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8.4 Elastic Perfectly Plastic Materials 
 
Once yield occurs, a material will deform plastically.  Predicting and modelling this 
plastic deformation is the topic of this section.  For the most part, in this section, the 
material will be assumed to be perfectly plastic, that is, there is no work hardening. 
 
 
8.4.1 Plastic Strain Increments 
 
When examining the strains in a plastic material, it should be emphasised that one works 
with increments in strain rather than a total accumulated strain.  One reason for this is 
that when a material is subjected to a certain stress state, the corresponding strain state 
could be one of many.  Similarly, the strain state could correspond to many different 
stress states.  Examples of this state of affairs are shown in Fig. 8.4.1.   
 

 
  
Figure 8.4.1: stress-strain curve; (a) different strains at a certain stress, (b) different 

stress at a certain strain 
 
One cannot therefore make use of stress-strain relations in plastic regions (except in some 
special cases), since there is no unique relationship between the current stress and the 
current strain.  However, one can relate the current stress to the current increment in 
strain, and these are the “stress-strain” laws which are used in plasticity theory.  The total 
strain can be obtained by summing up, or integrating, the strain increments. 
 
 
8.4.2 The Prandtl-Reuss Equations 
 
An increment in strain εd  can be decomposed into an elastic part edε  and a plastic part 

pdε .  If the material is isotropic, it is reasonable to suppose that the principal plastic 
strain increments p

idε  are proportional to the principal deviatoric stresses is : 
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This relation only gives the ratios of the plastic strain increments to the deviatoric 
stresses.  To determine the precise relationship, one must specify the positive scalar λd  
(see later).  Note that the plastic volume constancy is inherent in this relation: 

0321 =++ ppp ddd εεε .   
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Eqns. 8.4.1 are in terms of the principal deviatoric stresses and principal plastic strain 
increments.  In terms of Cartesian coordinates, one has 
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or, succinctly, 
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These equations are often expressed in the alternative forms 
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or, dividing by dt  to get the rate equations, 
 

λ
σσ
εεεε &L
&&

L
&&

==
−

−
==

−

−

yyxx

p
yy

p
xx

yyxx

p
yy

p
xx

ss
         (8.4.5) 

 
In terms of actual stresses, one has, from 8.2.3, 
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This plastic stress-strain law is known as a flow rule.  Other flow rules will be considered 
later on.  Note that one cannot propose a flow rule which gives the plastic strain 
increments as explicit functions of the stress, otherwise the yield criterion might not be 
met (in particular, when there is strain hardening); one must include the to-be-determined 
scalar plastic multiplier λ .  The plastic multiplier is determined by ensuring the stress-
state lies on the yield surface during plastic flow. 
 
The full elastic-plastic stress-strain relations are now, using Hooke’s law, 
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or 
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These expressions are called the Prandtl-Reuss equations.  If the first, elastic, terms are 
neglected, they are known as the Lévy-Mises equations. 
 
 
8.4.3 Application: Plane Strain Compression of a Block 
 
Consider the plane strain compression of a thick block, Fig. 8.4.2.  The block is subjected 
to an increasing pressure pxx −=σ , is constrained in the z direction, so 0=zzε , and is 
free to move in the y direction, so 0=yyσ . 

 
Figure 8.4.2: Plane strain compression of a thick block 

 
The solution to the elastic problem is obtained from 8.4.7 (disregarding the plastic terms).  
One finds that {▲Problem 1} 
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and all other stress and strain components are zero.  In this elastic phase, the principal 
stresses are clearly 
 

xxzzyy σσσσσσ =>=>== 321 0                    (8.4.9) 
 
The Prandtl-Reuss equations are 
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The magnitude of the plastic straining is determined by the multiplier λd .  This can be 
evaluated by noting that plastic deformation proceeds so long as the stress state remains 
on the yield surface, the so-called consistency condition.  By definition, a perfectly 
plastic material is one whose yield surface remains unchanged during deformation. 
 
A Tresca Material 
 
Take now the Tresca yield criterion, which states that yield occurs when Yxx −=σ , where 
Y is the uniaxial yield stress (in compression).  Assume further perfect plasticity, so that 

Yxx −=σ  holds during all subsequent plastic flow.  Thus, with 0=xxdσ , and since 
0=zzdε , 8.4.10 reduce to 
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Thus 
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and, eliminating λd  from Eqns. 8.4.11 {▲Problem 2}, 
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Using the relation 
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and the initial (yield point) conditions, i.e. Eqns. 8.4.8 with Yp = , one can integrate 
8.4.13 to get {▲Problem 2} 
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The stress-strain curves are shown in Fig. 8.4.3 below for 3.0=ν .  Note that, for a typical 
metal, 310~/YE , and so the strains are very small right through the plastic compression; 
the plastic strains are of comparable size to the elastic strains.  There is a rapid change of 
stress and then little change once zzσ  has approached close to its limiting value of 2/Y− . 
 
The above plastic analysis was based on xxσ  remaining the minimum principal stress.  
This assumption has proved to be valid, since zzσ  remains between 0 and Y−  in the 
plastic region. 
 
 

 
 

Figure 8.4.3: Stress-strain results for plane strain compression of a thick block for 
3.0=ν  

 
 
A Von Mises Material 
 
Slightly different results are obtained with the Von Mises yield criterion, Eqn. 8.4.11, 
which for this problem reads 
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222 Yzzzzxxxx =+− σσσσ                  (8.4.16) 
 
The Prandtl-Reuss equations can be solved by making the substitution 
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in the plastic region.  In what follows, use is made of the trigonometric relations 
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From Eqn. 8.4.16, 
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Substituting into 8.4.10 then leads to 
 

⎭
⎬
⎫

⎩
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

θλθθνθπε

θπθλθθπθνε

θπλθθπνθε

sin
3

1sin
6

cos
3

2
6

sincos
3
1

6
cossin

3
2

6
cos

3
1

6
cossin

3
2

Eddd
Y
E

Eddd
Y
E

Eddd
Y
E

zz

yy

xx

 (8.4.20) 

 
Using 0=zzdε  leads to  
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and 
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An integration gives 
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To determine the constant of integration, consider again the conditions at first yield. 
Suppose the block first yields when xxσ  reaches Y

xxσ .  Then Y
xx

Y
zz νσσ =  and 
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Note that in this case it is predicted that first yield occurs when Yxx −<σ .  From Eqn. 
8.4.17, the value of θ  at first yield is 
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Thus, with ( ) EY
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and so 
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This leads to a similar stress-strain curve as for the Tresca criterion, only now the limiting 
value of zzσ  is YY 58.03/ −≈− . 
 
 
8.4.4 Application: Combined Tension/Torsion of a thin walled 

tube 
 
Consider now the combined tension/torsion of a thin-walled tube as in the 
Taylor/Quinney tests.  The only stresses in the tube are σσ =xx  due to the tension along 
the axial direction and τσ =xy  due to the torsion.  The Prandtl-Reuss equations reduce to 
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Consider the case where the tube is twisted up to the yield point.  Torsion is then halted 
and tension is applied, holding the angle of twist constant.  In that case, during the 
tension, 0=xydε  and so {▲Problem 3} 
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If one takes the Von Mises criterion, then 222 3 Y=+ τσ  (see Eqn. 8.3.17).  Assuming 
perfect plasticity, one has {▲Problem 4}, 
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Using the relation 
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an integration leads to {▲Problem 5} 
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This result is plotted in Fig. 8.4.4.  Note that, with 222 3 Y=+ τσ , as σ  increases 
(rapidly) to its limiting value Y , τ  decreases from its yield value of 3/Y  to zero. 
 

 
Figure 8.4.4: Stress-strain results for combined tension/torsion of a thin walled tube 

for 3.0=ν  
 
 
8.4.5 The Tresca Flow Rule 
 
The flow rule used in the preceding applications was the Prandtl-Reuss rule 8.4.7.  Many 
other flow rules have been proposed.  For example, the Tresca flow rule is simply (for 
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This flow rule will be used in the next section, which details the classic solution for the 
plastic deformation and failure of a thick cylinder under internal pressure. 
 
A unifying theory of flow rules will be presented in a later section, in which the reason 
for the name “Treca flow rule” will become clear.  
 
 
8.4.6 Problems 
 
 
1. Derive the elastic strains for the plane strain compression of a thick block, Eqns. 

8.4.8. 
 
2. Derive Eqns. 8.4.13 and 8.4.15 
 
3. Derive Eqn. 8.4.29 
 
4. Use Eqn. 8.3.17 to show that ( )222 // σσσττσ −−= Ydd  and hence derive Eqn. 

8.4.30 
 
5. Derive Eqns. 8.4.32 
 
6. Does the axial stress-stress curve of Fig. 8.4.4 differ when the Tresca criterion is 

used? 
 
7. Consider the uniaxial straining of a perfectly plastic isotropic Von Mises metallic 

block.  There is only one non-zero strain, xxε .  One only need consider two stresses, 

yyxx σσ ,  since yyzz σσ =  by isotropy. 
(i) Write down the two relevant Prandtl-Reuss equations 
(ii) Evaluate the stresses and strains at first yield 
(iii) For plastic flow, show that yyxx dd σσ =  and that the plastic modulus is  
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8. Consider the combined tension-torsion of a thin-walled cylindrical tube.  The tube is 

made of a perfectly plastic Von Mises metal and Y is the uniaxial yield strength in 
tension.  The only stresses are σσ =xx  and τσ =xy  and the Prandtl-Reuss equations 
reduce to 
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The axial strain is increased from zero until yielding occurs (with 0=xyε ).  From first 
yield, the axial strain is held constant and the shear strain is increased up to its final 
value of EY 3/)1( ν+  
(i) Write down the yield criterion in terms of σ  and τ  only and sketch the yield 

locus in τσ −  space 
(ii) Evaluate the stresses and strains at first yield 
(iii)Evaluate λd  in terms of σσ d,  
(iv) Relate σσ d,  to ττ d,  and hence derive a differential equation for shear strain in 

terms of τ  only 
(v) Solve the differential equation and evaluate any constant of integration 
(vi) Evaluate the shear stress when xyε  reaches its final value of EY 3/)1( ν+ .  

Taking 2/1=v , put in the form Yατ =  with α  to 3 d.p. 
 


