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8.5 The Internally Pressurised Cylinder 
 
 
8.5.1 Elastic Solution 
 
Consider the problem of a long thick hollow cylinder, with internal and external radii a 
and b, subjected to an internal pressure p.  This can be regarded as a plane problem, with 
stress and strain independent of the axial direction z.  The solution to the axisymmetric 
elastic problem is (see §4.3.5) 
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There are no shear stresses and these are the principal stresses. The strains are (with 
constant axial strain zz ), 
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Axial Force 
 
The axial force in the elastic tube can be calculated through 
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which is the result expected: 
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i.e., consistent with the result obtained from a simple consideration of the axial stress in 
8.5.1c. 
 
 
8.5.2 Plastic Solution 
 
The pressure is now increased so that the cylinder begins to deform plastically.  It will be 
assumed that the material is isotropic and elastic perfectly-plastic and that it satisfies the 
Tresca criterion. 
 
First Yield 
 
It can be seen from 8.5.1 that 0zz rr      ( rr  does equal zero on the outer 

surface, r b , but that is not relevant here, as plastic flow will begin on the inner wall), 
so the intermediate stress is zz , and so the Tresca criterion reads 
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This expression has its maximum value at the inner surface, ar  , and hence it is here 
that plastic flow first begins.  From this, plastic deformation begins when 
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irrespective of the end conditions. 
 
Confined Plastic Flow and Collapse 
 
As the pressure increases above flowp , the plastic region spreads out from the inner face; 

suppose that it reaches out to cr  .  With the material perfectly plastic, the material in 
the annulus cra   satisfies the yield condition 8.5.6 at all times.  Consider now the 
equilibrium of this plastic material.  Since this is an axi-symmetric problem, there is only 
one equilibrium equation: 
 

  0
1

 


rr
rr

rdr

d
.         (8.5.8) 

 
It follows that 
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The constant of integration can be obtained from the pressure boundary condition at 

ar  , leading to 
 

   craarkprr  /ln2   Plastic        (8.5.10) 
 
The stresses in the elastic region are again given by the elastic stress solution 8.5.1, only 
with a replaced by c and the pressure p is now replaced by the pressure exerted by the 
plastic region at cr  , i.e.  ackp /ln2 .   
 
The precise location of the boundary c can be obtained by noting that the elastic stresses 
must satisfy the yield criterion at cr  .  Since in the elastic region, 
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one has from   kcrrr 2   that 
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Fig. 8.5.1 shows a plot of Eqn. 8.5.12. 

 
 

Figure 8.5.1: Extent of the plastic region cr   during confined plastic flow 
 
The complete cylinder will become plastic when c reaches b, or when the pressure 
reaches the collapse pressure (or ultimate pressure) 
 

)/ln(2 abkpU  .             (8.5.13) 

 
This problem illustrates a number of features of elastic-plastic problems in general.  First, 
confined plastic flow occurs.  This is where the plastic region is surrounded by an elastic 
region, and so the plastic strains are of the same order as the elastic strains.  It is only 
when the pressure reaches the collapse pressure does catastrophic failure occur. 
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Stress Field 
 
As discussed after Eqn. 8.5.10, the stresses in the elastic region are derived from Eqns. 
8.5.1 with the pressure given by  ackp /ln2  and a replaced with c: 
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,     brc    Elastic                (8.5.14) 

 
For the plastic region, the radial and hoop stresses can be obtained from 8.5.10 and 8.5.6.  
The Tresca flow rule, 8.4.33, implies that 0p

zzd   and so the axial strain zz  is purely 

elastic.  Thus the elastic Hooke’s Law relation   /zz zz rr E          holds also in 

the plastic region, and 
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,     cra    Plastic           (8.5.15) 

 
Note that, as in the fully elastic solution, the radial and tangential stresses are independent 
of the end conditions, i.e. they are independent of zz . Unlike the elastic case, the axial 

stress is not constant in the plastic zone, and in fact it is tensile and compressive in 
different regions of the cylinder, depending on the end-conditions. 
 
Axial Force and Strain 
 
The total axial force can be obtained by integrating the axial stresses over the elastic zone 
and the plastic zone: 
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the last line coming from Eqn. 8.5.12. 
 
A neat alternative way of deriving this result for this problem is as follows: first, the 
equation of equilibrium 8.5.8, which of course applies in both elastic and plastic zones, 
can be used to write 
 

     2 22 2rr
rr rr rr rr rr

d d
r r r r r r

dr dr 
                           (8.5.17) 

 
Using the same method as used in Eqn. 8.5.4, but this time using 8.5.17 and the boundary 
conditions on the radial stresses at the inner and outer walls: 
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which is the same as 8.5.16. 
 
This axial force is the same as Eqn. 8.5.4.  In other words, although zz  in general varies 
in the plastic zone, the axial force is independent of the plastic zone size c. 
 
For the open cylinder, 0P , for plane strain, 0zz  , and for the closed cylinder, 

2P pa . Unsurprisingly, since 8.5.16 (or 8.5.18) is the same as the elastic version, 8.5.4, 
one sees that the axial strains are as for the elastic solution, Eqn. 8.5.3. In terms of c and 
k, and using Eqn. 8.5.12, the axial strain is 
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This can now be substituted into Eqns. 8.5.14 and 8.5.15 to get explicit expressions for 
the axial stresses. As an example, the stresses are plotted in Fig. 8.5.2 for the case of 

/ 2b a  , and / 0.6,0.8c b  . 
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Figure 8.5.2: Stress field in the cylinder for the case of / 2b a   and / 0.6,0.8c b   

 
 
Strains and Displacement 
 
In the elastic region, the strains are given by Hooke’s law 
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From Eqns. 8.5.14,  
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,     brc    Elastic         (8.5.21) 

 
From the definition of strain 
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Substituting Eqn. 8.5.21a into Eqn. 8.5.22a (or Eqn. 8.5.21b into Eqn. 8.5.22b) gives the 
displacement in the elastic region: 
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,     brc      Elastic           (8.5.23) 

 
Now for a Tresca material, from 8.4.33, the increments in plastic strain are 0p

zzd   and 
p p
rrd d    , so, from the elastic Hooke’s Law, 
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Using 8.5.22 and 8.5.17, one has 
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which integrates to 
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Equations 8.5.24-26 are valid in both the elastic and plastic regions.  The constant of 
integration can be obtained from the condition 0rr  at br  , where ru  equals the 

elastic displacement 8.5.23, and so   EckC /12 22  and  
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8.5.3 Unloading 
 
Residual Stress 
 
Suppose that the cylinder is loaded beyond flowp  but not up to the collapse pressure, to a 

pressure 0p  say.  It is then unloaded completely.  After unloading the cylinder is still 

subjected to a stress field – these stresses which are locked into the cylinder are called 
residual stresses.  If the unloading process is fully elastic, the new stresses are obtained 
by subtracting 8.5.1 from 8.5.14-15.  Using Eqn. 8.5.7, 8.5.12 {▲Problem 1}, 
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 ,     brc       Elastic       (8.5.28) 
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Consider as an example the case 1a , 2b , with 5.1c , for which 
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The residual stresses are as shown in Fig. 8.5.3. 
 

 
 

 Figure 8.5.3: Residual stresses in the unloaded cylinder for the case of 
5.1,2,1  cba    

 
Note that the axial strain, being purely elastic, is completely removed, and the axial 
stresses, as given by Eqns. 8.5.28c, 8.5.29c, are independent of the end condition. 
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There is the possibility that if the original pressure 0p  is very large, the unloading will 

lead to compressive yield.  The maximum value of rr   occurs at ar   

{▲Problem 2}: 
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and so, neglecting any Bauschinger effect, yield will occur if flowpp 20  .  Yielding in 

compression will not occur right up to the collapse pressure Up  if the wall ratio ab /  is 

such that 0 2U flowc b
p p p
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The largest wall ratio for which the unloading is completely elastic is 22.2/ ab .  For 
larger wall ratios, a new plastic zone will develop at the inner wall, with krr 2 .  

 
Shakedown 
 
When the cylinder is initially loaded, plasticity begins at a pressure flowpp  .  If it is 

loaded to some pressure 0p , with 0 2flow flowp p p  , then unloading will be completely 

elastic.  When the cylinder is reloaded again it will remain elastic up to pressure 0p .  In 

this way, it is possible to strengthen the cylinder by an initial loading; theoretically it is 
possible to increase the flow pressure by a factor of 2.  This maximum possible new flow 
pressure is called the shakedown pressure  Uflows ppp ,2min .  Shakedown is said to 

have occurred when any subsequent loading/unloading cycles are purely elastic.  The 
strengthening of the cylinder is due to the compressive residual hoop stresses at the inner 
wall – similar to the way a barrel can be strengthened with hoops.  This method of 
strengthening is termed autofrettage, a French term meaning “self-hooping”. 
 
 
8.5.4 Validity of the Solution 
 
One needs to check whether the assumption of the ordering of the principal stresses, 

rrzz   , holds through the deformation in the plastic region.  It can be confirmed 

that the inequality rrzz    always holds.  For the inequality zz  , consider the 

inequality 0 zz .  The quantity on the left is a minimum when ar  , where it 

equals {▲Problem 4} 
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This quantity must be positive for all values of c up to the maximum value b, where it 
takes its minimum value, and so one must have 
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The solution is thus valid only for limited values of ab / .  For 3.0 , one must have 

/ 5.42b a   (closed ends), / 5.76b a   (plane strain), 19.6/ ab  (open ends).  For 
higher wall ratios, the axial stress becomes equal to the hoop stress.  In this case, a 
solution based on large changes in geometry is necessary for higher pressures. 
 
 
8.5.5 Problems 
 
1. Derive Eqns. 8.5.28-29. 
2. Use Eqns. 8.5.29a,b to show that the maximum value of rr   occurs at ar  , 

where it equals  1/2 0 flowppk , Eqn. 8.5.31. 

3. Derive Eqn. 8.5.32. 
4. Use Eqns. 8.5.15, 8.5.12 to derive Eqn. 8.5.33. 
 
 


