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8.3 Yield Criteria in Three Dimensional Plasticity 
 
The question now arises: a material yields at a stress level Y in a uniaxial tension test, but 
when does it yield when subjected to a complex three-dimensional stress state?   
 
Let us begin with a very general case: an anisotropic material with different yield 
strengths in different directions. For example, consider the material shown in Fig. 8.3.1. 
This is a composite material with long fibres along the 1x  direction, giving it extra 
strength in that direction – it will yield at a higher tension when pulled in the 1x  direction 
than when pulled in other directions. 
 

 
 

Figure 8.3.1: an anisotropic material; (a) microstructural detail, (b) continuum 
model 

 
We can assume that yield will occur at a particle when some combination of the stress 
components reaches some critical value, say when 
 

kF =),,,,,( 332322131211 σσσσσσ .                      (8.3.1) 
 
Here, F is some function of the 6 independent components of the stress tensor and k is 
some material property which can be determined experimentally1. 
 
Alternatively, it is very convenient to express yield criteria in terms of principal stresses. 
Let us suppose that we know the principal stresses everywhere, 1 2 3( , , )σ σ σ , Fig. 8.3.1. 
Yield must depend somehow on the microstructure – on the orientation of the axes 

1 2 3, ,x x x , but this information is not contained in the three numbers 1 2 3( , , )σ σ σ . Thus we 
express the yield criterion in terms of principal stresses in the form 
 

kF i =),,,( 321 nσσσ                         (8.3.2) 
 

 
1 F will no doubt also contain other parameters which need to be determined experimentally 
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where in  represent the principal directions – these give the orientation of the principal 
stresses relative to the material directions 1 2 3, ,x x x . 
 
If the material is isotropic, the response is independent of any material direction – 
independent of any “direction” the stress acts in, and so the yield criterion can be 
expressed in the simple form 
 

kF =),,( 321 σσσ       (8.3.3) 
 
Further, since it should not matter which direction is labelled ‘1’, which ‘2’ and which 
‘3’, F must be a symmetric function of the three principal stresses.  
 
Alternatively, since the three principal invariants of stress are independent of material 
orientation, one can write 
 

kIIIF =),,( 321                           (8.3.4) 
 
or, more usually, 
 

kJJIF =),,( 321                           (8.3.5) 
 
where 32 , JJ  are the non-zero principal invariants of the deviatoric stress.  With the 
further restriction that the yield stress is independent of the hydrostatic stress, one has 

 
kJJF =),( 32              (8.3.6) 

 
 
8.3.1 The Tresca and Von Mises Yield Conditions 
 
The two most commonly used and successful yield criteria for isotropic metallic materials 
are the Tresca and Von Mises criteria.   
 

The Tresca Yield Condition 
 
The Tresca yield criterion states that a material will yield if the maximum shear stress 
reaches some critical value, that is, Eqn. 8.3.3 takes the form 
 

k=






 −−− 133221 2

1,
2
1,

2
1max σσσσσσ   (8.3.7) 

 
The value of k can be obtained from a simple experiment.  For example, in a tension test, 

0, 3201 === σσσσ , and failure occurs when 0σ  reaches Y, the yield stress in tension.  
It follows that 
 

2
Yk = .          (8.3.8) 
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In a shear test, τσστσ −=== 321 ,0, , and failure occurs when τ  reaches Yτ , the yield 
stress of a material in pure shear, so that Yk τ= . 
 
The Von Mises Yield Condition 
 
The Von Mises criterion states that yield occurs when the principal stresses satisfy the 
relation 
 

( ) ( ) ( )
k=

−+−+−
6

2
13

2
32

2
21 σσσσσσ    (8.3.9) 

 
Again, from a uniaxial tension test, one finds that the k in Eqn. 8.3.9 is 
 

3
Yk = .        (8.3.10) 

 
Writing the Von Mises condition in terms of Y, one has 
 

( ) ( ) ( ) Y=−+−+− 2
13

2
32

2
212

1 σσσσσσ                    (8.3.11) 

 
The quantity on the left is called the Von Mises Stress, sometimes denoted by VMσ .  
When it reaches the yield stress in pure tension, the material begins to deform plastically.  
In the shear test, one again finds that Yk τ= , the yield stress in pure shear. 
 
Sometimes it is preferable to work with arbitrary stress components; for this purpose, the 
Von Mises condition can be expressed as {▲Problem 2} 
 

( ) ( ) ( ) ( ) 22
31

2
23

2
12

2
1133

2
3322

2
2211 66 k=+++−+−+− σσσσσσσσσ        (8.3.12) 

 
The piecewise linear nature of the Tresca yield condition is sometimes a theoretical 
advantage over the quadratic Mises condition.  However, the fact that in many problems 
one often does not know which principal stress is the maximum and which is the 
minimum causes difficulties when working with the Tresca criterion. 
 
The Tresca and Von Mises Yield Criteria in terms of Invariants 
 
From Eqn. 8.2.10 and 8.3.9, the Von Mises criterion can be expressed as 
 

0)( 2
22 =−≡ kJJf        (8.3.13) 

 
Note the relationship between 2J  and the octahedral shear stress, Eqn. 8.2.17; the Von 
Mises criterion can be interpreted as predicting yield when the octahedral shear stress 
reaches a critical value. 
 
With 321 σσσ ≥≥ , the Tresca condition can be expressed as 
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0649636274),( 6

2
42

2
22

3
3
232 =−+−−≡ kJkJkJJJJf      (8.3.14) 

 
but this expression is too cumbersome to be of much use. 
 
Experiments of Taylor and Quinney 
 
In order to test whether the Von Mises or Tresca criteria best modelled the real behaviour 
of metals, G I Taylor & Quinney (1931), in a series of classic experiments, subjected a 
number of thin-walled cylinders made of copper and steel to combined tension and 
torsion, Fig. 8.3.2. 
 

σ σ
τ

τ

 
 

Figure 8.3.2: combined tension and torsion of a thin-walled tube 
 
The cylinder wall is in a state of plane stress, with σσ =11 , τσ =12  and all other stress 
components zero.  The principal stresses corresponding to such a stress-state are (zero 
and) {▲Problem 3} 

 
22

4
1

2
1 τσσ +±               (8.3.15) 

 
and so Tresca's condition reduces to 
 

222 44 k=+ τσ    or   1
2/

22

=





+








YY
τσ           (8.3.16) 

 
 
The Mises condition  reduces to {▲Problem 4} 

 

222 33 k=+ τσ   or   1
3/

22

=







+








YY
τσ       (8.3.17) 

 
Thus both models predict an elliptical yield locus in ( )τσ ,  stress space, but with 
different ratios of principal axes, Fig. 8.3.3.  The origin in Fig. 8.3.3 corresponds to an 
unstressed state.  The horizontal axes refer to uniaxial tension in the absence of shear, 
whereas the vertical axis refers to pure torsion in the absence of tension.  When there is a 
combination of σ  and τ , one is off-axes.  If the combination remains “inside” the yield 
locus, the material remains elastic; if the combination is such that one reaches anywhere 
along the locus, then plasticity ensues. 
   



Section 8.3 

Solid Mechanics Part II                                                                                Kelly 263 

 
 
Figure 8.3.3: the yield locus for a thin-walled tube in combined tension and torsion  

 
Taylor and Quinney, by varying the amount of tension and torsion, found that their 
measurements were closer to the Mises ellipse than the Tresca locus, a result which has 
been repeatedly confirmed by other workers2. 
 
2D Principal Stress Space 
 
Fig. 8.3.3 gives a geometric interpretation of the Tresca and Von Mises yield criteria in 
( )τσ ,  space.  It is more usual to interpret yield criteria geometrically in a principal stress 
space.  The Taylor and Quinney tests are an example of plane stress, where one principal 
stress is zero.  Following the convention for plane stress, label now the two non-zero 
principal stresses 1σ  and 2σ , so that 03 =σ  (even if it is not the minimum principal 
stress). The criteria can then be displayed in ( )21 ,σσ  2D principal stress space.  With 

03 =σ , one has 
 
 

Tresca:  { } Y=− 1221 ,,max σσσσ  
(8.3.18) 

 Von Mises: 22
221

2
1 Y=+− σσσσ  

 
These are plotted in Fig. 8.3.4.  The Tresca criterion is a hexagon.  The Von Mises 
criterion is an ellipse with axes inclined at 045  to the principal axes, which can be seen 
by expressing Eqn. 8.3.18b in the canonical form for an ellipse: 
 

 
2 the maximum difference between the predicted stresses from the two criteria is about 15%.  The two 
criteria can therefore be made to agree to within ± 7.5% by choosing k to be half-way between 2/Y  and 
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where 1 2,σ σ′ ′  are coordinates along the new axes; the major axis is thus 2Y  and the 

minor axis is 2 / 3Y . 
 
Some stress states are shown in the stress space: point A corresponds to a uniaxial tension, 
B to a equi-biaxial tension and C to a pure shear τ . 
 

 
 

Figure 8.3.4: yield loci in 2D principal stress space 
 
Again, points inside these loci represent an elastic stress state.  Any combination of 
principal stresses which push the point out to the yield loci results in plastic deformation. 
 
 
8.3.2 Three Dimensional Principal Stress Space 
 
The 2D principal stress space has limited use.  For example, a stress state that might start 
out two dimensional can develop into a fully three dimensional stress state as deformation 
proceeds. 
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In three dimensional principal stress space, one has a yield surface ( ) 0,, 321 =σσσf , 
Fig. 8.3.5 3.  In this case, one can draw a line at equal angles to all three principal stress 
axes, the space diagonal.  Along the space diagonal 321 σσσ ==  and so points on it are 
in a state of hydrostatic stress. 
 
Assume now, for the moment, that hydrostatic stress does not affect yield and consider 
some arbitrary point A, ( ) ( )cba ,,,, 321 =σσσ , on the yield surface, Fig. 8.3.5.  A pure 
hydrostatic stress hσ   can be superimposed on this stress state without affecting yield, so 
any other point ( ) ( )hhh cba σσσσσσ +++= ,,,, 321  will also be on the yield surface.  
Examples of such points are shown at B, C and D, which are obtained from A by moving 
along a line parallel to the space diagonal.  The yield behaviour of the material is 
therefore specified by a yield locus on a plane perpendicular to the space diagonal, and 
the yield surface is generated by sliding this locus up and down the space diagonal. 
 

 
 

Figure 8.3.5: Yield locus/surface in three dimensional stress-space 
 
The π-plane 
 
Any surface in stress space can be described by an equation of the form 
 

( ) const,, 321 =σσσf               (8.3.19) 
 
and a normal to this surface is the gradient vector 
 

3
3

2
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1
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eee
σσσ ∂
∂

+
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+
∂
∂ fff                 (8.3.20) 

 
where 321 ,, eee  are unit vectors along the stress space axes.  In particular, any plane 
perpendicular to the space diagonal is described by the equation 

 
3 as mentioned, one has a six dimensional stress space for an anisotropic material and this cannot be 
visualised 
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const321 =++ σσσ              (8.3.21) 

 
Without loss of generality, one can choose as a representative plane the π – plane, which 
is defined by 0321 =++ σσσ .  For example, the point ( ) ( )0,1,1,, 321 −=σσσ  is on the π 
– plane and, with yielding independent of hydrostatic stress, is equivalent to points in 
principal stress space which differ by a hydrostatic stress, e.g. the points 
( ) ( )1,2,0,1,0,2 −− , etc.  
 
The stress state at any point A represented by the vector ( )321 ,, σσσ=σ  can  be regarded 
as the sum of the stress state at the corresponding point on the π – plane, D, represented 
by the vector ( )321 ,, sss=s  together with a hydrostatic stress represented by the vector 

( )mmm σσσ ,,=ρ : 
 

( ) ( ) ( )mmmmmm σσσσσσσσσσσσ ,,,,,, 321321 +−−−=         (8.3.22) 
 
The components of the first term/vector on the right here sum to zero since it lies on the π 
– plane, and this is the deviatoric stress, whilst the hydrostatic stress is 

( ) 3/321 σσσσ ++=m . 
 
Projected view of the π-plane 
 
Fig. 8.3.6a shows principal stress space and Fig. 8.3.6b shows the π – plane.  The heavy 
lines 321 ,, σσσ ′′′  in Fig. 8.3.6b represent the projections of the principal axes down onto 
the −π plane (so one is “looking down” the space diagonal).  Some points, CBA ,,  in 
stress space and their projections onto the −π plane are also shown.  Also shown is some 
point D on the −π plane.  It should be kept in mind that the deviatoric stress vector s in 
the projected view of Fig. 8.3.6b is in reality a three dimensional vector (see the 
corresponding vector in Fig. 8.3.6a). 
 

 
 

Figure 8.3.6: Stress space; (a) principal stress space, (b) the π – plane 
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Consider the more detailed Fig. 8.3.7 below.  Point A here represents the stress state 
( )0,1,2 − , as indicated by the arrows in the figure.  It can also be “reached” in different 
ways, for example it represents ( )1,0,3  and ( )1,2,1 −− .  These three stress states of course 
differ by a hydrostatic stress.  The actual −π plane value for A is the one for which 

0321 =++ σσσ , i.e. ( ) ( ) ( )3
1

3
4

3
5

321321 ,,,,,, −−== sssσσσ .  Points B and C also 
represent multiple stress states {▲Problem 7}. 
 

 
 

Figure 8.3.7: the π-plane 
 
The bisectors of the principal plane projections, such as the dotted line in Fig. 8.3.7, 
represent states of pure shear.  For example, the −π plane value for point D is ( )2,2,0 − , 
corresponding to a pure shear in the 32 σσ −  plane. 
 
The dashed lines in Fig. 8.3.7 are helpful in that they allow us to plot and visualise stress 
states easily.  The distance between each dashed line along the directions of the projected 
axes represents one unit of principal stress.  Note, however, that these “units” are not 
consistent with the actual magnitudes of the deviatoric vectors in the −π plane.  To 
create a more complete picture, note first that a unit vector along the space diagonal is 

[ ]
3

1
3

1
3

1 ,,=ρn , Fig. 8.3.8.  The components of this normal are the direction cosines; for 

example, a unit normal along the ‘1’ principal axis is [ ]0,0,11 =e  and so the angle 0θ  
between the ‘1’ axis and the space diagonal is given by 

3
1

01 cos ==⋅ θρ en .  From Fig. 

8.3.8, the angle θ  between the ‘1’ axis and the −π plane is given by 3
2cos =θ , and so 

a length of 1σ  units gets projected down to a length 13
2σ== ss . 

 
For example, point E in Fig. 8.3.7 represents a pure shear ( ) ( )0,2,2,, 321 −=σσσ , which is 

on the −π plane. The length of the vector out to E in Fig. 8.3.7 is 32  “units”.  To 
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convert to actual magnitudes, multiply by 3
2  to get 22=s , which agrees with 

2222 222
3

2
2

2
1 =+=++== ssss s . 

 
 

  
 

Figure 8.3.8: principal stress projected onto the π-plane 
 
 
Typical π-plane Yield Loci 
 
Consider next an arbitrary point ),,( cba  on the −π plane yield locus.  If the material is 
isotropic, the points ),,( bca , ),,( cab , ),,( acb , ),,( bac  and ),,( abc  are also on the yield 
locus.  If one assumes the same yield behaviour in tension as in compression, e.g. 
neglecting the Bauschinger effect, then so also are the points ),,( cba −−− , ),,( bca −−− , 
etc.  Thus 1 point becomes 12 and one need only consider the yield locus in one 30o 
sector of the −π plane, the rest of the locus being generated through symmetry.  One such 
sector is shown in Fig. 8.3.9, the axes of symmetry being the three projected principal 
axes and their (pure shear) bisectors. 
 

 
 

Figure 8.3.9: A typical sector of the yield locus 
 
 
The Tresca and Von Mises Yield Loci in the π-plane 
 
The Tresca criterion, Eqn. 8.3.7, is a regular hexagon in the −π plane as illustrated in Fig. 
8.3.10.  Which of the six sides of the locus is relevant depends on which of 321 ,, σσσ  is 
the maximum and which is the minimum, and whether they are tensile or compressive.  
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For example, yield at the pure shear 2/,0,2/ 321 YY −=== σσσ  is indicated by point A 
in the figure. 
 
Point B represents yield under uniaxial tension, Y=1σ .  The distance oB , the 
“magnitude” of the hexagon, is therefore Y3

2 ; the corresponding point on the π  – plane 
is ( ) ( )YYYsss 3

1
3
1

3
2

321 ,,, −−= . 
 
A criticism of the Tresca criterion is that there is a sudden change in the planes upon 
which failure occurs upon a small change in stress at the sharp corners of the hexagon. 
 

 
 

Figure 8.3.10: The Tresca criterion in the π-plane 
 
Consider now the Von Mises criterion.  From Eqns. 8.3.10, 8.3.13, the criterion is 

3/2 YJ = .  From Eqn. 8.2.9, this can be re-written as 
 

Ysss
3
22

3
2
2

2
1 =++                   (8.3.23) 

 
Thus, the magnitude of the deviatoric stress vector is constant and one has a circular yield 
locus with radius kY 23

2 = , which circumscribes the Tresca hexagon, as illustrated in 
Fig. 8.3.11. 
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Figure 8.3.11: The Von Mises criterion in the π-plane 
 
The yield surface is a circular cylinder with axis along the space diagonal, Fig. 8.3.12.  
The Tresca surface is a similar hexagonal cylinder. 
 

 
 

Figure 8.3.12: The Von Mises and Tresca yield surfaces 
 
 
 
8.3.3 Haigh-Westergaard Stress Space 
 
Thus far, yield criteria have been described in terms of principal stresses ),,( 321 σσσ .  It 
is often convenient to work with ( )θρ ,, s  coordinates, Fig. 8.3.13; these cylindrical 
coordinates are called Haigh-Westergaard coordinates.  They are particularly useful for 
describing and visualising geometrically pressure-dependent yield-criteria. 
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The coordinates ( )s,ρ  are simply the magnitudes of, respectively, the hydrostatic stress 
vector ( )mmm σσσ ,,=ρ  and the deviatoric stress vector ( )321 ,, sss=s .  These are given 
by ( s can be obtained from Eqn. 8.2.9) 
 

21 2,3/3 JsIm ===== sρ σρ             (8.3.24) 
 

 
 

Figure 8.3.13: A point in stress space 
 
θ  is measured from the 1σ ′  )( 1s  axis in the −π plane.  To express θ  in terms of 
invariants, consider a unit vector e in the −π plane in the direction of the 1σ ′  axis; this is 
the same vector cn  considered in Fig. 8.2.4 in connection with the octahedral shear 

stress, and it has coordinates ( ) ( )
6

1
6

1
3
2

221 ,,,, −−=σσσ , Fig. 8.3.13.  The angle θ  can 
now be obtained from θcoss=⋅es  {▲Problem 9}: 
 

2

1

2
3cos
J
s

=θ          (8.3.25) 

 
Further manipulation leads to the relation {▲Problem 10} 
 

2/3
2

3

2
333cos

J
J

=θ                                  (8.3.26) 

 
Since 2J  and 3J  are invariant, it follows that θ3cos  is also.  Note that 3J  enters 
through θ3cos , and does not appear in ρ  or s; it is 3J  which makes the yield locus 
in the π -plane non-circular. 
 
From Eqn. 8.3.25 and Fig. 8.3.13b, the deviatoric stresses can be expressed in terms 
of the Haigh-Westergaard coordinates through 
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       (8.3.27) 

 
The principal stresses and the Haigh-Westergaard coordinates can then be related 
through {▲Problem 12} 
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In terms of the Haigh-Westergaard coordinates, the yield criteria are 
 
 Von Mises: 2 21

2( ) 0f s s k= − =  
(8.3.29) 

 Tresca  ( ) 0sin2),( 3 =−+= Yssf πθθ  
 
 
8.3.4 Pressure Dependent Yield Criteria 
 
The Tresca and Von Mises criteria are independent of hydrostatic pressure and are 
suitable for the modelling of plasticity in metals.  For materials such as rock, soils and 
concrete, however, there is a strong dependence on the hydrostatic pressure. 
 
The Drucker-Prager Criteria 
 
The Drucker-Prager criterion is a simple modification of the Von Mises criterion, 
whereby the hydrostatic-dependent first invariant 1I  is introduced to the Von Mises Eqn. 
8.3.13: 
 

0),( 2121 =−+≡ kJIJIf α    (8.3.30) 
 
with α  is a new material parameter.  On the π  – plane, 01 =I , and so the yield locus 
there is as for the Von Mises criterion, a circle of radius k2 , Fig. 8.3.14a.  Off the π  – 
plane, the yield locus remains circular but the radius changes.  When there is a state of 
pure hydrostatic stress, the magnitude of the hydrostatic stress vector is  {▲Problem 13} 

αρ 3/k== ρ , with 0== ss .  For large pressures, 0321 <== σσσ , the 1I  term in 
Eqn. 8.3.30 allows for large deviatoric stresses.  This effect is shown in the meridian 
plane in Fig. 8.3.14b, that is, the ),( sρ  plane which includes the 1σ  axis. 
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Figure 8.3.14: The Drucker-Prager criterion; (a) the  π-plane, (b) the Meridian 
Plane 

 
The Drucker-Prager surface is a right-circular cone with apex at αρ 3/k= , Fig. 8.3.15.  
Note that the plane stress locus, where the cone intersects the 03 =σ  plane, is an ellipse, 
but whose centre is off-axis, at some )0,0( 21 << σσ . 
 

 
 

Figure 8.3.15: The Drucker-Prager yield surface 
 
 
In terms of the Haigh-Westergaard coordinates, the yield criterion is 
 

 026),( =−+= kssf αρρ                                (8.3.31) 
 
 
The Mohr Coulomb Criteria 
 
The Mohr-Coulomb criterion is based on Coulomb’s 1773 friction equation, which can be 
expressed in the form 
 

φστ tannc −=              (8.3.32) 
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where φ,c  are material constants; c is called the cohesion4 and φ  is called the angle of 
internal friction.  τ  and nσ  are the shear and normal stresses acting on the plane where 
failure occurs (through a shearing effect), Fig. 8.3.16, with φtan  playing the role of a 
coefficient of friction.  The criterion states that the larger the pressure nσ− , the more 
shear the material can sustain.  Note that the Mohr-Coulomb criterion can be considered 
to be a generalised version of the Tresca criterion, since it reduces to Tresca’s when 

0=φ  with kc = . 
 

 
 

Figure 8.3.16: Coulomb friction over a plane 
 
This criterion not only includes a hydrostatic pressure effect, but also allows for different 
yield behaviours in tension and in compression.  Maintaining isotropy, there will now be 
three lines of symmetry in any deviatoric plane, and a typical sector of the yield locus is 
as shown in Fig. 8.3.17 (compare with Fig. 8.3.9) 
 

 
 

Figure 8.3.17: A typical sector of the yield locus for an isotropic material with 
different yield behaviour in tension and compression 

 
Given values of c and φ , one can draw the failure locus (lines) of the Mohr-Coulomb 
criterion in ),( τσ n  stress space, with intercepts c±=τ  and slopes φtan , Fig. 8.3.18.  
Given some stress state 321 σσσ ≥≥ , a Mohr stress circle can be drawn also in ),( τσ n  
space (see §7.2.6).  When the stress state is such that this circle reaches out and touches 
the failure lines, yield occurs. 
 

 
4 0=c  corresponds to a cohesionless material such as sand or gravel, which has no strength in tension 

τ

nσ−

yield locus 
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Figure 8.3.18: Mohr-Coulomb failure criterion 
 
From Fig. 8.3.18, and noting that the large Mohr circle has centre ( )( )0,312

1 σσ +  and 
radius ( )312

1 σσ − , one has 
 

φ
σσσσ

σ

φ
σσ

τ

sin
22

cos
2

3131

31

−
+

+
=

−
=

n

                    (8.3.33) 

 
Thus the Mohr-Coulomb criterion in terms of principal stresses is 
 

( ) ( ) φσσφσσ sincos2 3131 +−=− c             (8.3.34) 
 
The strength of the Mohr-Coulomb material in uniaxial tension, Ytf , and in uniaxial 
compression, Ycf , are thus 
 

φ
φ

φ
φ

sin1
cos2,

sin1
cos2

−
=

+
=

cfcf YcYt              (8.3.35) 

 
In terms of the Haigh-Westergaard coordinates, the yield criterion is 
 

( ) ( ) 0cos6sincossin3sin2),,( 33 =−++++= φφθθφρθρ ππ csssf         (8.3.36) 
 
The Mohr-Coulomb yield surface in the π  – plane and meridian plane are displayed 
in Fig. 8.3.19.  In the π  – plane one has an irregular hexagon which can be 
constructed from two lengths: the magnitude of the deviatoric stress in uniaxial 
tension at yield, 0ts , and the corresponding (larger) value in compression, 0cs ; these 
are given by: 
 

( ) ( )
φ

φ
φ

φ
sin3

sin16
,

sin3
sin16

00 −
−

=
+

−
= Yc

c
Yc

t
f

s
f

s                      (8.3.37) 
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In the meridian plane, the failure surface cuts the 0=s  axis at φρ cot3c=   
{▲Problem 14}. 
 

 
 
Figure 8.3.19: The Mohr-Coulomb criterion; (a) the  π-plane, (b) the Meridian Plane 
 
The Mohr-Coulomb surface is thus an irregular hexagonal pyramid, Fig. 8.3.20. 
 

 
 

Figure 8.3.20: The Mohr-Coulomb yield surface 
 
By adjusting the material parameters φα ,,, ck , the Drucker-Prager cone can be 
made to match the Mohr-Coulomb hexagon, either inscribing it at the minor vertices,  
or circumscribing it at the major vertices, Fig. 8.3.21. 
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Figure 8.3.21: The Mohr-Coulomb and Drucker-Prager criteria matched in the  π-

plane 
 
 
Capped Yield Surfaces 
 
The Mohr-Coulomb and Drucker-Prager surfaces are open in that a pure hydrostatic 
pressure can be applied without affecting yield.  For many geomaterials, however, for 
example soils, a large enough hydrostatic pressure will induce permanent deformation.  In 
these cases, a closed (capped) yield surface is more appropriate, for example the one 
illustrated in Fig. 8.3.22. 
 

 
 

Figure 8.3.22: a capped yield surface 
 
An example is the modified Cam-Clay criterion: 
 

( )13
12

13
1

2 23 IpMIJ c +−=   or  ( ) 0,2
3

12
33

2 <+−= ρρρ cpMs     (8.3.38)  

 
with M and cp  material constants.  In terms of the standard geomechanics notation, it 
reads 
 

( )pppMq c −= 222        (8.3.39) 
 
where 
 

3σ−

1σ−

2σ−

1σ ′ 2σ ′

3σ ′
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sJqIp
2
33,

3
1

3
1

21 ==−=−= ρ                (8.3.40) 

 
The modified Cam-Clay locus in the meridian plane is shown in Fig. 8.3.23.  Since s 
is constant for any given ρ , the locus in planes parallel to the π - plane are circles.  
The material parameter cp  is called the critical state pressure, and is the pressure 
which carries the maximum deviatoric stress.  M is the slope of the dotted line 
shown in Fig. 8.3.23, known as the critical state line. 
 

 
 

Figure 8.3.23: The modified Cam-Clay criterion in the Meridian Plane 
 
 
 
8.3.5 Anisotropy 
 
Many materials will display anisotropy.  For example metals which have been processed 
by rolling will have characteristic material directions, the tensile yield stress in the 
direction of rolling being typically 15% greater than that in the transverse direction.  The 
form of anisotropy exhibited by rolled sheets is such that the material properties are 
symmetric about three mutually orthogonal planes.  The lines of intersection of these 
planes form an orthogonal set of axes known as the principal axes of anisotropy.  The 
axes are (a) in the rolling direction, (b) normal to the sheet, (c) in the plane of the sheet 
but normal to rolling direction.  This form of anisotropy is called orthotropy (see Part I, 
§6.2.2).  Hill (1948) proposed a yield condition for such a material which is a natural 
generalisation of the Mises condition: 
 

( ) ( ) ( )2 2 2
22 33 33 11 11 22

2 2 2
23 31 12

( )

2 2 2 1 0
ijf F G H

L M N

σ σ σ σ σ σ σ

σ σ σ

= − + − + −

+ + + − =
        (8.3.41) 

 
where F, G, H, L, M, N are material constants.  One needs to carry out 6 tests: uniaxial 
tests in the three coordinate directions to find the uniaxial yield strengths 
( ) , ( ) , ( )Y x Y y Y zσ σ σ , and shear tests to find the shear strengths ( ) , ( ) , ( )Y xy Y yz Y zxτ τ τ .  For a 

uniaxial test in the x direction, Eqn. 8.3.41 reduces to 21/ ( )Y xG H σ+ = . By considering 
the other simple uniaxial and shear tests, one can solve for the material parameters: 
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q
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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 = + − =
  
 
 = + − =
  
 
 = + − =
  

                             (8.3.42) 

 
The criterion reduces to the Mises condition 8.3.12 when  
 

26
1

333 k
NMLHGF ======                                   (8.3.43) 

 
The 1, 2, 3 axes of reference in Eqn. 8.3.41 are the principal axes of anisotropy.  The form 
appropriate for a general choice of axes can be derived by using the usual stress 
transformation formulae.  It is complicated and involves cross-terms such as 2311σσ , etc. 

 
 
8.3.6 Problems 
 
1. A material is to be loaded to a stress state 

[ ]











−

−
=

000
09030
03050

ijσ  MPa 

What should be the minimum uniaxial yield stress of the material so that it does not 
fail, according to the 
(a) Tresca criterian 
(b) Von Mises criterion 
What do the theories predict when the yield stress of the material is 80MPa? 

 
2. Use Eqn. 8.2.6, ( )113333222211

2
31

2
23

2
122 sssssssssJ ++−++=  to derive Eqn. 8.3.12, 

( ) ( ) ( ) ( ) 22
31

2
23

2
12

2
1133

2
3322

2
2211 66 k=+++−+−+− σσσσσσσσσ , for the Von 

Mises criterion. 
 

3. Use the plane stress principal stress formula 2
12

2
22112211

2,1 22
σ

σσσσ
σ +






 −

±
+

=  

to derive Eqn. 8.3.15 for the Taylor-Quinney tests. 
 
4. Derive Eqn. 8.3.17 for the Taylor-Quinney tests. 
 
5. Describe the states of stress represented by the points D and E in Fig. 8.3.4.  (The 

complete stress states can be visualised with the help of Mohr’s circles of stress, Fig. 
7.2.17.) 
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6. Suppose that, in the Taylor and Quinney tension-torsion tests, one has 2/Y=σ  and 
4/3Y=τ .  Plot this stress state in the 2D principal stress state, Fig. 8.3.4.  (Use 

Eqn. 8.3.15 to evaluate the principal stresses.)  Keeping now the normal stress at 
2/Y=σ , what value can the shear stress be increased to before the material yields, 

according to the von Mises criterion? 
 
7. What are the −π plane principal stress values for the points B and C in Fig. 8.3.7? 
 
8. Sketch on the −π plane Fig. 8.3.7 a line corresponding to 21 σσ =  and also a region 

corresponding to 321 0 σσσ >>>  

9. Using the relation θcoss=⋅es  and 132 sss −=+ , derive Eqn. 8.3.25, 
2

1

2
3cos
J
s

=θ . 

 
10. Using the trigonometric relation θθθ cos3cos43cos 3 −=  and Eqn. 8.3.25, 

2

1

2
3cos
J
s

=θ , show that ( )2
2
12/3

2

1

2
333cos Js

J
s

−=θ .  Then using the relations 8.2.6, 

( )1332212 ssssssJ ++−= , with 01 =J , derive Eqn. 8.3.26, 2/3
2

3

2
333cos

J
J

=θ   

 
11. Consider the following stress states.  For each one, evaluate the space coordinates 

),,( θρ s  and plot in the −π plane (see Fig. 8.3.13b): 
(a) triaxial tension: 023211 >==>= TT σσσ  
(b) triaxial compression: 022113 <−==<−= pp σσσ  (this is an important test for 

geomaterials, which are dependent on the hydrostatic pressure) 
(c) a pure shear τσ =xy : τσστσ −==+= 321 ,0,  
(d) a pure shear τσ =xy  in the presence of hydrostatic pressure p: 

τσστσ −−=−=+−= ppp 321 ,, , i.e. 3221 σσσσ −=−  
 
12. Use relations 8.3.24, 21 2,3/ JsI ==ρ  and Eqns. 8.3.27 to derive Eqns. 8.3.28. 
 
13. Show that the magnitude of the hydrostatic stress vector is αρ 3/k== ρ  for the 

Drucker-Prager yield criterion when the deviatoric stress is zero 
 
14. Show that the magnitude of the hydrostatic stress vector is φρ cot3c=  for the 

Mohr-Coulomb yield criterion when the deviatoric stress is zero 
 
15. Show that, for a Mohr-Coulomb material, )1/()1(sin +−= rrφ , where YtYc ffr /=  is 

the compressive to tensile strength ratio 
 
16. A sample of concrete is subjected to a stress App −=−== 332211 , σσσ  where the 

constant 1>A .  Using the Mohr-Coulomb criterion and the result of Problem 15, 
show that the material will not fail provided rpfA Yc +< /  
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