension test, but 
when does it yield when subjected to a complex three-dimensional stress state?   
 
Let us begin with a very general case: an anisotropic material with different yield 
strengths in different directions. For example, consider the material shown in Fig. 8.3.1. 
This is a composite material with long fibres along the 1x  direction, giving it extra 
strength in that direction – it will yield at a higher tension when pulled in the 1x  direction 
than when pulled in other directions. 
 

 
 

Figure 8.3.1: an anisotropic material; (a) microstructural detail, (b) continuum 
model 

 
We can assume that yield will occur at a particle when some combination of the stress 
components reaches some critical value, say when 
 

kF =),,,,,( 332322131211 σσσσσσ .                      (8.3.1) 
 
Here, F is some function of the 6 independent components of the stress tensor and k is 
some material property which can be determined experimentally1. 
 
Alternatively, it is very convenient to express yield criteria in terms of principal stresses. 
Let us suppose that we know the principal stresses everywhere, 1 2 3( , , )σ σ σ , Fig. 8.3.1. 
Yield must depend somehow on the microstructure – on the orientation of the axes 

1 2 3, ,x x x , but this information is not contained in the three numbers 1 2 3( , , )σ σ σ . Thus we 
express the yield criterion in terms of principal stresses in the form 
 

kF i =),,,( 321 nσσσ                         (8.3.2) 
 

 
1 F will no doubt also contain other parameters which need to be determined experimentally 
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where in  represent the principal directions – these give the orientation of the principal 
stresses relative to the material directions 1 2 3, ,x x x . 
 
If the material is isotropic, the response is independent of any material direction – 
independent of any “direction” the stress acts in, and so the yield criterion can be 
expressed in the simple form 
 

kF =),,( 321 σσσ       (8.3.3) 
 
Further, since it should not matter which direction is labelled ‘1’, which ‘2’ and which 
‘3’, F must be a symmetric function of the three principal stresses.  
 
Alternatively, since the three principal invariants of stress are independent of material 
orientation, one can write 
 

kIIIF =),,( 321                           (8.3.4) 
 
or, more usually, 
 

kJJIF =),,( 321                           (8.3.5) 
 
where 32 , JJ  are the non-zero principal invariants of the deviatoric stress.  With the 
further restriction that the yield stress is independent of the hydrostatic stress, one has 

 
kJJF =),( 32              (8.3.6) 

 
 
8.3.1 The Tresca and Von Mises Yield Conditions 
 
The two most commonly used and successful yield criteria for isotropic metallic materials 
are the Tresca and Von Mises criteria.   
 

The Tresca Yield Condition 
 
The Tresca yield criterion states that a material will yield if the maximum shear stress 
reaches some critical value, that is, Eqn. 8.3.3 takes the form 
 

k=






 −−− 133221 2

1,
2
1,

2
1max σσσσσσ   (8.3.7) 

 
The value of k can be obtained from a simple experiment.  For example, in a tension test, 

0, 3201 === σσσσ , and failure occurs when 0σ  reaches Y, the yield stress in tension.  
It follows that 
 

2
Yk = .          (8.3.8) 
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In a shear test, τσστσ −=== 321 ,0, , and failure occurs when τ  reaches Yτ , the yield 
stress of a material in pure shear, so that Yk τ= . 
 
The Von Mises Yield Condition 
 
The Von Mises criterion states that yield occurs when the principal stresses satisfy the 
relation 
 

( ) ( ) ( )
k=

−+−+−
6

2
13

2
32

2
21 σσσσσσ    (8.3.9) 

 
Again, from a uniaxial tension test, one finds that the k in Eqn. 8.3.9 is 
 

3
Yk = .        (8.3.10) 

 
Writing the Von Mises condition in terms of Y, one has 
 

( ) ( ) ( ) Y=−+−+− 2
13

2
32

2
212

1 σσσσσσ                    (8.3.11) 

 
The quantity on the left is called the Von Mises Stress, sometimes denoted by VMσ .  
When it reaches the yield stress in pure tension, the material begins to deform plastically.  
In the shear test, one again finds that Yk τ= , the yield stress in pure shear. 
 
Sometimes it is preferable to work with arbitrary stress components; for this purpose, the 
Von Mises condition can be expressed as {▲Problem 2} 
 

( ) ( ) ( ) ( ) 22
31

2
23

2
12

2
1133

2
3322

2
2211 66 k=+++−+−+− σσσσσσσσσ        (8.3.12) 

 
The piecewise linear nature of the Tresca yield condition is sometimes a theoretical 
advantage over the quadratic Mises condition.  However, the fact that in many problems 
one often does not know which principal stress is the maximum and which is the 
minimum causes difficulties when working with the Tresca criterion. 
 
The Tresca and Von Mises Yield Criteria in terms of Invariants 
 
From Eqn. 8.2.10 and 8.3.9, the Von Mises criterion can be expressed as 
 

0)( 2
22 =−≡ kJJf        (8.3.13) 

 
Note the relationship between 2J  and the octahedral shear stress, Eqn. 8.2.17; the Von 
Mises criterion can be interpreted as predicting yield when the octahedral shear stress 
reaches a critical value. 
 
With 321 σσσ ≥≥ , the Tresca condition can be expressed as 
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0649636274),( 6

2
42

2
22

3
3
232 =−+−−≡ kJkJkJJJJf      (8.3.14) 

 
but this expression is too cumbersome to be of much use. 
 
Experiments of Taylor and Quinney 
 
In order to test whether the Von Mises or Tresca criteria best modelled the real behaviour 
of metals, G I Taylor & Quinney (1931), in a series of classic experiments, subjected a 
number of thin-walled cylinders made of copper and steel to combined tension and 
torsion, Fig. 8.3.2. 
 

σ σ
τ

τ

 
 

Figure 8.3.2: combined tension and torsion of a thin-walled tube 
 
The cylinder wall is in a state of plane stress, with σσ =11 , τσ =12  and all other stress 
components zero.  The principal stresses corresponding to such a stress-state are (zero 
and) {▲Problem 3} 
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and so Tresca's condition reduces to 
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The Mises condition  reduces to {▲Problem 4} 

 

222 33 k=+ τσ   or   1
3/

22

=







+








YY
τσ       (8.3.17) 

 
Thus both models predict an elliptical yield locus in ( )τσ ,  stress space, but with 
different ratios of principal axes, Fig. 8.3.3.  The origin in Fig. 8.3.3 corresponds to an 
unstressed state.  The horizontal axes refer to uniaxial tension in the absence of shear, 
whereas the vertical axis refers to pure torsion in the absence of tension.  When there is a 
combination of σ  and τ , one is off-axes.  If the combination remains “inside” the yield 
locus, the material remains elastic; if the combination is such that one reaches anywhere 
along the locus, then plasticity ensues. 
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Figure 8.3.3: the yield locus for a thin-walled tube in combined tension and torsion  

 
Taylor and Quinney, by varying the amount of tension and torsion, found that their 
measurements were closer to the Mises ellipse than the Tresca locus, a result which has 
been repeatedly confirmed by other workers2. 
 
2D Principal Stress Space 
 
Fig. 8.3.3 gives a geometric interpretation of the Tresca and Von Mises yield criteria in 
( )τσ ,  space.  It is more usual to interpret yield criteria geometrically in a principal stress 
space.  The Taylor and Quinney tests are an example of plane stress, where one principal 
stress is zero.  Following the convention for plane stress, label now the two non-zero 
principal stresses 1σ  and 2σ , so that 03 =σ  (even if it is not the minimum principal 
stress). The criteria can then be displayed in ( )21 ,σσ  2D principal stress space.  With 

03 =σ , one has 
 
 

Tresca:  { } Y=− 1221 ,,max σσσσ  
(8.3.18) 

 Von Mises: 22
221

2
1 Y=+− σσσσ  

 
These are plotted in Fig. 8.3.4.  The Tresca criterion is a hexagon.  The Von Mises 
criterion is an ellipse with axes inclined at 045  to the principal axes, which can be seen 
by expressing Eqn. 8.3.18b in the canonical form for an ellipse: 
 

 
2 the maximum difference between the predicted stresses from the two criteria is about 15%.  The two 
criteria can therefore be made to agree to within ± 7.5% by choosing k to be half-way between 2/Y  and 
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where 1 2,σ σ′ ′  are coordinates along the new axes; the major axis is thus 2Y  and the 

minor axis is 2 / 3Y . 
 
Some stress states are shown in the stress space: point A corresponds to a uniaxial tension, 
B to a equi-biaxial tension and C to a pure shear τ . 
 

 
 

Figure 8.3.4: yield loci in 2D principal stress space 
 
Again, points inside these loci represent an elastic stress state.  Any combination of 
principal stresses which push the point out to the yield loci results in plastic deformation. 
 
 
8.3.2 Three Dimensional Principal Stress Space 
 
The 2D principal stress space has limited use.  For example, a stress state that might start 
out two dimensional can develop into a fully three dimensional stress state as deformation 
proceeds. 
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In three dimensional principal stress space, one has a yield surface ( ) 0,, 321 =σσσf , 
Fig. 8.3.5 3.  In this case, one can draw a line at equal angles to all three principal stress 
axes, the space diagonal.  Along the space diagonal 321 σσσ ==  and so points on it are 
in a state of hydrostatic stress. 
 
Assume now, for the moment, that hydrostatic stress does not affect yield and consider 
some arbitrary point A, ( ) ( )cba ,,,, 321 =σσσ , on the yield surface, Fig. 8.3.5.  A pure 
hydrostatic stress hσ   can be superimposed on this stress state without affecting yield, so 
any other point ( ) ( )hhh cba σσσσσσ +++= ,,,, 321  will also be on the yield surface.  
Examples of such points are shown at B, C and D, which are obtained from A by moving 
along a line parallel to the space diagonal.  The yield behaviour of the material is 
therefore specified by a yield locus on a plane perpendicular to the space diagonal, and 
the yield surface is generated by sliding this locus up and down the space diagonal. 
 

 
 

Figure 8.3.5: Yield locus/surface in three dimensional stress-space 
 
The π-plane 
 
Any surface in stress space can be described by an equation of the form 
 

( ) const,, 321 =σσσf               (8.3.19) 
 
and a normal to this surface is the gradient vector 
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where 321 ,, eee  are unit vectors along the stress space axes.  In particular, any plane 
perpendicular to the space diagonal is described by the equation 

 
3 as mentioned, one has a six dimensional stress space for an anisotropic material and this cannot be 
visualised 
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const321 =++ σσσ              (8.3.21) 

 
Without loss of generality, one can choose as a representative plane the π – plane, which 
is defined by 0321 =++ σσσ .  For example, the point ( ) ( )0,1,1,, 321 −=σσσ  is on the π 
– plane and, with yielding independent of hydrostatic stress, is equivalent to points in 
principal stress space which differ by a hydrostatic stress, e.g. the points 
( ) ( )1,2,0,1,0,2 −− , etc.  
 
The stress state at any point A represented by the vector ( )321 ,, σσσ=σ  can  be regarded 
as the sum of the stress state at the corresponding point on the π – plane, D, represented 
by the vector ( )321 ,, sss=s  together with a hydrostatic stress represented by the vector 

( )mmm σσσ ,,=ρ : 
 

( ) ( ) ( )mmmmmm σσσσσσσσσσσσ ,,,,,, 321321 +−−−=         (8.3.22) 
 
The components of the first term/vector on the right here sum to zero since it lies on the π 
– plane, and this is the deviatoric stress, whilst the hydrostatic stress is 

( ) 3/321 σσσσ ++=m . 
 
Projected view of the π-plane 
 
Fig. 8.3.6a shows principal stress space and Fig. 8.3.6b shows the π – plane.  The heavy 
lines 321 ,, σσσ ′′′  in Fig. 8.3.6b represent the projections of the principal axes down onto 
the −π plane (so one is “looking down” the space diagonal).  Some points, CBA ,,  in 
stress space and their projections onto the −π plane are also shown.  Also shown is some 
point D on the −π plane.  It should be kept in mind that the deviatoric stress vector s in 
the projected view of Fig. 8.3.6b is in reality a three dimensional vector (see the 
corresponding vector in Fig. 8.3.6a). 
 

 
 

Figure 8.3.6: Stress space; (a) principal stress space, (b) the π – plane 
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Consider the more detailed Fig. 8.3.7 below.  Point A here represents the stress state 
( )0,1,2 − , as indicated by the arrows in the figure.  It can also be “reached” in different 
ways, for example it represents ( )1,0,3  and ( )1,2,1 −− .  These three stress states of course 
differ by a hydrostatic stress.  The actual −π plane value for A is the one for which 

0321 =++ σσσ , i.e. ( ) ( ) ( )3
1

3
4

3
5

321321 ,,,,,, −−== sssσσσ .  Points B and C also 
represent multiple stress states {▲Problem 7}. 
 

 
 

Figure 8.3.7: the π-plane 
 
The bisectors of the principal plane projections, such as the dotted line in Fig. 8.3.7, 
represent states of pure shear.  For example, the −π plane value for point D is ( )2,2,0 − , 
corresponding to a pure shear in the 32 σσ −  plane. 
 
The dashed lines in Fig. 8.3.7 are helpful in that they allow us to plot and visualise stress 
states easily.  The distance between each dashed line along the directions of the projected 
axes represents one unit of principal stress.  Note, however, that these “units” are not 
consistent with the actual magnitudes of the deviatoric vectors in the −π plane.  To 
create a more complete picture, note first that a unit vector along the space diagonal is 

[ ]
3

1
3

1
3

1 ,,=ρn , Fig. 8.3.8.  The components of this normal are the direction cosines; for 

example, a unit normal along the ‘1’ principal axis is [ ]0,0,11 =e  and so the angle 0θ  
between the ‘1’ axis and the space diagonal is given by 

3
1

01 cos ==⋅ θρ en .  From Fig. 

8.3.8, the angle θ  between the ‘1’ axis and the −π plane is given by 3
2cos =θ , and so 

a length of 1σ  units gets projected down to a length 13
2σ== ss . 

 
For example, point E in Fig. 8.3.7 represents a pure shear ( ) ( )0,2,2,, 321 −=σσσ , which is 

on the −π plane. The length of the vector out to E in Fig. 8.3.7 is 32  “units”.  To 

1σ ′ 2σ ′

3σ ′

( )1σ ′−( )2σ ′−

( )3σ ′−

•

•

•

A

B

C

bisector 
• D

•E
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convert to actual magnitudes, multiply by 3
2  to get 22=s , which agrees with 

2222 222
3

2
2

2
1 =+=++== ssss s . 

 
 

  
 

Figure 8.3.8: principal stress projected onto the π-plane 
 
 
Typical π-plane Yield Loci 
 
Consider next an arbitrary point ),,( cba  on the −π plane yield locus.  If the material is 
isotropic, the points ),,( bca , ),,( cab , ),,( acb , ),,( bac  and ),,( abc  are also on the yield 
locus.  If one assumes the same yield behaviour in tension as in compression, e.g. 
neglecting the Bauschinger effect, then so also are the points ),,( cba −−− , ),,( bca −−− , 
etc.  Thus 1 point becomes 12 and one need only consider the yield locus in one 30o 
sector of the −π plane, the rest of the locus being generated through symmetry.  One such 
sector is shown in Fig. 8.3.9, the axes of symmetry being the three projected principal 
axes and their (pure shear) bisectors. 
 

 
 

Figure 8.3.9: A typical sector of the yield locus 
 
 
The Tresca and Von Mises Yield Loci in the π-plane 
 
The Tresca criterion, Eqn. 8.3.7, is a regular hexagon in the −π plane as illustrated in Fig. 
8.3.10.  Which of the six sides of the locus is relevant depends on which of 321 ,, σσσ  is 
the maximum and which is the minimum, and whether they are tensile or compressive.  

1

π-plane 

•

•
s

13
2σ=s

θ

space 
diagonal 

0θ

1σ
ρn

1n

yield locus 
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For example, yield at the pure shear 2/,0,2/ 321 YY −=== σσσ  is indicated by point A 
in the figure. 
 
Point B represents yield under uniaxial tension, Y=1σ .  The distance oB , the 
“magnitude” of the hexagon, is therefore Y3

2 ; the corresponding point on the π  – plane 
is ( ) ( )YYYsss 3

1
3
1

3
2

321 ,,, −−= . 
 
A criticism of the Tresca criterion is that there is a sudden change in the planes upon 
which failure occurs upon a small change in stress at the sharp corners of the hexagon. 
 

 
 

Figure 8.3.10: The Tresca criterion in the π-plane 
 
Consider now the Von Mises criterion.  From Eqns. 8.3.10, 8.3.13, the criterion is 

3/2 YJ = .  From Eqn. 8.2.9, this can be re-written as 
 

Ysss
3
22

3
2
2

2
1 =++                   (8.3.23) 

 
Thus, the magnitude of the deviatoric stress vector is constant and one has a circular yield 
locus with radius kY 23

2 = , which circumscribes the Tresca hexagon, as illustrated in 
Fig. 8.3.11. 
 

1σ ′ 2σ ′

3σ ′

( )1σ ′−( )2σ ′−

( )3σ ′−

Y=− 21 σσ Y=− 12 σσ

Y=− 32 σσY=− 31 σσ

Y=− 13 σσY=− 23 σσ

•A

•B

o

Y3
2



Section 8.3 

Solid Mechanics Part II                                                                                Kelly 270 

 
 

Figure 8.3.11: The Von Mises criterion in the π-plane 
 
The yield surface is a circular cylinder with axis along the space diagonal, Fig. 8.3.12.  
The Tresca surface is a similar hexagonal cylinder. 
 

 
 

Figure 8.3.12: The Von Mises and Tresca yield surfaces 
 
 
 
8.3.3 Haigh-Westergaard Stress Space 
 
Thus far, yield criteria have been described in terms of principal stresses ),,( 321 σσσ .  It 
is often convenient to work with ( )θρ ,, s  coordinates, Fig. 8.3.13; these cylindrical 
coordinates are called Haigh-Westergaard coordinates.  They are particularly useful for 
describing and visualising geometrically pressure-dependent yield-criteria. 
 

1σ
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3σ

plane stress 
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)0( 3 =σ

)0( 321 =++ σσσ
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The coordinates ( )s,ρ  are simply the magnitudes of, respectively, the hydrostatic stress 
vector ( )mmm σσσ ,,=ρ  and the deviatoric stress vector ( )321 ,, sss=s .  These are given 
by ( s can be obtained from Eqn. 8.2.9) 
 

21 2,3/3 JsIm ===== sρ σρ             (8.3.24) 
 

 
 

Figure 8.3.13: A point in stress space 
 
θ  is measured from the 1σ ′  )( 1s  axis in the −π plane.  To express θ  in terms of 
invariants, consider a unit vector e in the −π plane in the direction of the 1σ ′  axis; this is 
the same vector cn  considered in Fig. 8.2.4 in connection with the octahedral shear 

stress, and it has coordinates ( ) ( )
6

1
6

1
3
2

221 ,,,, −−=σσσ , Fig. 8.3.13.  The angle θ  can 
now be obtained from θcoss=⋅es  {▲Problem 9}: 
 

2

1

2
3cos
J
s

=θ          (8.3.25) 

 
Further manipulation leads to the relation {▲Problem 10} 
 

2/3
2

3

2
333cos

J
J

=θ                                  (8.3.26) 

 
Since 2J  and 3J  are invariant, it follows that θ3cos  is also.  Note that 3J  enters 
through θ3cos , and does not appear in ρ  or s; it is 3J  which makes the yield locus 
in the π -plane non-circular. 
 
From Eqn. 8.3.25 and Fig. 8.3.13b, the deviatoric stresses can be expressed in terms 
of the Haigh-Westergaard coordinates through 
 

1σ

2σ

3σ

•

ρ
s

1σ ′ 2σ ′

3σ ′

θ1σ ′
θ

s

e

)a( )b(
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( )
( )












+
−=















θπ
θπ

θ

3/2cos
3/2cos

cos

3
2

2

3

2

1
J

s
s
s

       (8.3.27) 

 
The principal stresses and the Haigh-Westergaard coordinates can then be related 
through {▲Problem 12} 
 

( )
( )












+
−+












=















3/2cos
3/2cos

cos

3
2

3
1

3

2

1

πθ
πθ

θ

ρ
ρ
ρ

σ
σ
σ

s             (8.3.28) 

 
In terms of the Haigh-Westergaard coordinates, the yield criteria are 
 
 Von Mises: 2 21

2( ) 0f s s k= − =  
(8.3.29) 

 Tresca  ( ) 0sin2),( 3 =−+= Yssf πθθ  
 
 
8.3.4 Pressure Dependent Yield Criteria 
 
The Tresca and Von Mises criteria are independent of hydrostatic pressure and are 
suitable for the modelling of plasticity in metals.  For materials such as rock, soils and 
concrete, however, there is a strong dependence on the hydrostatic pressure. 
 
The Drucker-Prager Criteria 
 
The Drucker-Prager criterion is a simple modification of the Von Mises criterion, 
whereby the hydrostatic-dependent first invariant 1I  is introduced to the Von Mises Eqn. 
8.3.13: 
 

0),( 2121 =−+≡ kJIJIf α    (8.3.30) 
 
with α  is a new material parameter.  On the π  – plane, 01 =I , and so the yield locus 
there is as for the Von Mises criterion, a circle of radius k2 , Fig. 8.3.14a.  Off the π  – 
plane, the yield locus remains circular but the radius changes.  When there is a state of 
pure hydrostatic stress, the magnitude of the hydrostatic stress vector is  {▲Problem 13} 

αρ 3/k== ρ , with 0== ss .  For large pressures, 0321 <== σσσ , the 1I  term in 
Eqn. 8.3.30 allows for large deviatoric stresses.  This effect is shown in the meridian 
plane in Fig. 8.3.14b, that is, the ),( sρ  plane which includes the 1σ  axis. 
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Figure 8.3.14: The Drucker-Prager criterion; (a) the  π-plane, (b) the Meridian 
Plane 

 
The Drucker-Prager surface is a right-circular cone with apex at αρ 3/k= , Fig. 8.3.15.  
Note that the plane stress locus, where the cone intersects the 03 =σ  plane, is an ellipse, 
but whose centre is off-axis, at some )0,0( 21 << σσ . 
 

 
 

Figure 8.3.15: The Drucker-Prager yield surface 
 
 
In terms of the Haigh-Westergaard coordinates, the yield criterion is 
 

 026),( =−+= kssf αρρ                                (8.3.31) 
 
 
The Mohr Coulomb Criteria 
 
The Mohr-Coulomb criterion is based on Coulomb’s 1773 friction equation, which can be 
expressed in the form 
 

φστ tannc −=              (8.3.32) 
 

ρ

s

α3
k

k2

π - plane 

)a(

1σ ′ 2σ ′
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where φ,c  are material constants; c is called the cohesion4 and φ  is called the angle of 
internal friction.  τ  and nσ  are the shear and normal stresses acting on the plane where 
failure occurs (through a shearing effect), Fig. 8.3.16, with φtan  playing the role of a 
coefficient of friction.  The criterion states that the larger the pressure nσ− , the more 
shear the material can sustain.  Note that the Mohr-Coulomb criterion can be considered 
to be a generalised version of the Tresca criterion, since it reduces to Tresca’s when 

0=φ  with kc = . 
 

 
 

Figure 8.3.16: Coulomb friction over a plane 
 
This criterion not only includes a hydrostatic pressure effect, but also allows for different 
yield behaviours in tension and in compression.  Maintaining isotropy, there will now be 
three lines of symmetry in any deviatoric plane, and a typical sector of the yield locus is 
as shown in Fig. 8.3.17 (compare with Fig. 8.3.9) 
 

 
 

Figure 8.3.17: A typical sector of the yield locus for an isotropic material with 
different yield behaviour in tension and compression 

 
Given values of c and φ , one can draw the failure locus (lines) of the Mohr-Coulomb 
criterion in ),( τσ n  stress space, with intercepts c±=τ  and slopes φtan , Fig. 8.3.18.  
Given some stress state 321 σσσ ≥≥ , a Mohr stress circle can be drawn also in ),( τσ n  
space (see §7.2.6).  When the stress state is such that this circle reaches out and touches 
the failure lines, yield occurs. 
 

 
4 0=c  corresponds to a cohesionless material such as sand or gravel, which has no strength in tension 

τ

nσ−

yield locus 
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Figure 8.3.18: Mohr-Coulomb failure criterion 
 
From Fig. 8.3.18, and noting that the large Mohr circle has centre ( )( )0,312

1 σσ +  and 
radius ( )312

1 σσ − , one has 
 

φ
σσσσ

σ

φ
σσ

τ

sin
22

cos
2

3131

31

−
+

+
=

−
=

n

                    (8.3.33) 

 
Thus the Mohr-Coulomb criterion in terms of principal stresses is 
 

( ) ( ) φσσφσσ sincos2 3131 +−=− c             (8.3.34) 
 
The strength of the Mohr-Coulomb material in uniaxial tension, Ytf , and in uniaxial 
compression, Ycf , are thus 
 

φ
φ

φ
φ

sin1
cos2,

sin1
cos2

−
=

+
=

cfcf YcYt              (8.3.35) 

 
In terms of the Haigh-Westergaard coordinates, the yield criterion is 
 

( ) ( ) 0cos6sincossin3sin2),,( 33 =−++++= φφθθφρθρ ππ csssf         (8.3.36) 
 
The Mohr-Coulomb yield surface in the π  – plane and meridian plane are displayed 
in Fig. 8.3.19.  In the π  – plane one has an irregular hexagon which can be 
constructed from two lengths: the magnitude of the deviatoric stress in uniaxial 
tension at yield, 0ts , and the corresponding (larger) value in compression, 0cs ; these 
are given by: 
 

( ) ( )
φ

φ
φ

φ
sin3

sin16
,

sin3
sin16

00 −
−

=
+

−
= Yc

c
Yc

t
f

s
f

s                      (8.3.37) 
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In the meridian plane, the failure surface cuts the 0=s  axis at φρ cot3c=   
{▲Problem 14}. 
 

 
 
Figure 8.3.19: The Mohr-Coulomb criterion; (a) the  π-plane, (b) the Meridian Plane 
 
The Mohr-Coulomb surface is thus an irregular hexagonal pyramid, Fig. 8.3.20. 
 

 
 

Figure 8.3.20: The Mohr-Coulomb yield surface 
 
By adjusting the material parameters φα ,,, ck , the Drucker-Prager cone can be 
made to match the Mohr-Coulomb hexagon, either inscribing it at the minor vertices,  
or circumscribing it at the major vertices, Fig. 8.3.21. 
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Figure 8.3.21: The Mohr-Coulomb and Drucker-Prager criteria matched in the  π-

plane 
 
 
Capped Yield Surfaces 
 
The Mohr-Coulomb and Drucker-Prager surfaces are open in that a pure hydrostatic 
pressure can be applied without affecting yield.  For many geomaterials, however, for 
example soils, a large enough hydrostatic pressure will induce permanent deformation.  In 
these cases, a closed (capped) yield surface is more appropriate, for example the one 
illustrated in Fig. 8.3.22. 
 

 
 

Figure 8.3.22: a capped yield surface 
 
An example is the modified Cam-Clay criterion: 
 

( )13
12

13
1

2 23 IpMIJ c +−=   or  ( ) 0,2
3

12
33

2 <+−= ρρρ cpMs     (8.3.38)  

 
with M and cp  material constants.  In terms of the standard geomechanics notation, it 
reads 
 

( )pppMq c −= 222        (8.3.39) 
 
where 
 

3σ−

1σ−

2σ−

1σ ′ 2σ ′
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sJqIp
2
33,

3
1

3
1

21 ==−=−= ρ                (8.3.40) 

 
The modified Cam-Clay locus in the meridian plane is shown in Fig. 8.3.23.  Since s 
is constant for any given ρ , the locus in planes parallel to the π - plane are circles.  
The material parameter cp  is called the critical state pressure, and is the pressure 
which carries the maximum deviatoric stress.  M is the slope of the dotted line 
shown in Fig. 8.3.23, known as the critical state line. 
 

 
 

Figure 8.3.23: The modified Cam-Clay criterion in the Meridian Plane 
 
 
 
8.3.5 Anisotropy 
 
Many materials will display anisotropy.  For example metals which have been processed 
by rolling will have characteristic material directions, the tensile yield stress in the 
direction of rolling being typically 15% greater than that in the transverse direction.  The 
form of anisotropy exhibited by rolled sheets is such that the material properties are 
symmetric about three mutually orthogonal planes.  The lines of intersection of these 
planes form an orthogonal set of axes known as the principal axes of anisotropy.  The 
axes are (a) in the rolling direction, (b) normal to the sheet, (c) in the plane of the sheet 
but normal to rolling direction.  This form of anisotropy is called orthotropy (see Part I, 
§6.2.2).  Hill (1948) proposed a yield condition for such a material which is a natural 
generalisation of the Mises condition: 
 

( ) ( ) ( )2 2 2
22 33 33 11 11 22

2 2 2
23 31 12

( )

2 2 2 1 0
ijf F G H

L M N

σ σ σ σ σ σ σ

σ σ σ

= − + − + −

+ + + − =
        (8.3.41) 

 
where F, G, H, L, M, N are material constants.  One needs to carry out 6 tests: uniaxial 
tests in the three coordinate directions to find the uniaxial yield strengths 
( ) , ( ) , ( )Y x Y y Y zσ σ σ , and shear tests to find the shear strengths ( ) , ( ) , ( )Y xy Y yz Y zxτ τ τ .  For a 

uniaxial test in the x direction, Eqn. 8.3.41 reduces to 21/ ( )Y xG H σ+ = . By considering 
the other simple uniaxial and shear tests, one can solve for the material parameters: 
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q
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 1 1 1
2 2

1 1 1 1 1 1
2 2

1 1 1 1 1 1
2 2

Y Y Y Yy z x yz

Y Y Y Yz x y zx

Y Y Y Yx y z xy

F L

G M

H N

σ σ σ τ

σ σ σ τ

σ σ σ τ

 
 = + − =
  
 
 = + − =
  
 
 = + − =
  

                             (8.3.42) 

 
The criterion reduces to the Mises condition 8.3.12 when  
 

26
1

333 k
NMLHGF ======                                   (8.3.43) 

 
The 1, 2, 3 axes of reference in Eqn. 8.3.41 are the principal axes of anisotropy.  The form 
appropriate for a general choice of axes can be derived by using the usual stress 
transformation formulae.  It is complicated and involves cross-terms such as 2311σσ , etc. 

 
 
8.3.6 Problems 
 
1. A material is to be loaded to a stress state 

[ ]











−

−
=

000
09030
03050

ijσ  MPa 

What should be the minimum uniaxial yield stress of the material so that it does not 
fail, according to the 
(a) Tresca criterian 
(b) Von Mises criterion 
What do the theories predict when the yield stress of the material is 80MPa? 

 
2. Use Eqn. 8.2.6, ( )113333222211

2
31

2
23

2
122 sssssssssJ ++−++=  to derive Eqn. 8.3.12, 

( ) ( ) ( ) ( ) 22
31

2
23

2
12

2
1133

2
3322

2
2211 66 k=+++−+−+− σσσσσσσσσ , for the Von 

Mises criterion. 
 

3. Use the plane stress principal stress formula 2
12

2
22112211

2,1 22
σ

σσσσ
σ +






 −

±
+

=  

to derive Eqn. 8.3.15 for the Taylor-Quinney tests. 
 
4. Derive Eqn. 8.3.17 for the Taylor-Quinney tests. 
 
5. Describe the states of stress represented by the points D and E in Fig. 8.3.4.  (The 

complete stress states can be visualised with the help of Mohr’s circles of stress, Fig. 
7.2.17.) 

 



Section 8.3 

Solid Mechanics Part II                                                                                Kelly 280 

6. Suppose that, in the Taylor and Quinney tension-torsion tests, one has 2/Y=σ  and 
4/3Y=τ .  Plot this stress state in the 2D principal stress state, Fig. 8.3.4.  (Use 

Eqn. 8.3.15 to evaluate the principal stresses.)  Keeping now the normal stress at 
2/Y=σ , what value can the shear stress be increased to before the material yields, 

according to the von Mises criterion? 
 
7. What are the −π plane principal stress values for the points B and C in Fig. 8.3.7? 
 
8. Sketch on the −π plane Fig. 8.3.7 a line corresponding to 21 σσ =  and also a region 

corresponding to 321 0 σσσ >>>  

9. Using the relation θcoss=⋅es  and 132 sss −=+ , derive Eqn. 8.3.25, 
2

1

2
3cos
J
s

=θ . 

 
10. Using the trigonometric relation θθθ cos3cos43cos 3 −=  and Eqn. 8.3.25, 

2

1

2
3cos
J
s

=θ , show that ( )2
2
12/3

2

1

2
333cos Js

J
s

−=θ .  Then using the relations 8.2.6, 

( )1332212 ssssssJ ++−= , with 01 =J , derive Eqn. 8.3.26, 2/3
2

3

2
333cos

J
J

=θ   

 
11. Consider the following stress states.  For each one, evaluate the space coordinates 

),,( θρ s  and plot in the −π plane (see Fig. 8.3.13b): 
(a) triaxial tension: 023211 >==>= TT σσσ  
(b) triaxial compression: 022113 <−==<−= pp σσσ  (this is an important test for 

geomaterials, which are dependent on the hydrostatic pressure) 
(c) a pure shear τσ =xy : τσστσ −==+= 321 ,0,  
(d) a pure shear τσ =xy  in the presence of hydrostatic pressure p: 

τσστσ −−=−=+−= ppp 321 ,, , i.e. 3221 σσσσ −=−  
 
12. Use relations 8.3.24, 21 2,3/ JsI ==ρ  and Eqns. 8.3.27 to derive Eqns. 8.3.28. 
 
13. Show that the magnitude of the hydrostatic stress vector is αρ 3/k== ρ  for the 

Drucker-Prager yield criterion when the deviatoric stress is zero 
 
14. Show that the magnitude of the hydrostatic stress vector is φρ cot3c=  for the 

Mohr-Coulomb yield criterion when the deviatoric stress is zero 
 
15. Show that, for a Mohr-Coulomb material, )1/()1(sin +−= rrφ , where YtYc ffr /=  is 

the compressive to tensile strength ratio 
 
16. A sample of concrete is subjected to a stress App −=−== 332211 , σσσ  where the 

constant 1>A .  Using the Mohr-Coulomb criterion and the result of Problem 15, 
show that the material will not fail provided rpfA Yc +< /  
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8.4 Elastic Perfectly Plastic Materials 
 
Once yield occurs, a material will deform plastically.  Predicting and modelling this 
plastic deformation is the topic of this section.  For the most part, in this section, the 
material will be assumed to be perfectly plastic, that is, there is no work hardening. 
 
 
8.4.1 Plastic Strain Increments 
 
When examining the strains in a plastic material, it should be emphasised that one works 
with increments in strain rather than a total accumulated strain.  One reason for this is 
that when a material is subjected to a certain stress state, the corresponding strain state 
could be one of many.  Similarly, the strain state could correspond to many different 
stress states.  Examples of this state of affairs are shown in Fig. 8.4.1.   
 

 
  
Figure 8.4.1: stress-strain curve; (a) different strains at a certain stress, (b) different 

stress at a certain strain 
 
One cannot therefore make use of stress-strain relations in plastic regions (except in some 
special cases), since there is no unique relationship between the current stress and the 
current strain.  However, one can relate the current stress to the current increment in 
strain, and these are the “stress-strain” laws which are used in plasticity theory.  The total 
strain can be obtained by summing up, or integrating, the strain increments. 
 
 
8.4.2 The Prandtl-Reuss Equations 
 
An increment in strain εd  can be decomposed into an elastic part edε  and a plastic part 

pdε .  If the material is isotropic, it is reasonable to suppose that the principal plastic 
strain increments p

idε  are proportional to the principal deviatoric stresses is : 
 

0
3

3
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2

1

1 ≥=== λ
εεε

d
s

d

s

d

s

d ppp

            (8.4.1) 

 
This relation only gives the ratios of the plastic strain increments to the deviatoric 
stresses.  To determine the precise relationship, one must specify the positive scalar λd  
(see later).  Note that the plastic volume constancy is inherent in this relation: 

0321 =++ ppp ddd εεε .   

∗∗ ∗

∗σ σ

ε ε
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Eqns. 8.4.1 are in terms of the principal deviatoric stresses and principal plastic strain 
increments.  In terms of Cartesian coordinates, one has 
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or, succinctly, 
 

λε dsd ij
p

ij =               (8.4.3) 

 
These equations are often expressed in the alternative forms 
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or, dividing by dt  to get the rate equations, 
 

λ
σσ
εεεε &L
&&

L
&&

==
−

−
==

−

−

yyxx

p
yy

p
xx

yyxx

p
yy

p
xx

ss
         (8.4.5) 

 
In terms of actual stresses, one has, from 8.2.3, 
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          (8.4.6) 

 
This plastic stress-strain law is known as a flow rule.  Other flow rules will be considered 
later on.  Note that one cannot propose a flow rule which gives the plastic strain 
increments as explicit functions of the stress, otherwise the yield criterion might not be 
met (in particular, when there is strain hardening); one must include the to-be-determined 
scalar plastic multiplier λ .  The plastic multiplier is determined by ensuring the stress-
state lies on the yield surface during plastic flow. 
 
The full elastic-plastic stress-strain relations are now, using Hooke’s law, 
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or 
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E
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E
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These expressions are called the Prandtl-Reuss equations.  If the first, elastic, terms are 
neglected, they are known as the Lévy-Mises equations. 
 
 
8.4.3 Application: Plane Strain Compression of a Block 
 
Consider the plane strain compression of a thick block, Fig. 8.4.2.  The block is subjected 
to an increasing pressure pxx −=σ , is constrained in the z direction, so 0=zzε , and is 
free to move in the y direction, so 0=yyσ . 

 
Figure 8.4.2: Plane strain compression of a thick block 

 
The solution to the elastic problem is obtained from 8.4.7 (disregarding the plastic terms).  
One finds that {▲Problem 1} 
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and all other stress and strain components are zero.  In this elastic phase, the principal 
stresses are clearly 
 

xxzzyy σσσσσσ =>=>== 321 0                    (8.4.9) 
 
The Prandtl-Reuss equations are 
 

[ ]

( ) ( )

[ ] ⎥⎦
⎤

⎢⎣
⎡ +−+−=

+−+−=

⎥⎦
⎤

⎢⎣
⎡ −+−=

zzxxxxzzzz

zzxxzzxxyy

zzxxzzxxxx

ddd
E

d

ddd
E

d

ddd
E

d

σσλσνσε

σσλσσνε

σσλσνσε

2
1

3
21
3
1

2
1

3
21

            (8.4.10) 

 
The magnitude of the plastic straining is determined by the multiplier λd .  This can be 
evaluated by noting that plastic deformation proceeds so long as the stress state remains 
on the yield surface, the so-called consistency condition.  By definition, a perfectly 
plastic material is one whose yield surface remains unchanged during deformation. 
 
A Tresca Material 
 
Take now the Tresca yield criterion, which states that yield occurs when Yxx −=σ , where 
Y is the uniaxial yield stress (in compression).  Assume further perfect plasticity, so that 

Yxx −=σ  holds during all subsequent plastic flow.  Thus, with 0=xxdσ , and since 
0=zzdε , 8.4.10 reduce to 
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Thus 
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and, eliminating λd  from Eqns. 8.4.11 {▲Problem 2}, 
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Using the relation 
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and the initial (yield point) conditions, i.e. Eqns. 8.4.8 with Yp = , one can integrate 
8.4.13 to get {▲Problem 2} 
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The stress-strain curves are shown in Fig. 8.4.3 below for 3.0=ν .  Note that, for a typical 
metal, 310~/YE , and so the strains are very small right through the plastic compression; 
the plastic strains are of comparable size to the elastic strains.  There is a rapid change of 
stress and then little change once zzσ  has approached close to its limiting value of 2/Y− . 
 
The above plastic analysis was based on xxσ  remaining the minimum principal stress.  
This assumption has proved to be valid, since zzσ  remains between 0 and Y−  in the 
plastic region. 
 
 

 
 

Figure 8.4.3: Stress-strain results for plane strain compression of a thick block for 
3.0=ν  

 
 
A Von Mises Material 
 
Slightly different results are obtained with the Von Mises yield criterion, Eqn. 8.4.11, 
which for this problem reads 
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222 Yzzzzxxxx =+− σσσσ                  (8.4.16) 
 
The Prandtl-Reuss equations can be solved by making the substitution 
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in the plastic region.  In what follows, use is made of the trigonometric relations 
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From Eqn. 8.4.16, 
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Substituting into 8.4.10 then leads to 
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Using 0=zzdε  leads to  
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and 
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An integration gives 
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To determine the constant of integration, consider again the conditions at first yield. 
Suppose the block first yields when xxσ  reaches Y

xxσ .  Then Y
xx

Y
zz νσσ =  and 

 

21 νν
σ

+−
−=

YY
xx                 (8.4.24) 

 
Note that in this case it is predicted that first yield occurs when Yxx −<σ .  From Eqn. 
8.4.17, the value of θ  at first yield is 
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Thus, with ( ) EY
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2
tanln

2
31 2

Y

C
θνν −+−−=          (8.4.26) 

 
and so 
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This leads to a similar stress-strain curve as for the Tresca criterion, only now the limiting 
value of zzσ  is YY 58.03/ −≈− . 
 
 
8.4.4 Application: Combined Tension/Torsion of a thin walled 

tube 
 
Consider now the combined tension/torsion of a thin-walled tube as in the 
Taylor/Quinney tests.  The only stresses in the tube are σσ =xx  due to the tension along 
the axial direction and τσ =xy  due to the torsion.  The Prandtl-Reuss equations reduce to 
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Consider the case where the tube is twisted up to the yield point.  Torsion is then halted 
and tension is applied, holding the angle of twist constant.  In that case, during the 
tension, 0=xydε  and so {▲Problem 3} 
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If one takes the Von Mises criterion, then 222 3 Y=+ τσ  (see Eqn. 8.3.17).  Assuming 
perfect plasticity, one has {▲Problem 4}, 
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Using the relation 
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an integration leads to {▲Problem 5} 
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This result is plotted in Fig. 8.4.4.  Note that, with 222 3 Y=+ τσ , as σ  increases 
(rapidly) to its limiting value Y , τ  decreases from its yield value of 3/Y  to zero. 
 

 
Figure 8.4.4: Stress-strain results for combined tension/torsion of a thin walled tube 

for 3.0=ν  
 
 
8.4.5 The Tresca Flow Rule 
 
The flow rule used in the preceding applications was the Prandtl-Reuss rule 8.4.7.  Many 
other flow rules have been proposed.  For example, the Tresca flow rule is simply (for 

321 σσσ >> ) 
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This flow rule will be used in the next section, which details the classic solution for the 
plastic deformation and failure of a thick cylinder under internal pressure. 
 
A unifying theory of flow rules will be presented in a later section, in which the reason 
for the name “Treca flow rule” will become clear.  
 
 
8.4.6 Problems 
 
 
1. Derive the elastic strains for the plane strain compression of a thick block, Eqns. 

8.4.8. 
 
2. Derive Eqns. 8.4.13 and 8.4.15 
 
3. Derive Eqn. 8.4.29 
 
4. Use Eqn. 8.3.17 to show that ( )222 // σσσττσ −−= Ydd  and hence derive Eqn. 

8.4.30 
 
5. Derive Eqns. 8.4.32 
 
6. Does the axial stress-stress curve of Fig. 8.4.4 differ when the Tresca criterion is 

used? 
 
7. Consider the uniaxial straining of a perfectly plastic isotropic Von Mises metallic 

block.  There is only one non-zero strain, xxε .  One only need consider two stresses, 

yyxx σσ ,  since yyzz σσ =  by isotropy. 
(i) Write down the two relevant Prandtl-Reuss equations 
(ii) Evaluate the stresses and strains at first yield 
(iii) For plastic flow, show that yyxx dd σσ =  and that the plastic modulus is  

( )νε
σ

213 −
=

E

d

d

xx

xx  

 
 
8. Consider the combined tension-torsion of a thin-walled cylindrical tube.  The tube is 

made of a perfectly plastic Von Mises metal and Y is the uniaxial yield strength in 
tension.  The only stresses are σσ =xx  and τσ =xy  and the Prandtl-Reuss equations 
reduce to 
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The axial strain is increased from zero until yielding occurs (with 0=xyε ).  From first 
yield, the axial strain is held constant and the shear strain is increased up to its final 
value of EY 3/)1( ν+  
(i) Write down the yield criterion in terms of σ  and τ  only and sketch the yield 

locus in τσ −  space 
(ii) Evaluate the stresses and strains at first yield 
(iii)Evaluate λd  in terms of σσ d,  
(iv) Relate σσ d,  to ττ d,  and hence derive a differential equation for shear strain in 

terms of τ  only 
(v) Solve the differential equation and evaluate any constant of integration 
(vi) Evaluate the shear stress when xyε  reaches its final value of EY 3/)1( ν+ .  

Taking 2/1=v , put in the form Yατ =  with α  to 3 d.p. 
 



Section 8.5 

Solid Mechanics Part II                                                                                Kelly 290

8.5 The Internally Pressurised Cylinder 
 
 
8.5.1 Elastic Solution 
 
Consider the problem of a long thick hollow cylinder, with internal and external radii a 
and b, subjected to an internal pressure p.  This can be regarded as a plane problem, with 
stress and strain independent of the axial direction z.  The solution to the axisymmetric 
elastic problem is (see §4.3.5) 
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There are no shear stresses and these are the principal stresses. The strains are (with 
constant axial strain zz ), 
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Axial Force 
 
The axial force in the elastic tube can be calculated through 
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which is the result expected: 
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i.e., consistent with the result obtained from a simple consideration of the axial stress in 
8.5.1c. 
 
 
8.5.2 Plastic Solution 
 
The pressure is now increased so that the cylinder begins to deform plastically.  It will be 
assumed that the material is isotropic and elastic perfectly-plastic and that it satisfies the 
Tresca criterion. 
 
First Yield 
 
It can be seen from 8.5.1 that 0zz rr      ( rr  does equal zero on the outer 

surface, r b , but that is not relevant here, as plastic flow will begin on the inner wall), 
so the intermediate stress is zz , and so the Tresca criterion reads 
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This expression has its maximum value at the inner surface, ar  , and hence it is here 
that plastic flow first begins.  From this, plastic deformation begins when 
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irrespective of the end conditions. 
 
Confined Plastic Flow and Collapse 
 
As the pressure increases above flowp , the plastic region spreads out from the inner face; 

suppose that it reaches out to cr  .  With the material perfectly plastic, the material in 
the annulus cra   satisfies the yield condition 8.5.6 at all times.  Consider now the 
equilibrium of this plastic material.  Since this is an axi-symmetric problem, there is only 
one equilibrium equation: 
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It follows that 
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The constant of integration can be obtained from the pressure boundary condition at 

ar  , leading to 
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The stresses in the elastic region are again given by the elastic stress solution 8.5.1, only 
with a replaced by c and the pressure p is now replaced by the pressure exerted by the 
plastic region at cr  , i.e.  ackp /ln2 .   
 
The precise location of the boundary c can be obtained by noting that the elastic stresses 
must satisfy the yield criterion at cr  .  Since in the elastic region, 
 

   brc
cb

rb
ackprr 




1/

/
)/ln(22

22

22

   Elastic (8.5.11) 

 
one has from   kcrrr 2   that 

 
2 2(1 / ) 2ln( / )

p
c b c a

k
                     (8.5.12) 

 
Fig. 8.5.1 shows a plot of Eqn. 8.5.12. 

 
 

Figure 8.5.1: Extent of the plastic region cr   during confined plastic flow 
 
The complete cylinder will become plastic when c reaches b, or when the pressure 
reaches the collapse pressure (or ultimate pressure) 
 

)/ln(2 abkpU  .             (8.5.13) 

 
This problem illustrates a number of features of elastic-plastic problems in general.  First, 
confined plastic flow occurs.  This is where the plastic region is surrounded by an elastic 
region, and so the plastic strains are of the same order as the elastic strains.  It is only 
when the pressure reaches the collapse pressure does catastrophic failure occur. 

cac  bc 

k

p

22 /1/ bakp 

 abkp /ln2/ 
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Stress Field 
 
As discussed after Eqn. 8.5.10, the stresses in the elastic region are derived from Eqns. 
8.5.1 with the pressure given by  ackp /ln2  and a replaced with c: 
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,     brc    Elastic                (8.5.14) 

 
For the plastic region, the radial and hoop stresses can be obtained from 8.5.10 and 8.5.6.  
The Tresca flow rule, 8.4.33, implies that 0p

zzd   and so the axial strain zz  is purely 

elastic.  Thus the elastic Hooke’s Law relation   /zz zz rr E          holds also in 

the plastic region, and 
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,     cra    Plastic           (8.5.15) 

 
Note that, as in the fully elastic solution, the radial and tangential stresses are independent 
of the end conditions, i.e. they are independent of zz . Unlike the elastic case, the axial 

stress is not constant in the plastic zone, and in fact it is tensile and compressive in 
different regions of the cylinder, depending on the end-conditions. 
 
Axial Force and Strain 
 
The total axial force can be obtained by integrating the axial stresses over the elastic zone 
and the plastic zone: 
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the last line coming from Eqn. 8.5.12. 
 
A neat alternative way of deriving this result for this problem is as follows: first, the 
equation of equilibrium 8.5.8, which of course applies in both elastic and plastic zones, 
can be used to write 
 

     2 22 2rr
rr rr rr rr rr

d d
r r r r r r

dr dr 
                           (8.5.17) 

 
Using the same method as used in Eqn. 8.5.4, but this time using 8.5.17 and the boundary 
conditions on the radial stresses at the inner and outer walls: 
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                   (8.5.18) 

 
which is the same as 8.5.16. 
 
This axial force is the same as Eqn. 8.5.4.  In other words, although zz  in general varies 
in the plastic zone, the axial force is independent of the plastic zone size c. 
 
For the open cylinder, 0P , for plane strain, 0zz  , and for the closed cylinder, 

2P pa . Unsurprisingly, since 8.5.16 (or 8.5.18) is the same as the elastic version, 8.5.4, 
one sees that the axial strains are as for the elastic solution, Eqn. 8.5.3. In terms of c and 
k, and using Eqn. 8.5.12, the axial strain is 
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       (8.5.19) 

 
This can now be substituted into Eqns. 8.5.14 and 8.5.15 to get explicit expressions for 
the axial stresses. As an example, the stresses are plotted in Fig. 8.5.2 for the case of 

/ 2b a  , and / 0.6,0.8c b  . 
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Figure 8.5.2: Stress field in the cylinder for the case of / 2b a   and / 0.6,0.8c b   

 
 
Strains and Displacement 
 
In the elastic region, the strains are given by Hooke’s law 
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From Eqns. 8.5.14,  
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From the definition of strain 
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Substituting Eqn. 8.5.21a into Eqn. 8.5.22a (or Eqn. 8.5.21b into Eqn. 8.5.22b) gives the 
displacement in the elastic region: 
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Now for a Tresca material, from 8.4.33, the increments in plastic strain are 0p

zzd   and 
p p
rrd d    , so, from the elastic Hooke’s Law, 
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Using 8.5.22 and 8.5.17, one has 
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which integrates to 
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Equations 8.5.24-26 are valid in both the elastic and plastic regions.  The constant of 
integration can be obtained from the condition 0rr  at br  , where ru  equals the 

elastic displacement 8.5.23, and so   EckC /12 22  and  
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8.5.3 Unloading 
 
Residual Stress 
 
Suppose that the cylinder is loaded beyond flowp  but not up to the collapse pressure, to a 

pressure 0p  say.  It is then unloaded completely.  After unloading the cylinder is still 

subjected to a stress field – these stresses which are locked into the cylinder are called 
residual stresses.  If the unloading process is fully elastic, the new stresses are obtained 
by subtracting 8.5.1 from 8.5.14-15.  Using Eqn. 8.5.7, 8.5.12 {▲Problem 1}, 
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Consider as an example the case 1a , 2b , with 5.1c , for which 
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The residual stresses are as shown in Fig. 8.5.3. 
 

 
 

 Figure 8.5.3: Residual stresses in the unloaded cylinder for the case of 
5.1,2,1  cba    

 
Note that the axial strain, being purely elastic, is completely removed, and the axial 
stresses, as given by Eqns. 8.5.28c, 8.5.29c, are independent of the end condition. 
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There is the possibility that if the original pressure 0p  is very large, the unloading will 

lead to compressive yield.  The maximum value of rr   occurs at ar   

{▲Problem 2}: 
 

02 1rr r a
flow

p
k

p 


 
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 
           (8.5.31) 

 
and so, neglecting any Bauschinger effect, yield will occur if flowpp 20  .  Yielding in 

compression will not occur right up to the collapse pressure Up  if the wall ratio ab /  is 

such that 0 2U flowc b
p p p


  , or when {▲Problem 3} 
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2
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b a

a b
                         (8.5.32) 

 
The largest wall ratio for which the unloading is completely elastic is 22.2/ ab .  For 
larger wall ratios, a new plastic zone will develop at the inner wall, with krr 2 .  

 
Shakedown 
 
When the cylinder is initially loaded, plasticity begins at a pressure flowpp  .  If it is 

loaded to some pressure 0p , with 0 2flow flowp p p  , then unloading will be completely 

elastic.  When the cylinder is reloaded again it will remain elastic up to pressure 0p .  In 

this way, it is possible to strengthen the cylinder by an initial loading; theoretically it is 
possible to increase the flow pressure by a factor of 2.  This maximum possible new flow 
pressure is called the shakedown pressure  Uflows ppp ,2min .  Shakedown is said to 

have occurred when any subsequent loading/unloading cycles are purely elastic.  The 
strengthening of the cylinder is due to the compressive residual hoop stresses at the inner 
wall – similar to the way a barrel can be strengthened with hoops.  This method of 
strengthening is termed autofrettage, a French term meaning “self-hooping”. 
 
 
8.5.4 Validity of the Solution 
 
One needs to check whether the assumption of the ordering of the principal stresses, 

rrzz   , holds through the deformation in the plastic region.  It can be confirmed 

that the inequality rrzz    always holds.  For the inequality zz  , consider the 

inequality 0 zz .  The quantity on the left is a minimum when ar  , where it 

equals {▲Problem 4} 
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This quantity must be positive for all values of c up to the maximum value b, where it 
takes its minimum value, and so one must have 
 

  2 2

0
1

2 1 2 1 ln 2 2ln 2 0
/ 1

1 2

b b

a b a a
  



 
                     

                (8.5.34) 

 
The solution is thus valid only for limited values of ab / .  For 3.0 , one must have 

/ 5.42b a   (closed ends), / 5.76b a   (plane strain), 19.6/ ab  (open ends).  For 
higher wall ratios, the axial stress becomes equal to the hoop stress.  In this case, a 
solution based on large changes in geometry is necessary for higher pressures. 
 
 
8.5.5 Problems 
 
1. Derive Eqns. 8.5.28-29. 
2. Use Eqns. 8.5.29a,b to show that the maximum value of rr   occurs at ar  , 

where it equals  1/2 0 flowppk , Eqn. 8.5.31. 

3. Derive Eqn. 8.5.32. 
4. Use Eqns. 8.5.15, 8.5.12 to derive Eqn. 8.5.33. 
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Hardening 
 
In the applications discussed in the preceding two sections, the material was assumed 
to be perfectly plastic.  The issue of hardening (softening) materials is addressed in 
this section. 
 
 
8.6.1 Hardening 
 
In the one-dimensional (uniaxial test) case, a specimen will deform up to yield and 
then generally harden, Fig. 8.6.1.  Also shown in the figure is the perfectly-plastic 
idealisation.  In the perfectly plastic case, once the stress reaches the yield point (A), 
plastic deformation ensues, so long as the stress is maintained at Y.  If the stress is 
reduced, elastic unloading occurs.  In the hardening case, once yield occurs, the stress 
needs to be continually increased in order to drive the plastic deformation.  If the 
stress is held constant, for example at B, no further plastic deformation will occur; at 
the same time, no elastic unloading will occur.  Note that this condition cannot occur 
in the perfectly-plastic case, where there is one of plastic deformation or elastic 
unloading. 
 

 
  

Figure 8.6.1: uniaxial stress-strain curve (for a typical metal) 
 
These ideas can be extended to the multiaxial case, where the initial yield surface will 
be of the form 
 

0)(0 ijf                        (8.6.1) 

 
In the perfectly plastic case, the yield surface remains unchanged..  In the more 
general case, the yield surface may change size, shape and position, and can be 
described by 
 

0),(  iijf                           (8.6.2) 

 
Here, iK  represents one or more hardening parameters, which change during plastic 

deformation and determine the evolution of the yield surface.  They may be scalars or 

hardening 

0

A

B
stress 

strain 

Yield point Y 
perfectly-plastic 



elastic 
unload



Section 8.6 

Solid Mechanics Part II                                           301                                    Kelly 

higher-order tensors.  At first yield, the hardening parameters are zero, 
and )()0,( 0 ijij ff   . 

 
The description of how the yield surface changes with plastic deformation, Eqn. 8.6.2, 
is called the hardening rule. 
 
Strain Softening 
 
Materials can also strain soften, for example soils.  In this case, the stress-strain 
curve “turns down”, as in Fig. 8.6.2.  The yield surface for such a material will in 
general decrease in size with further straining.  
 

 
  

Figure 8.6.2: uniaxial stress-strain curve for a strain-softening material 
 
 
8.6.2 Hardening Rules 
 
A number of different hardening rules are discussed in this section. 
 
Isotropic Hardening 
 
Isotropic hardening is where the yield surface remains the same shape but expands 
with increasing stress, Fig. 8.6.3. 
 
In particular, the yield function takes the form 
 

0)(),( 0  ijiij ff                          (8.6.3) 

 
The shape of the yield function is specified by the initial yield function and its size 
changes as the hardening parameter   changes. 
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Figure 8.6.3: isotropic hardening 
 
For example, consider the Von Mises yield surface.  At initial yield, one has 
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          (8.6.4) 

 
where Y is the yield stress in uniaxial tension.  Subsequently, one has 
 

  03, 2  YJf iij                              (8.6.5) 

 

The initial cylindrical yield surface in stress-space with radius Y3
2  (see Fig. 8.3.11) 

develops with radius  Y3
2 .  The details of how the hardening parameter   

actually changes with plastic deformation have not yet been specified. 
 
As another example, consider the Drucker-Prager criterion, Eqn. 8.3.30, 

  0210  kJIf ij  .  In uniaxial tension, YI 1 , 3/2 YJ  , so 

 Yk 3/1  . Isotropic hardening can then be expressed as 
 

    0
3/1

1
, 21 


 YJIf iij 


                 (8.6.6) 

 
 
Kinematic Hardening 
 
The isotropic model implies that, if the yield strength in tension and compression are 
initially the same, i.e. the yield surface is symmetric about the stress axes, they remain 
equal as the yield surface develops with plastic strain.  In order to model the 
Bauschinger effect, and similar responses, where a hardening in tension will lead to a 
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softening in a subsequent compression, one can use the kinematic hardening rule.  
This is where the yield surface remains the same shape and size but merely translates 
in stress space, Fig. 8.6.4. 
 

 
 

Figure 8.6.4: kinematic hardening 
 
The yield function now takes the general form 
 

0)(),( 0  ijijiij ff                                        (8.6.7) 

 
The hardening parameter here is the stress ij , known as the back-stress or shift-

stress; the yield surface is shifted relative to the stress-space axes by ij , Fig. 8.6.5. 

 

 
 

Figure 8.6.5: kinematic hardening; a shift by the back-stress 
 
For example, again considering the Von Mises material, one has, from 8.6.4, and 
using the deviatoric part of ασ   rather than the deviatoric part of σ , 
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where dα  is the deviatoric part of α .  Again, the details of how the hardening 
parameter ij  might change with deformation will be discussed later. 
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Other Hardening Rules 
 
More complex hardening rules can be used.  For example, the mixed hardening rule  
combines features of both the isotropic and kinematic hardening models, and the 
loading function takes the general form 
 

  0)(, 0  ijijiij ff         (8.6.9) 

 
The hardening parameters are now the scalar   and the tensor ij . 

 
 
8.6.3 The Flow Curve 
 
In order to model plastic deformation and hardening in a complex three-dimensional 
geometry, one will generally have to use but the data from a simple test.  For 
example, in the uniaxial tension test, one will have the data shown in Fig. 8.6.6a, with 
stress plotted against plastic strain.  The idea now is to define a scalar effective stress 
̂  and a scalar effective plastic strain p̂ , functions respectively of the stresses and 
plastic strains in the loaded body.  The following hypothesis is then introduced: a plot 
of effective stress against effective plastic strain follows the same universal plastic 
stress-strain curve as in the uniaxial case.  This assumed universal curve is known as 
the flow curve. 
 
The question now is: how should one define the effective stress and the effective 
plastic strain? 
 

 
 
Figure 8.6.6: the flow curve; (a) uniaxial stress – plastic strain curve, (b) effective 

stress – effective plastic strain curve  
 
 
8.6.4 A Von Mises Material with Isotropic Hardening 
 
Consider a Von Mises material.  Here, it is appropriate to define the effective stress to 
be 
 

  23ˆ Jij                                      (8.6.10) 
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This has the essential property that, in the uniaxial case,   Yij ̂ .  (In the same 

way, for example, the effective stress for the Drucker-Prager material, Eqn. 8.6.6, 
would be     )3/1/(ˆ 21   JIij .) 

 
For the effective plastic strain, one possibility is to define it in the following rather 
intuitive, non-rigorous, way.  The deviatoric stress s and plastic strain (increment) 
tensor pdε  are of a similar character.  In particular, their traces are zero, albeit for 
different physical reasons; 01 J  because of independence of hydrostatic pressure, 

0p
iid  because of material incompressibility in the plastic range.  For this reason, 

one chooses the effective plastic strain (increment) pd̂  to be a similar function of 
p

ijd  as ̂  is of the ijs .  Thus, in lieu of ijij ss2
3ˆ  , one chooses 

p
ij

p
ij

p ddCd  ˆ .  One can determine the constant C by ensuring that the 

expression reduces to pp dd 1ˆ    in the uniaxial case.  Considering this uniaxial case,  
ppppp ddddd 12

1
3322111 ,   , one finds that  
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          (8.6.11) 

 
Let the hardening in the uniaxial tension case be described using a relationship of the 
form (see Fig. 8.6.6) 
 

 ph                                                  (8.6.12) 
 
The slope of this flow curve is the plastic modulus, Eqn. 8.1.9, 
 

pd

d
H


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        (8.6.13) 

 
The effective stress and effective plastic strain for any conditions are now assumed to 
be related through 
 

 ph  ˆˆ                                                (8.6.14) 
 
and the effective plastic modulus is given by 
 

pd

d
H



ˆ

ˆ
        (8.6.15) 

 
Isotropic Hardening 
 
Assuming isotropic hardening, the yield surface is given by Eqn. 8.6.5, and with the 
definition of the effective stress, Eqn. 8.6.10, 
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  0ˆ,  Yf iij                                    (8.6.16) 

 
Differentiating with respect to the effective plastic strain, 
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                                            (8.6.17) 

 
One can now see how the hardening parameter evolves with deformation:   here is a 
function of the effective plastic strain, and its functional dependence on the effective 
plastic strain is given by the plastic modulus H of the universal flow curve. 
 
Loading Histories 
 
Each material particle undergoes a plastic strain history.  One such path is shown in 
Fig. 8.6.7.  At point q, the plastic strain is )(qp

i .  The effective plastic strain at q 

must be evaluated through an integration over the complete history of deformation: 
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Note that the effective plastic strain at q is not simply )()(3
2 qq p

i
p

i  , hence the 

definition of an effective plastic strain increment in Eqn. 8.6.11. 
 
 

 
 

Figure 8.6.7: plastic strain space 
 
 
Prandtl-Reuss Relations in terms of Effective Parameters 
 
Using the Prandtl-Reuss (Levy-Mises) flow rule 8.4.1, and the definitions 8.6.10-11 
for effective stress and effective plastic strain, one can now express the plastic 
multiplier as{▲Problem 1} 
 

p
3



)(qpε
p

2

p
1

q

strain path 



Section 8.6 

Solid Mechanics Part II                                           307                                    Kelly 


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d       (8.6.19) 

 
and the plastic strain increments, Eqn. 8.4.6, now read 
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   (8.6.20) 

 
or 
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Knowledge of the plastic modulus, Eqn. 8.6.15, now makes equations 8.6.21 
complete. 
 
Note here that the plastic modulus in the Prandtl-Reuss equations is conveniently 
expressible in a simple way in terms of the effective stress and plastic strain 
increment, Eqn. 8.6.19.  It will be shown in the next section that this is no 
coincidence, and that the Prandtl-Reuss flow-rule is indeed naturally associated with 
the Von-Mises criterion. 
 
 
8.6.5 Application: Combined Tension/Torsion of a thin 

walled tube with Isotropic Hardening 
 
Consider again the thin-walled tube under combined tension and torsion.  The Von 
Mises yield function in terms of the axial stress   and the shear stress   is, as in 

§8.3.1,   03 22
0  Yf ij  .  This defines the ellipse of Fig. 8.3.2.  

Subsequent yield surfaces are defined by 
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                                  (8.6.22) 

 
Whereas the initial yield surface is the ellipse with major and minor axes Y  and 

3/Y , subsequent yield ellipses have axes KY   and 3/)( KY  , Fig. 8.6.8. 
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Figure 8.6.8: expansion of the yield locus (ellipse) for a thin-walled tube under 
isotropic hardening  

 
The Prandtl-Reuss equations in terms of effective stress and effective plastic strain, 
8.6.20-21, reduce to 
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Consider the case where the material is brought to first yield through tension only, in 
which case the Von Mises condition  reduces to Y .  Let the material then be 
subjected to a twist whilst maintaining the axial stress constant.  The expansion of the 
yield surface is then as shown in Fig. 8.6.9. 
 

 
 

Figure 8.6.9: expansion of the yield locus for a thin-walled tube under constant 
axial loading  

 
Introducing the plastic modulus, then, one has 
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Using 22 3ˆ   Y ,  
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These equations can now be integrated.  If the material is linear hardening, so H is 
constant, then they can be integrated exactly using 
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leading to {▲Problem 2} 
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Results are presented in Fig. 8.6.10 for the case of 10/,3.0  HE .  The axial 
strain grows logarithmically and is eventually dominated by the faster-growing shear 
strain. 
 



Section 8.6 

Solid Mechanics Part II                                           310                                    Kelly 

 
 

Figure 8.6.10: Stress-strain curves for thin-walled tube with isotropic linear 
strain hardening 

 
 
8.6.6 Kinematic Hardening Rules 
 
A typical uniaxial kinematic hardening curve is shown in Fig. 8.6.11a (see Fig. 8.1.3).  
During cyclic loading, the elastic zone always remains at Y2 .  Depending on the 
stress history, one can even have the situation shown in Fig. 8.6.11b, where yielding 
occurs upon unloading, even though the stress is still tensile.  
 

 
 

Figure 8.6.11: Kinematic Hardening; (a) load-unload, (b) cyclic loading 
 
The multiaxial yield function for a kinematic hardening Von Mises is given by Eqn. 
8.6.8,  
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uniaxial case, in that the radius of the Von Mises cylinder remains constant, just as the 
elastic zone in the uniaxial case remains constant (at Y2 ). 
 

 
 

Figure 8.6.12: The Von Mises cylinder shifted in the -plane 
 
One needs to specify, by specifying the evolution of the hardening paremter α , how 
the yield surface shifts with deformation.  In the multiaxial case, one has the added 
complication that the direction in which the yield surface shifts in stress space needs 
to be specified.  The simplest model is the linear kinematic (or Prager’s) hardening 
rule.  Here, the back stress is assumed to depend on the plastic strain according to 
 

p
ijij

p
ijij cddc   or                                (8.6.28) 

 
where c is a material parameter, which might change with deformation.  Thus the 
yield surface is translated in the same direction as the plastic strain increment.  This is 
illustrated in Fig. 8.6.13, where the principal directions of stress and plastic strain are 
superimposed. 
 

 
 

Figure 8.6.13: Linear kinematic hardening rule 
 
One can use the uniaxial (possibly cyclic) curve to again define a universal plastic 
modulus H.  Using the effective plastic strain, one can relate the constant c to H.  This 
will be discussed in §8.8, where a more general formulation will be used. 
 
Ziegler’s hardening rule is 
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where a is some scalar function of the plastic strain.  Here, then, the loading function 
translates in the direction of ijij   , Fig. 8.6.14. 

 

 
 

Figure 8.6.14: Ziegler’s kinematic hardening rule 
 
 
8.6.7 Strain Hardening and Work Hardening 
 
In the models considered above, the hardening parameters have been functions of the 
plastic strains.  For example, in the Von Mises isotropic hardening model, the 
hardening parameter   is a function of the effective plastic strain, p̂ .  Hardening 
expressed in this way is called strain hardening. 
 
Another means of generalising the uniaxial results to multiaxial conditions is to use 
the plastic work (per unit volume), also known as the plastic dissipation, 
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The total plastic work is the area under the stress – plastic strain curve of Fig. 8.6.6a, 
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A plot of stress against the plastic work can therefore easily be generated, as in Fig. 
8.6.15. 
 

 
  

Figure 8.6.15: uniaxial stress – plastic work curve (for a typical metal) 
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The stress is now expressed in the form (compare with Eqn. 8.6.12) 
 

   pp dwWw                                        (8.6.32) 

 
Again defining an effective stress ̂ , the universal flow curve to be used for arbitrary 
loading conditions is then (compare with Eqn. 8.6.14) 
 

  pWw̂                                                  (8.6.33) 
 
where now pW  is the plastic work during the multiaxial deformation.  This is known 
as a work hardening formulation. 
 
Equivalence of Strain and Work Hardening for the Isotropic Hardening 
Von Mises Material 
 
Consider the Prandtl-Reuss flow rule, Eqn. 8.4.1,  dsd i

p
i   (other flow rules will 

be examined more generally in §8.7).  In this case, working with principal stresses, 
the plastic work increment is (see Eqns. 8.2.7-10) 
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Using the Von Mises effective stress 8.6.10, and Eqn. 8.6.19, 
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where p̂  is the very same effective plastic strain as used in the strain hardening 
isotropic model, Eqn. 8.6.11.  Although true for the Von Mises yield condition, this 
will not be so in general. 
 
 
8.6.8 Problems 
 
 
1. Staring with the definition of the effective plastic strain, Eqn. 8.6.11, and using 

Eqn. 8.4.1, i
p

i sdd   , derive Eqns. 8.6.19, 


ˆ

ˆ

2

3 pd
d   

 
2. Integrate Eqns. 8.6.25 and use the initial (first yield) conditions to get Eqns. 

8.6.27. 
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3. Consider the combined tension-torsion of a thin-walled cylindrical tube.  The tube 
is made of an isotropic hardening Von Mises metal with uniaxial yield stress Y .  
The strain-hardening is linear with plastic modulus H.  The tube is loaded, 

keeping the ratio 3/   at all times throughout the elasto-plastic deformation, 
until Y . 
(i) Show that the stresses and strains at first yield are given by 
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(ii) The Prandtl-Reuss equations in terms of the effective stress and effective 
plastic strain are given by Eqns. 8.6.23.  Eliminate   from these equations 

(using 3/  ). 
(iii) Eliminate the effective plastioc strain using the plastic modulus. 

(iv) The effective stress is defined as 22 3ˆ    (see Eqn. 8.6.22).  
Eliminate the effective stress to obtain 
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(v) Integrate the differential equations and evaluate any constants of 
integration 

(vi) Hence, show that the strains at the final stress values Y , 3/Y  
are given by 
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





















2

1
1

2

3

3

1

2

1
11

H

E

Y

E

H

E

Y

E

xy

xx




 

(vii) Sketch the initial yield (elliptical) locus and the final yield locus in   ,  
space and the loading path. 

(viii) Plot   against xx . 
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8.7 Associated and Non-associated Flow Rules 
 
Recall the Levy-Mises flow rule, Eqn. 8.4.3, 
 

 ij
p

ij sdd                                                (8.7.1) 

 
The plastic multiplier can be determined from the hardening rule.  Given the 
hardening rule one can more generally, instead of the particular flow rule 8.7.1, write 
 

ij
p

ij Gdd   ,              (8.7.2) 

 
where ijG  is some function of the stresses and perhaps other quantities, for example 

the hardening parameters.  It is symmetric because the strains are symmetric. 
 
A wide class of material behaviour (perhaps all that one would realistically be 
interested in) can be modelled using the general form 
 

ij

p
ij

g
dd






 .    (8.7.3) 

 
Here, g is a scalar function which, when differentiated with respect to the stresses, 
gives the plastic strains.  It is called the plastic potential.  The flow rule 8.7.3 is 
called a non-associated flow rule.   
 
Consider now the sub-class of materials whose plastic potential is the yield function, 

fg  : 
 

ij

p
ij

f
dd






 .    (8.7.4) 

 
This flow rule is called an associated flow-rule, because the flow rule is associated 
with a particular yield criterion. 
 
 
8.7.1 Associated Flow Rules 
 
The yield surface   0ijf   is displayed in Fig 8.7.1.  The axes of principal stress 

and principal plastic strain are also shown; the material being isotropic, these are 
taken to be coincident.  The normal to the yield surface is in the direction ijf /  and 

so the associated flow rule 8.7.4 can be interpreted as saying that the plastic strain 
increment vector is normal to the yield surface, as indicated in the figure.  This is 
called the normality rule.  
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Figure 8.7.1: Yield surface 
 
 
The normality rule has been confirmed by many experiments on metals.  However, it 
is found to be seriously in error for soils and rocks, where, for example, it 
overestimates plastic volume expansion.  For these materials, one must use a non-
associative flow-rule. 
 
Next, the Tresca and Von Mises yield criteria will be discussed.  First note that, to 
make the differentiation easier, the associated flow-rule 8.7.4 can be expressed in 
terms of principal stresses as 
 

i

p
i

f
dd






 .    (8.7.5) 

 
Tresca 
 
Taking 321   , the Tresca yield criterion is 

 

kf 



2

31 
                                             (8.7.6) 

 
One has 
 

2

1
,0,

2

1

321














fff

                                (8.7.7) 

 
so, from 8.7.5, the flow-rule associated with the Tresca criterion is 
 






































2
1

2
1

3

2

1

0




d

d

d

d

p

p

p

.    (8.7.8) 

 





pdε

pd 11, 

pd 22 , 

pd 33, 

σd
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This is the flow-rule of Eqns. 8.4.33.  The plastic strain increment is illustrated in Fig. 
8.7.2 (see Fig. 8.3.9).  All plastic deformation occurs in the 31  plane.  Note that 
8.7.8 is independent of stress. 
 
 

 
 
Figure 8.7.2: The plastic strain increment vector and the Tresca criterion in the 

-plane (for the associated flow-rule) 
 
 
Von Mises 
 
The Von Mises yield criterion is 02

2  kJf .  With  
 

        



 








321
2

13
2

32
2

21
11

2

2

1

3

2

6

1 


J
  (8.7.9) 

 
one has 
 

  
  
  





































212
1

33
2

312
1

23
2

322
1

13
2

3

2

1










d

d

d

d

p

p

p

.                        (8.7.10) 

 
This is none other than the Levy-Mises flow rule 8.4.61. 
 
The associative flow-rule is very appealing, connecting as it does the yield surface to 
the flow-rule.  Many attempts have been made over the years to justify this rule, both 

                                                 
1 note that if one were to use the alternative but equivalent expression 0

2
 kJf , one would 

have a 
2

2/1 J  term common to all three principal strain increments, which could be “absorbed” into 

the d  giving the same flow-rule 8.7.10 

1  2 

3 

0
2

31 


 kf




pdε
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mathematically and physically.  However, it should be noted that the associative flow-
rule is not a law of nature by any means.  It is simply very convenient.  That said, it 
does agree with experimental observations of many plastically deforming materials, 
particularly metals. 
 
In order to put the notion of associative flow-rules on a sounder footing, one can 
define more clearly the type of material for which the associative flow-rule applies; 
this is tied closely to the notion of stable and unstable materials. 
 
 
8.7.2 Drucker’s Postulate 
 
Stress Cycles 
 
First, consider the one-dimensional loading of a hardening material.  The material 
may have undergone any type of deformation (e.g. elastic or plastic) and is now 
subjected to the stress * , point A in Fig. 8.7.3.  An additional load is now applied to 
the material, bringing it to the current yield stress   at point B (if *  is below the 
yield stress) and then plastically (greatly exaggerated in the figure) through the 
infinitesimal increment d  to point C.  It is conventional to call these additional 
loads the external agency.  The external agency is then removed, bringing the stress 
back to *  and point D.  The material is said to have undergone a stress cycle. 
 

 
 

Figure 8.7.3: A stress cycle for a hardening material 
 
Consider now a softening material, Fig. 8.7.4.  The external agency first brings the 
material to the current yield stress   at point B.  To reach point C, the loads must be 
reduced.  This cannot be achieved with a stress (force) control experiment, since a 
reduction in stress at B will induce elastic unloading towards A.  A strain 
(displacement) control must be used, in which case the stress required to induce the 
(plastic) strain will be seen to drop to  d  ( 0d ) at C.  The stress cycle is 
completed by unloading from C to D. 
 
 



d

*
A D

B

C

pd
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Figure 8.7.4: A stress cycle for a softening material 
 
Suppose now that *  , so the material is at point B, on the yield surface, before 
action by the external agency.  It is now not possible for the material to undergo a 
stress cycle, since the stress cannot be increased.  This provides a means of 
distinguishing between strain hardening and softening materials: 
 
 Strain-hardening … Material can always undergo a stress-cycle 
 Strain-softening  … Material cannot always undergo a stress-cycle 
 
 
Drucker’s Postulate 
 
The following statements define a stable material: (these statements are also known 
as Drucker’s postulate): 
 
(1) Positive work is done by the external agency during the application of the loads 
(2) The net work performed by the external agency over a stress cycle is 

nonnegative 
 
By this definition, it is clear that a strain hardening material is stable (and satisfies 
Drucker’s postulates).  For example, considering plastic deformation ( *   in the 
above), the work done during an increment in stress is dd .  The work done by the 
external agency is the area shaded in Fig. 8.7.5a and is clearly positive (note that the 

work referred to here is not the total work, 
 




d
d , but only that part which is done 

by the external agency2).  Similarly, the net work over a stress cycle will be positive. 
 
On the other hand, note that plastic loading of a softening (or perfectly plastic) 
material results in a non-positive work, Fig. 8.7.5b.   
 
 

                                                 
2 the laws of thermodynamics insist that the total work is positive (or zero) in a complete cycle. 



d

*
A D

B

C
pd
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Figure 8.7.5: Stable (a) and unstable (b) stress-strain curves 
 
The work done (per unit volume) by the additional loads during a stress cycle A-B-C-
D is given by: 
 

  



DCBA

dW  *             (8.7.11) 

 
This is the shaded work in Fig. 8.7.6.  Writing pe ddd    and noting that the 
elastic work is recovered, i.e. the net work due to the elastic strains is zero,  this work 
is due to the plastic strains, 
 

  



CB

pdW  *        (8.7.12) 

 
With d  infinitesimal, this equals 
 

  pp dddW  2
1*            (8.7.13) 

 

 
 
Figure 8.7.6: Work W done during a stress cycle of a strain-hardening material 

 
The requirement (2) of a stable material is that this work be non-negative,  
 

    02
1*  pp dddW                                  (8.7.14) 


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Making  d * , this reads 
 

  0*  pd                                               (8.7.15) 
 
On the other hand, making *  , it reads 
 

0pdd                                                   (8.7.16) 
 
The three dimensional case is illustrated in Fig. 8.7.7, for which one has 
 

  0,0*  p
ijij

p
ijijij ddd                (8.7.17) 

  

 
 

Figure 8.7.7: Stresses during a loading/unloading cycle 
 
   
8.7.3 Consequences of the Drucker’s Postulate 
 
The criteria that a material be stable have very interesting consequences. 
 
Normality 
 
In terms of vectors in principal stress (plastic strain increment) space, Fig. 8.7.8, Eqn. 
8.7.17 reads 
 

  0*  pdεσσ                  (8.7.18) 
 
These vectors are shown with the solid lines in Fig. 8.7.8.  Since the dot product is 
non-negative, the angle between the vectors *σσ   and pdε  (with their starting points 
coincident) must be less than 90o.  This implies that the plastic strain increment vector 
must be normal to the yield surface since, if it were not, an initial stress state *σ  could 
be found for which the angle was greater than 90o (as with the dotted vectors in Fig. 
8.7.8).  Thus a consequence of a material satisfying the stability requirements is that 
the normality rule holds, i.e. the flow rule is associative, Eqn. 8.7.4. 
 

initial yield 
surface

ij






*
ij

new yield 
surface
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Figure 8.7.8: Normality of the plastic strain increment vector 
 
When the yield surface has sharp corners, as with the Tresca criterion, it can be shown 
that the plastic strain increment vector must lie within the cone bounded by the 
normals on either side of the corner, as illustrated in Fig. 8.7.9. 
 

 
 

Figure 8.7.9: The plastic strain increment vector for sharp corners 
 
 
Convexity 
 
Using the same arguments, one cannot have a yield surface like the one shown in Fig. 
8.7.10.  In other words, the yield surface is convex: the entire elastic region lies to one 
side of the tangent plane to the yield surface3. 
 

 
 

Figure 8.7.10: A non-convex surface 
                                                 
3 note that when the plastic deformation affects the elastic response of the material, it can be shown that 
the stability postulate again ensures normality, but that the convexity does not necessarily hold  



pdε
*σσ 

*σ
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plane convex 
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

pdε
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σ
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

pdε
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In summary then, Drucker’s Postulate, which is satisfied by a stable, strain-hardening 
material, implies normality (associative flow rule) and convexity4. 
 
 
8.7.4 The Principle of Maximum Plastic Dissipation 
 
The rate form of Eqn. 8.7.18 is 
 

  0*  p
ijijij               (8.7.19) 

 
The quantity p

ijij   is called the plastic dissipation, and is a measure of the rate at 

which energy is being dissipated as deformation proceeds. 
 
Eqn. 8.7.19 can be written as 
 

p
ijij

p
ijij  

*     or    pp εσεσ   *                       (8.7.20) 

 
and in this form is known as the principle of maximum plastic dissipation: of all 
possible stress states *

ij  (within or on the yield surface), the one which arises is that 

which requires the maximum plastic work. 
 
Although the principle of maximum plastic dissipation was “derived” from Drucker’s 
postulate in the above, it is more general, holding also for the case of perfectly plastic 
and softening materials.  To see this, disregard stress cycles and consider a stress state 

*  which is at or below the current (yield) stress  , and apply a strain 0d .  For a 
perfectly plastic material, 0*   and 0 pdd  .  For a softening material, 
again 0*   and 0ed , 0  dd p . 
 
It follows that the normality rule and convexity hold also for the perfectly plastic and 
softening materials which satisfy the principle of maximum plastic dissipation. 
 
In summary: 
 

Drucker’s postulate leads to the Principle of maximum plastic dissipation 
For hardening materials 

Principle of maximum plastic dissipation leads to Drucker’s postulate 
For softening materials 

Principle of maximum plastic dissipation does not lead to Drucker’s postulate 
 
Finally, note that, for many materials, hardening and softening, a non-associative flow 
rule is required, as in Eqn. 8.7.3.  Here, the plastic strain increment is no longer 
normal to the yield surface and the principle of maximum plastic dissipation does not 
hold in general.  In this case, when there is hardening, i.e. the stress increment is 
directed out from the yield surface, it is easy to see that one can have 0p

ijij dd  , 

Fig. 8.7.11, contradicting the stability postulate (1),.  With hardening, there is no 

                                                 
4 it also ensures the uniqueness of solution to the boundary value elastoplastic problem 
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obvious instability, and so it could be argued that the use of the term “stability” in 
Drucker’s postulate is inappropriate. 
 

 
 

Figure 8.7.11: plastic strain increment vector not normal to the yield surface; 
non-associated flow-rule 

 
 
8.7.5 Problems 
 
1. Derive the flow-rule associated with the Drucker-Prager yield criterion 

kJIf  21  

 
2. Derive the flow-rule associated with the Mohr-Coulomb yield criterion, i.e. with 

321   , 

k


2
31 

 

Here, 

2
0,1

sin1

sin1 

 




  

Evaluate the volumetric plastic strain increment, that is 

ppp
p

ddd
V

V
321  




, 

and hence show that the model predicts dilatancy (expansion). 
 

3. Consider the plastic potential 

kg 



2

31 
 

Derive the non-associative flow-rule corresponding to this potential.  Hence show 
that compaction of material can be modelled by choosing an appropriate value of 
 . 

 
 

σ



pdε σd
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