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7 3D Elasticity 
 
 



 188

 



Section 7.1 

Solid Mechanics Part II                                                                                Kelly 191 

7.1 Vectors, Tensors and the Index Notation 
 
The equations governing three dimensional mechanics problems can be quite lengthy.  
For this reason, it is essential to use a short-hand notation called the index notation1.  
Consider first the notation used for vectors. 
 
 
7.1.1 Vectors 
 
Vectors are used to describe physical quantities which have both a magnitude and a 
direction associated with them.  Geometrically, a vector is represented by an arrow; the 
arrow defines the direction of the vector and the magnitude of the vector is represented by 
the length of the arrow.  Analytically, in what follows, vectors will be represented by 
lowercase bold-face Latin letters, e.g. a, b. 
  
The dot product of two vectors a and b is denoted by ba ⋅  and is a scalar defined by 
 

θcosbaba =⋅ .             (7.1.1) 
 
θ  here is the angle between the vectors when their initial points coincide and is restricted 
to the range πθ ≤≤0 . 
 
Cartesian Coordinate System 
 
So far the short discussion has been in symbolic notation2, that is, no reference to ‘axes’ 
or ‘components’ or ‘coordinates’ is made, implied or required.  Vectors exist 
independently of any coordinate system.  The symbolic notation is very useful, but there 
are many circumstances in which use of the component forms of vectors is more helpful – 
or essential.  To this end, introduce the vectors 321 ,, eee  having the properties 
 

0133221 =⋅=⋅=⋅ eeeeee ,    (7.1.2) 
 
so that they are mutually perpendicular, and 
 

1332211 =⋅=⋅=⋅ eeeeee ,    (7.1.3) 
 
so that they are unit vectors.  Such a set of orthogonal unit vectors is called an 
orthonormal set, Fig. 7.1.1.  This set of vectors forms a basis, by which is meant that any 
other vector can be written as a linear combination of these vectors, i.e. in the form 

 
332211 eeea aaa ++=                                              (7.1.4) 

 
where 21 , aa  and 3a  are scalars, called the Cartesian components or coordinates of a 
along the given three directions.  The unit vectors are called base vectors when used for 

 
1 or indicial or subscript or suffix notation 
2 or absolute or invariant or direct or vector notation 
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this purpose.  The components 21 , aa  and 3a  are measured along lines called the 21 , xx  
and 3x  axes, drawn through the base vectors. 
 

 
 

Figure 7.1.1: an orthonormal set of base vectors and Cartesian coordinates 
 
Note further that this orthonormal system { }321 ,, eee  is right-handed, by which is meant 

321 eee =×  (or 132 eee =×  or 213 eee =× ). 
 
In the index notation, the expression for the vector a in terms of the components 321 ,, aaa  
and the corresponding basis vectors 321 ,, eee  is written as 
 

∑
=

=++=
3

1
332211

i
iiaaaa eeeea        (7.1.5) 

 
This can be simplified further by using Einstein’s summation convention, whereby the 
summation sign is dropped and it is understood that for a repeated index (i in this case) a 
summation over the range of the index (3 in this case3) is implied.  Thus one writes 

iia ea = .  This can be further shortened to, simply, ia . 
 
The dot product of two vectors u and v, referred to this coordinate system, is 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

332211

333323231313

323222221212

313121211111

332211332211

vuvuvu
vuvuvu

vuvuvu
vuvuvu

vvvuuu

++=
⋅+⋅+⋅+

⋅+⋅+⋅+
⋅+⋅+⋅=

++⋅++=⋅

eeeeee
eeeeee

eeeeee
eeeeeevu

  (7.1.6) 

 
The dot product of two vectors written in the index notation reads  
 

iivu=⋅ vu  Dot Product        (7.1.7) 
 

 
3 2 in the case of a two-dimensional space/analysis 

1e
2e

3e

2a

1a

3a

a
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The repeated index i is called a dummy index, because it can be replaced with any other 
letter and the sum is the same;  for example, this could equally well be written as 

jj vu=⋅ vu  or kk vu . 
 
Introduce next the Kronecker delta symbol ijδ , defined by 
 





=
≠

=
ji
ji

ij ,1
,0

δ      (7.1.8) 

 
Note that 111 =δ  but, using the index notation, 3=iiδ .  The Kronecker delta allows one 
to write the expressions defining the orthonormal basis vectors (7.1.2, 7.1.3) in the 
compact form 
 

ijji δ=⋅ee      Orthonormal Basis Rule          (7.1.9) 
 
 
Example 
 
Recall the equations of motion, Eqns. 1.1.9, which in full read  
 

33
3

33

2

32

1

31

22
3

23

2

22

1

21

11
3

13

2

12

1

11

ab
xxx

ab
xxx

ab
xxx

ρ
σσσ

ρ
σσσ

ρ
σσσ

=+
∂
∂

+
∂
∂

+
∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂

=+
∂
∂

+
∂
∂

+
∂
∂

                               (7.1.10) 

 
The index notation for these equations is 
 

ii
j

ij ab
x

ρ
σ

=+
∂

∂
                                              (7.1.11) 

 
Note the dummy index j.  The index i is called a free index; if one term has a free index i, 
then, to be consistent, all terms must have it.  One free index, as here, indicates three 
separate equations. 
 
 
7.1.2 Matrix Notation 
 
The symbolic notation v  and index notation iiv e  (or simply iv ) can be used to denote a 
vector.  Another notation is the matrix notation: the vector v can be represented by a 

13×  matrix (a column vector): 
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3

2

1

v
v
v

 
 
Matrices will be denoted by square brackets, so a shorthand notation for this matrix/vector 
would be [ ]v .  The elements of the matrix [ ]v  can be written in the index notation iv .    
 
Note the distinction between a vector and a 13×  matrix: the former is a mathematical 
object independent of any coordinate system, the latter is a representation of the vector in 
a particular coordinate system – matrix notation, as with the index notation, relies on a 
particular coordinate system. 
 
As an example, the dot product can be written in the matrix notation as 
 
 
 
 
 
 
 
 
 
 
Here, the notation [ ]Tu  denotes the 31×  matrix (the row vector).  The result is a 11×  
matrix, iivu . 
 
The matrix notation for the Kronecker delta ijδ  is the identity matrix 
 

[ ]















=

100
010
001

I  

 
Then, for example, in both index and matrix notation: 
 

 [ ][ ] [ ]















=
































==

3

2

1

3

2

1

100
010
001

u
u
u

u
u
u

uu ijij uuIδ                   (7.1.12) 

 
 
Matrix – Matrix Multiplication 
 
When discussing vector transformation equations further below, it will be necessary to 
multiply various matrices with each other (of sizes 13× , 31×  and 33× ).  It will be 
helpful to write these matrix multiplications in the short-hand notation. 
 

“short” 
matrix notation “full” 

matrix notation 

[ ][ ] [ ]















=

3

2

1

321
T

v
v
v

uuuvu
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First, it has been seen that the dot product of two vectors can be represented by [ ][ ]vuT  or 

iivu .  Similarly, the matrix multiplication [ ][ ]Tvu  gives a 33×  matrix with element form 

jivu  or, in full, 
 

















332313

322212

312111

vuvuvu
vuvuvu
vuvuvu

 

 
This operation is called the tensor product of two vectors, written in symbolic notation 
as vu⊗  (or simply uv). 
 
Next, the matrix multiplication 
 

[ ][ ]































≡

3

2

1

333231

232221

131211

u
u
u

QQQ
QQQ
QQQ

uQ  

 
is a 13×  matrix with elements [ ][ ]( ) jiji uQ≡uQ .  The elements of [ ][ ]uQ  are the same as 

those of [ ][ ]TT Qu , which can be expressed as [ ][ ]( ) ijji Qu≡TT Qu . 
 
The expression [ ][ ]Qu  is meaningless, but [ ][ ]QuT  {▲Problem 4} is a 31×  matrix with 
elements [ ][ ]( ) jiji Qu≡QuT . 
 
This leads to the following rule: 
 
 

1. if a vector pre-multiplies a matrix [ ]Q  →  the vector is the transpose [ ]Tu  
2. if a matrix [ ]Q  pre-multiplies the vector →  the vector is [ ]u  
3. if summed indices are “beside each other”, as the j in jijQu  or jijuQ  

 →  the matrix is [ ]Q  
4. if summed indices are not beside each other, as the j in ijjQu  

→  the matrix is the transpose, [ ]TQ  
 
 
Finally, consider the multiplication of 33×  matrices.  Again, this follows the “beside 
each other” rule for the summed index.  For example, [ ][ ]BA  gives the 33×  matrix 
{▲Problem 8} [ ][ ]( ) kjikij BA=BA , and the multiplication [ ][ ]BAT  is written as 

[ ][ ]( ) kjkiij BA=BAT .  There is also the important identity 
 

[ ][ ]( ) [ ][ ]TTT ABBA =        (7.1.13) 
 
Note also the following: 
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(i) if there is no free index, as in iivu , there is one element 
(ii) if there is one free index, as in jijQu , it is a 13×  (or 31× ) matrix 
(iii) if there are two free indices, as in kjki BA , it is a 33×  matrix 

 
 
7.1.3 Vector Transformation Rule 
 
Introduce two Cartesian coordinate systems with base vectors ie  and ie′  and common 
origin o, Fig. 7.1.2.  The vector u can then be expressed in two ways: 
 

iiii uu eeu ′′==                                                  (7.1.14) 
 

 
 

Figure 7.1.2: a vector represented using two different coordinate systems 
 
Note that the ix′  coordinate system is obtained from the ix  system by a rotation of the 
base vectors.  Fig. 7.1.2 shows a rotation θ  about the 3x  axis (the sign convention for 
rotations is positive counterclockwise). 
 
Concentrating for the moment on the two dimensions 21 xx − , from trigonometry (refer to 
Fig. 7.1.3), 
 

[ ] [ ]
[ ] [ ] 221121

21

2211

cossinsincos ee
ee

eeu

uuuu
CPBDABOB

uu

′+′+′−′=

++−=

+=

θθθθ

                 (7.1.15) 

 
and so 
 

212

211

cossin
sincos

uuu
uuu
′+′=

′−′=
θθ
θθ

                                                   (7.1.16) 

 
 

 

2x′
2x

1x

1x′

1u

2u′

1u′

2u

θ

θ

o

1e′2e′

u

vector components in 
second coordinate system 

vector components in 
first coordinate system 
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Figure 7.1.3: geometry of the 2D coordinate transformation 
 
In matrix form, these transformation equations can be written as 
 

              







′
′








 −
=









2

1

2

1

cossin
sincos

u
u

u
u

θθ
θθ

                                  (7.1.17) 

 
The 22×  matrix is called the transformation matrix or rotation matrix [ ]Q .  By pre-
multiplying both sides of these equations by the inverse of [ ]Q , [ ]1−Q , one obtains the 
transformation equations transforming from [ ]T21 uu  to [ ]T21 uu ′′ : 
 

              















−

=







′
′

2

1

2

1

cossin
sincos

u
u

u
u

θθ
θθ

                                 (7.1.18) 

 
It can be seen that the components of [ ]Q  are the directions cosines, i.e. the cosines of 
the angles between the coordinate directions: 
 

( ) jijiij xxQ ee ′⋅=′= ,cos                                   (7.1.19) 
 
It is straight forward to show that, in the full three dimensions, Fig. 7.1.4, the components 
in the two coordinate systems are also related through 

 
[ ] [ ][ ]
[ ] [ ][ ]uQu

uQu
T=′=′

′=′=





jjii

jiji

uQu

uQu
     Vector Transformation Rule     (7.1.20) 
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Figure 7.1.4: two different coordinate systems in a 3D space 
 
 
Orthogonality of the Transformation Matrix [ ]Q  
 
From 7.1.20, it follows that 
 

[ ] [ ][ ]
[ ][ ][ ]uQQ

uQu
T==

′=′=





kkjij

jiji

uQQ

uQu
                              (7.1.21) 

 
and so 

 
[ ][ ] [ ]IQQ == T

ikkjijQQ δ                                 (7.1.22) 
 
A matrix such as this for which [ ] [ ]1T −= QQ  is called an orthogonal matrix. 
 
Example 
 
Consider a Cartesian coordinate system with base vectors ie .  A coordinate 
transformation is carried out with the new basis given by 
 

3
)3(

32
)3(

21
)3(

13

3
)2(

32
)2(

21
)2(

12

3
)1(

32
)1(

21
)1(

11

eeee
eeee

eeee

aaa
aaa
aaa

++=′

++=′

++=′

 

 
What is the transformation matrix? 
 
Solution 
 
The transformation matrix consists of the direction cosines jijiij xxQ ee ′⋅=′= ),cos( , so 
 

1x

2x

1x′

2x′

3x
3x′

u
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[ ]
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■  

 
 
7.1.4 Tensors 
 
The concept of the tensor is discussed in detail in Book III, where it is indispensable for 
the description of large-strain deformations.  For small deformations, it is not so 
necessary; the main purpose for introducing the tensor here (in a rather non-rigorous way) 
is that it helps to deepen one’s understanding of the concept of stress. 
 
A second-order tensor4 A may be defined as an operator that acts on a vector u 
generating another vector v, so that vuT =)( , or 
 

vTu =  Second-order Tensor (7.1.23) 
 
The second-order tensor T is a linear operator, by which is meant 
 

( ) TbTabaT +=+  …  distributive 
( ) ( )TaaT αα =  …   associative  

 
for scalar α .  In a Cartesian coordinate system, the tensor T has nine components and can 
be represented in the matrix form 
 

[ ]















=

333231

232221

131211

TTT
TTT
TTT

T  

 
The rule 7.1.23, which is expressed in symbolic notation, can be expressed in the index 
and matrix notation when T is referred to particular axes: 
 

[ ] [ ][ ]vTu =































=
















=

3

2

1

333231

232221

131211

3

2

1

v
v
v

TTT
TTT
TTT

u
u
u

vTu jiji          (7.1.24) 

 
Again, one should be careful to distinguish between a tensor such as T and particular 
matrix representations of that tensor.  The relation 7.1.23 is a tensor relation, relating 
vectors and a tensor and is valid in all coordinate systems; the matrix representation of 
this tensor relation, Eqn. 7.1.24, is to be sure valid in all coordinate systems, but the 
entries in the matrices of 7.1.24 depend on the coordinate system chosen. 
 

 
4 to be called simply a tensor in what follows 
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Note also that the transformation formulae for vectors, Eqn. 7.1.20, is not a tensor 
relation; although 7.1.20 looks similar to the tensor relation 7.1.24, the former relates the 
components of a vector to the components of the same vector in different coordinate 
systems, whereas (by definition of a tensor) the relation 7.1.24 relates the components of a 
vector to those of a different vector in the same coordinate system. 
 
For these reasons, the notation uQu iji ′=  in Eqn. 7.1.20 is more formally called element 
form, the ijQ  being elements of a matrix rather than components of a tensor.  This 
distinction between element form and index notation should be noted, but the term “index 
notation” is used for both tensor and matrix-specific manipulations in these notes.  
 
Example 
 
Recall the strain-displacement relations, Eqns. 1.2.19, which in full read  
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        (7.1.25) 

 
The index notation for these equations is 
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∂
+

∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ε                                               (7.1.26) 

 
This expression has two free indices and as such indicates nine separate equations.  
Further, with its two subscripts, ijε , the strain, is a tensor.  It can be expressed in the 
matrix notation 
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7.1.5 Tensor Transformation Rule 
 
Consider now the tensor definition 7.1.23 expressed in two different coordinate systems: 
 

[ ] [ ][ ] { }
[ ] [ ][ ] { }ijiji

ijiji

xvTu
xvTu
′′′=′′′=′

==

in
in

vTu
vTu

                         (7.1.27) 

 
From the vector transformation rule 7.1.20, 
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[ ] [ ][ ]
[ ] [ ][ ]vQv

uQu
T

T

=′=′

=′=′

jjii

jjii

vQv

uQu
                                  (7.1.28) 

 
Combining 7.1.27-28, 
 

[ ][ ] [ ][ ][ ]vQTuQ TT ′=′= kkjijjji vQTuQ                           (7.1.29) 
 
and so 

 
[ ] [ ][ ][ ][ ]vQTQu T′=′= kkjijmijjimi vQTQuQQ                      (7.1.30) 

 
(Note that mjmjjjimi uuuQQ == δ .)  Comparing with 7.1.24, it follows that 

 
[ ] [ ][ ][ ]
[ ] [ ][ ][ ]QTQT

QTQT
T

T

=′=′

′=′=





pqqjpiij

pqjqipij

TQQT

TQQT
     Tensor Transformation Rule     (7.1.31) 

 
 
7.1.6 Problems 
 
1. Write the following in index notation: v , 1ev ⋅ , kev ⋅ . 
2. Show that jiij baδ  is equivalent to ba ⋅ . 
3. Evaluate or simplify the following expressions: 

(a) kkδ     (b) ijijδδ     (c) jkijδδ  

4. Show that [ ][ ]QuT  is a 31×  matrix with elements jijQu  (write the matrices out in 
full) 

5. Show that [ ][ ]( ) [ ][ ]TTT QuuQ =  
6. Are the three elements of [ ][ ]uQ  the same as those of [ ][ ]QuT ? 
7. What is the index notation for ( )cba ⋅ ? 
8. Write out the 33×  matrices [ ]A  and [ ]B  in full, i.e. in terms of ,, 1211 AA etc. and 

verify that [ ] kjikij BA=AB  for 1,2 == ji . 
9. What is the index notation for 

(a) [ ][ ]TBA  
(b) [ ][ ][ ]vAvT  (there is no ambiguity here, since [ ][ ]( )[ ] [ ] [ ][ ]( )vAvvAv TT = ) 
(c) [ ][ ][ ]BABT  

10. The angles between the axes in two coordinate systems are given in the table below. 
 1x  2x  3x  

1x′  o135  o60  o120  
2x′  o90  o45  o45  
3x′  o45  o60  o120  

Construct the corresponding transformation matrix [ ]Q  and verify that it is 
orthogonal. 
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11. Consider a two-dimensional problem.  If the components of a vector u in one 

coordinate system are  









3
2

 

what are they in a second coordinate system, obtained from the first by a positive  
rotation of 30o?  Sketch the two coordinate systems and the vector to see if your 
answer makes sense. 

 
12. Consider again a two-dimensional problem with the same change in coordinates as 

in Problem 11.  The components of a 2D tensor in the first system are 








 −
23
11

 

What are they in the second coordinate system? 
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7.2 Analysis of Three Dimensional Stress and Strain 
 
The concept of traction and stress was introduced and discussed in Book I, §3.  For the 
most part, the discussion was confined to two-dimensional states of stress.  Here, the fully 
three dimensional stress state is examined.  There will be some repetition of the earlier 
analyses. 
 
 
7.2.1 The Traction Vector and Stress Components 
 
Consider a traction vector t acting on a surface element, Fig. 7.2.1.  Introduce a Cartesian 
coordinate system with base vectors ie  so that one of the base vectors is a normal to the 
surface and the origin of the coordinate system is positioned at the point at which the 
traction acts.  For example, in Fig. 7.1.1, the 3e  direction is taken to be normal to the 
plane, and a superscript on t denotes this normal: 
 

332211
)( 3 eeet e ttt ++=         (7.2.1) 

 
Each of these components it  is represented by ijσ   where the first subscript denotes the 
direction of the normal and the second denotes the direction of the component to the 
plane.  Thus the three components of the traction vector shown in Fig. 7.2.1 are 

333231 ,, σσσ  : 
 

333232131
)( 3 eeet e σσσ ++=            (7.2.2) 

 
The first two stresses, the components acting tangential to the surface, are shear stresses 
whereas 33σ , acting normal to the plane, is a normal stress. 
 

 
 

Figure 7.2.1: components of the traction vector 
 
Consider the three traction vectors )()()( 321 ,, eee ttt  acting on the surface elements whose 
outward normals are aligned with the three base vectors je , Fig. 7.2.2a.  The three (or six) 
surfaces can be amalgamated into one diagram as in Fig. 7.2.2b. 
 
In terms of stresses, the traction vectors are 
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( )
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     or     ( )
jij

i et e σ=                     (7.2.3) 

 

 
 
Figure 7.2.2: the three traction vectors acting at a point; (a) on mutually orthogonal 

planes, (b) the traction vectors illustrated on a box element 
 
The components of the three traction vectors, i.e. the stress components, can now be 
displayed on a box element as in Fig. 7.2.3.  Note that the stress components will vary 
slightly over the surfaces of an elemental box of finite size.  However, it is assumed that 
the element in Fig. 7.2.3 is small enough that the stresses can be treated as constant, so 
that they are the stresses acting at the origin. 
 

 
 

Figure 7.2.3: the nine stress components with respect to a Cartesian coordinate 
system 

 
The nine stresses can be conveniently displayed in 33×  matrix form: 
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[ ]













=

333231

232221

131211

σσσ
σσσ
σσσ

σ ij                                   (7.2.4) 

 
It is important to realise that, if one were to take an element at some different orientation 
to the element in Fig. 7.2.3, but at the same material particle, for example aligned with 
the axes 321 ,, xxx ′′′  shown in Fig. 7.2.4, one would then have different tractions acting and 
the nine stresses would be different also.  The stresses acting in this new orientation can 
be represented by a new matrix: 
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σ ij                                      (7.2.5) 

  

 
 

Figure 7.2.4: the stress components with respect to a Cartesian coordinate system 
different to that in Fig. 7.2.3 

 
 
7.2.2 Cauchy’s Law 
 
Cauchy’s Law, which will be proved below, states that the normal to a surface, iin en = , 
is related to the traction vector iit et n =)(  acting on that surface, according to 
 

jjii nt σ=                                                        (7.2.6) 
 
Writing the traction and normal in vector form and the stress in 33×  matrix form, 
 

[ ] [ ] [ ]
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=
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333231
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)(
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)(
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)(
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)( ,,
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n
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t iiji
σσσ
σσσ
σσσ

σ
n

n

n

n     (7.2.7) 

 
and Cauchy’s law in matrix notation reads 
 

1x′

2x′

3x′

11σ ′
12σ ′

13σ ′31σ ′

33σ ′

32σ ′

22σ ′
21σ ′

23σ ′
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)(
3

)(
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)(
1

n
n
n

t
t
t

σσσ
σσσ
σσσ

n

n

n

                                (7.2.8) 

 
Note that it is the transpose stress matrix which is used in Cauchy’s law.  Since the stress 
matrix is symmetric, one can express Cauchy’s law in the form 
 

jiji nt σ=      Cauchy’s Law                          (7.2.9) 
 
Cauchy’s law is illustrated in Fig. 7.2.5; in this figure, positive stresses ijσ  are shown. 
 

 
 

Figure 7.2.5: Cauchy’s Law; given the stresses and the normal to a plane, the 
traction vector acting on the plane can be determined 

 
 
Normal and Shear Stress 
 
It is useful to be able to evaluate the normal stress Nσ  and shear stress Sσ  acting on any 
plane, Fig. 7.2.6.  For this purpose, note that the stress acting normal to a plane is the 
projection of )(nt  in the direction of n , 
 

)(ntn ⋅=Nσ            (7.2.10) 
 
The magnitude of the shear stress acting on the surface can then be obtained from 
 

22)(
NS σσ −= nt                (7.2.11) 
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1x

n

( )nt

23σ
13σ

33σ
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22σ

32σ
31σ
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11σ
( )n
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( )n
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( )n
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Figure 7.2.6: the normal and shear stress acting on an arbitrary plane through a 
point 

 
 
Example 
 
The state of stress at a point with respect to a Cartesian coordinates system 3210 xxx  is 
given by: 
 

[ ]
















−
−=
123
221

312

ijσ        

 
Determine: 
(a) the traction vector acting on a plane through the point whose unit normal is 

321 )3/2()3/2()3/1( eeen −+=  
(b) the component of this traction acting perpendicular to the plane 
(c) the shear component of traction on the plane 
 
Solution 
(a) From Cauchy’s law, 
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σσσ
σσσ
σσσ

n

n

n

   

so that 321
)( ˆ3)3/2( eeet n −+−= . 

 
(b) The component normal to the plane is  

.4.29/22)3/2()3/2(3)3/1)(3/2()( ≈=++−=⋅= nt n
Nσ  

 
(c) The shearing component of traction is  

( ) ( ) ( )[ ] ( )[ ]{ } 1.213
2/12

9
22222

3
222)( ≈−−++−=−= NS σσ nt  

■  

3x

2x

1x

n

( )ntNσ

Sσ
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Proof of Cauchy’s Law 
 
Cauchy’s law can be proved using force equilibrium of material elements.  First, consider 
a tetrahedral free-body, with vertex at the origin, Fig. 7.2.7.  It is required to determine the 
traction t in terms of the nine stress components (which are all shown positive in the 
diagram). 
 

 
 

Figure 7.2.7: proof of Cauchy’s Law 
 
The components of the unit normal, in , are the direction cosines of the normal vector, i.e. 
the cosines of the angles between the normal and each of the coordinate directions: 
 

( ) iii n=⋅= enen,cos                    (7.2.12) 
 
Let the area of the base of the tetrahedron, with normal n, be S∆ .  The area 1S∆  is then 

αcosS∆ , where α  is the angle between the planes, as shown to the right of Fig. 7.2.7; 
this angle is the same as that between the vectors n and 1e , so SnS ∆=∆ 11 , and similarly 
for the other surfaces:  
 

SnS ii ∆=∆                                                   (7.2.13) 
 
The resultant surface force on the body, acting in the ix  direction, is then 
 

SnStSStF jjiijjiii ∆−∆=∆−∆=∑ σσ             (7.2.14) 
 
For equilibrium, this expression must be zero, and one arrives at Cauchy’s law. 
 
Note: 
As proved in Book III, this result holds also in the general case of accelerating material 
elements in the presences of body forces. 
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( )nt

23σ
13σ

33σ

12σ

22σ

32σ
31σ

21σ

11σ 1S∆

3S∆

•
•

n

2S∆ α
1e



Section 7.2 

Solid Mechanics Part II                                                                                Kelly 209 

7.2.3 The Stress Tensor 
 
Cauchy’s law 7.2.9 is of the same form as 7.1.24 and so by definition the stress is a 
tensor.  Denote the stress tensor in symbolic notation by σ .  Cauchy’s law in symbolic 
form then reads 
 

nσt =                                                         (7.2.15) 
 
Further, the transformation rule for stress follows the general tensor transformation rule 
7.1.31: 
 

[ ] [ ][ ][ ]
[ ] [ ][ ][ ]QσQσ

QσQσ
T

T

=′=′

′=′=





pqqjpiij

pqjqipij

QQ

QQ

σσ

σσ
     Stress Transformation Rule     (7.2.16) 

 
As with the normal and traction vectors, the components and hence matrix representation 
of the stress changes with coordinate system, as with the two different matrix 
representations 7.2.4 and 7.2.5.  However, there is only one stress tensor σ  at a point.  
Another way of looking at this is to note that an infinite number of planes pass through a 
point, and on each of these planes acts a traction vector, and each of these traction vectors 
has three (stress) components.  All of these traction vectors taken together define the 
complete state of stress at a point. 
 
Example 
 
The state of stress at a point with respect to an 3210 xxx  coordinate system is given by 

[ ]












−
−=
120
231

012
ijσ  

(a) What are the stress components with respect to axes 3210 xxx ′′′  which are obtained 
from the first by a o45  rotation (positive counterclockwise) about the 2x  axis, Fig. 
7.2.8? 

(b) Use Cauchy’s law to evaluate the normal and shear stress on a plane with normal 
( ) ( ) 31 2/12/1 een +=  and relate your result with that from (a) 
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Figure 7.2.8: two different coordinate systems at a point 
 
Solution 
(a) The transformation matrix is 

[ ]
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 
















−
=

















′′′
′′′
′′′

=

2
1

2
1

2
1

2
1

332313

322212

312111

0
010

0

,cos,cos,cos
,cos,cos,cos
,cos,cos,cos

xxxxxx
xxxxxx
xxxxxx

Qij  

and IQQ =T  as expected.  The rotated stress components are therefore 

















−
−=

















−















−
−















 −
=

















′′′
′′′
′′′

2
3

2
1

2
1

2
1

2
3

2
1

2
3

2
3

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

333231

232221

131211

3

0
010

0

120
231

012

0
010

0

σσσ
σσσ
σσσ

 

and the new stress matrix is symmetric as expected. 
(b) From Cauchy’s law, the traction vector is 
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so that ( ) ( ) ( ) 321
)( ˆ2/12/12 eeet n +−= .  The normal and shear stress on the 

plane are 
2/3)( =⋅= nt n

Nσ  
and 

2/3)2/3(3 222)( =−=−= NS σσ nt  

The normal to the plane is equal to 3e′  and so Nσ  should be the same as 33σ ′  and it 

is.  The stress Sσ  should be equal to ( ) ( )2
32

2
31 σσ ′+′  and it is.  The results are 

1x

1e
22 ee ′=

3e

3e′

22 xx ′=
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1e′

1x′

3x′
o45

o45
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displayed in Fig. 7.2.9, in which the traction is represented in different ways, with 
components ( ))(

3
)(

2
)(

1 ,, nnn ttt  and ( )333231 ,, σσσ ′′′ . 
 

 
 

Figure 7.2.9: traction and stresses acting on a plane 
 
 
Isotropic State of Stress 
 
Suppose the state of stress in a body is 
 

[ ]















==

0

0

0

0

00
00
00

σ
σ

σ
δσσ σijij            (7.2.17) 

 
One finds that the application of the stress tensor transformation rule yields the very same 
components no matter what the new coordinate system {▲Problem 3}.  In other words, 
no shear stresses act, no matter what the orientation of the plane through the point.  This is 
termed an isotropic state of stress, or a spherical state of stress.  One example of 
isotropic stress is the stress arising in a fluid at rest, which cannot support shear stress, in 
which case 
 

[ ] [ ]Iσ p−=         (7.2.18) 
 
where the scalar p is the fluid hydrostatic pressure.  For this reason, an isotropic state of 
stress is also referred to as a hydrostatic state of stress. 
 
 
7.2.4 Principal Stresses 
 
For certain planes through a material particle, there are traction vectors which act normal 
to the plane, as in Fig. 7.2.10.  In this case the traction can be expressed as a scalar 
multiple of the normal vector, nt n σ=)( . 
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Figure 7.2.10: a purely normal traction vector 
 
From Cauchy’s law then,  for these planes, 
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This is a standard eigenvalue problem from Linear Algebra: given a matrix [ ]ijσ , find 
the eigenvalues σ  and associated eigenvectors n such that Eqn. 7.2.19 holds. 
To solve the problem, first re-write the equation in the form 
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or 
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                            (7.2.21) 

 
This is a set of three homogeneous equations in three unknowns (if one treats σ  as 
known).  From basic linear algebra, this system has a solution (apart from 0=in ) if and 
only if the determinant of the coefficient matrix is zero, i.e. if  
 

0det)det(
333231

232221

131211
=















−
−

−
=−

σσσσ
σσσσ
σσσσ

σIσ                (7.2.22) 

 
Evaluating the determinant, one has the following cubic characteristic equation of the 
stress tensor σ , 
 

032
2

1
3 =−+− III σσσ  Characteristic Equation      (7.2.23) 

 
and the principal scalar invariants of the stress tensor are  

no shear stress – only a normal 
component to the traction 

n

nt n σ=)(
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23113322113
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3322111

2 σσσσσσσσσσσσ
σσσσσσσσσ

σσσ

+−−−=
−−−++=

++=

I
I
I

           (7.2.24) 

 
( 3I  is the determinant of the stress matrix.)  The characteristic equation 7.2.23 can now be 
solved for the eigenvalues σ  and then Eqn. 7.2.21 can be used to solve for the 
eigenvectors n. 
 
Now another theorem of linear algebra states that the eigenvalues of a real (that is, the 
components are real), symmetric matrix (such as the stress matrix) are all real and further 
that the associated eigenvectors are mutually orthogonal.  This means that the three roots 
of the characteristic equation are real and that the three associated eigenvectors form a 
mutually orthogonal system.  This is illustrated in Fig. 7.2.11; the eigenvalues are called 
principal stresses and are labelled 321 ,, σσσ  and the three corresponding eigenvectors 
are called principal directions, the directions in which the principal stresses act.  The 
planes on which the principal stresses act (to which the principal directions are normal) 
are called the principal planes. 
 

 
 
Figure 7.2.11: the three principal stresses acting at a point and the three associated 

principal directions 1, 2 and 3 
 
 
Once the principal stresses are found, as mentioned, the principal directions can be found 
by solving Eqn. 7.2.21, which can be expressed as 
 

0)(
0)(
0)(

333232131

323222121

313212111

=−++
=+−+
=++−

nnn
nnn
nnn

σσσσ
σσσσ
σσσσ

   (7.2.25) 

 
Each principal stress value in this equation gives rise to the three components of the 
associated principal direction vector, 321 ,, nnn .  The solution also requires that the 
magnitude of the normal be specified: for a unit vector, 1=⋅nn .  The directions of the 
normals are also chosen so that they form a right-handed set. 
 
 

1

1σ

3σ
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Example 
 
The stress at a point is given with respect to the axes 321 xxOx  by the values 

[ ]












−
−−=

1120
1260
005

ijσ . 

Determine (a) the principal values, (b) the principal directions (and sketch them). 
  
Solution: 
(a) 
The principal values are the solution to the characteristic equation 

0)15)(5)(10(
1120

1260
005

=+−+−=
−−
−−−

−
σσσ

σ
σ

σ
 

which yields the three principal values 15,5,10 321 −=== σσσ . 
(b) 
The eigenvectors are now obtained from Eqn. 7.2.25.  First, for 101 =σ , 

09120
012160
0005

321

321

321

=−−
=−−
=++−

nnn
nnn
nnn

 
and using also the equation 12

3
2
2

2
1 =++ nnn  leads to 321 )5/4()5/3( een +−= .  Similarly, 

for 52 =σ  and 153 −=σ , one has, respectively, 

04120
012110
0000

321

321

321

=−−
=−−
=++

nnn
nnn
nnn

    and    
016120
01290
00020

321

321

321

=+−
=−+
=++

nnn
nnn
nnn

 

which yield 12 en =  and 323 )5/3()5/4( een += .  The principal directions are sketched in 
Fig. 7.2.12.  Note that the three components of each principal direction, 321 ,, nnn , are the 
direction cosines: the cosines of the angles between that principal direction and the three 
coordinate axes.  For example, for 1σ  with 5/4,5/3,0 321 =−== nnn , the angles made 
with the coordinate axes 321 ,, xxx  are, respectively, 90, 126.87o and 36.87o. 
 

 
 

Figure 7.2.12: principal directions 
■  
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Invariants 
 
The principal stresses 321 ,, σσσ  are independent of any coordinate system; the 3210 xxx  
axes to which the stress matrix in Eqn. 7.2.19 is referred can have any orientation – the 
same principal stresses will be found from the eigenvalue analysis.  This is expressed by 
using the symbolic notation for the problem: nnσ σ= , which is independent of any 
coordinate system.  Thus the principal stresses are intrinsic properties of the stress state at 
a point.  It follows that the functions 321 ,, III  in the characteristic equation Eqn. 7.2.23 
are also independent of any coordinate system, and hence the name principal scalar 
invariants (or simply invariants) of the stress. 
 
The stress invariants can also be written neatly in terms of the principal stresses: 
 

3213

1332212

3211

σσσ
σσσσσσ

σσσ

=
++=

++=

I
I
I

       (7.2.26) 

 
Also, if one chooses a coordinate system to coincide with the principal directions, Fig. 
7.2.12, the stress matrix takes the simple form 
 

[ ]













=

3

2

1

00
00
00

σ
σ

σ
σ ij              (7.2.27) 

 
Note that when two of the principal stresses are equal, one of the principal directions will 
be unique, but the other two will be arbitrary – one can choose any two principal 
directions in the plane perpendicular to the uniquely determined direction, so that the 
three form an orthonormal set.  This stress state is called axi-symmetric.  When all three 
principal stresses are equal, one has an isotropic state of stress, and all directions are 
principal directions – the stress matrix has the form 7.2.27 no matter what orientation the 
planes through the point. 
 
Example 
 
The two stress matrices from the Example of §7.2.3, describing the stress state at a point 
with respect to different coordinate systems, are 

[ ]
















−
−=
120
231

012

ijσ ,           [ ]
















−
−=′

2/32/12/1
2/132/3

2/12/32/3
ijσ  

The first invariant is the sum of the normal stresses, the diagonal terms, and is the same 
for both as expected: 

63132 2
3

2
3

1 =++=++=I  
The other invariants can also be obtained from either matrix, and are 

3,6 32 −== II  
■  
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7.2.5 Maximum and Minimum Stress Values 
 
Normal Stresses 
 
The three principal stresses include the maximum and minimum normal stress 
components acting at a point.  To prove this, first let 321 ,, eee  be unit vectors in the 
principal directions.  Consider next an arbitrary unit normal vector iin en = .  From 
Cauchy’s law (see Fig. 7.2.13 – the stress matrix in Cauchy’s law is now with respect to 
the principal directions 1, 2 and 3),  the normal stress acting on the plane with normal n is 
 

( ) ijijNN nnσσσ =⋅=⋅= ,)( nnσnt n            (7.2.28) 
 

 
 

Figure 7.2.13: normal stress acting on a plane defined by the unit normal n 
 
Thus 
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=          (7.2.29) 

 
Since 12

3
2
2

2
1 =++ nnn  and, without loss of generality, taking 321 σσσ ≥≥ , one has 

 
( ) Nnnnnnn σσσσσσ =++≥++= 2

33
2
22

2
11

2
3

2
2

2
111      (7.2.30) 

 
Similarly, 
 

( ) 3
2
3

2
2

2
13

2
33

2
22

2
11 σσσσσσ ≥++≥++= nnnnnnN      (7.2.31) 

 
Thus the maximum normal stress acting at a point is the maximum principal stress and the 
minimum normal stress acting at a point is the minimum principal stress. 
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Shear Stresses 
 
Next, it will be shown that the maximum shearing stresses at a point act on planes 
oriented at 45o to the principal planes and that they have magnitude equal to half the 
difference between the principal stresses.  First, again, let 321 ,, eee  be unit vectors in the 
principal directions and consider an arbitrary unit normal vector iin en = .  The normal 
stress is given by Eqn. 7.2.29, 
 

2
33

2
22

2
11 nnnN σσσσ ++=                                (7.2.32) 

 
Cauchy’s law gives the components of the traction vector as 
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             (7.2.33) 

 
and so the shear stress on the plane is, from Eqn. 7.2.11, 
 

( ) ( )22
33

2
22

2
11

2
3

2
3

2
2

2
2

2
1

2
1

2 nnnnnnS σσσσσσσ ++−++=            (7.2.34) 
 
Using the condition 12

3
2
2

2
1 =++ nnn  to eliminate 3n  leads to 
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131

2
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2
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2
3

2
2

2
1

2
3

2
1

2 σσσσσσσσσσσ +−+−−+−+−= nnnnS    (7.2.35) 
 
The stationary points are now obtained by equating the partial derivatives with respect to 
the two variables 1n  and 2n  to zero: 
 

( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]{ } 02

02

2
232

2
13132322
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2

2
232

2
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nnn
n

nnn
n
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σ
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σ

      (7.2.36) 

 
One sees immediately that 021 == nn  (so that 13 ±=n ) is a solution; this is the principal 
direction 3e  and the shear stress is by definition zero on the plane with this normal.  In 
this calculation, the component 3n  was eliminated and 2

Sσ  was treated as a function of the 
variables ),( 21 nn .  Similarly, 1n  can be eliminated with ),( 32 nn  treated as the variables, 
leading to the solution 1en = , and 2n  can be eliminated with ),( 31 nn  treated as the 
variables, leading to the solution 2en = .  Thus these solutions lead to the minimum shear 
stress value 02 =Sσ . 
 
A second solution to Eqn. 7.2.36 can be seen to be 2/1,0 21 ±== nn  (so that 

2/13 ±=n ) with corresponding shear stress values ( )2
324

12 σσσ −=S .  Two other 
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solutions can be obtained as described earlier, by eliminating 1n  and by eliminating 2n .  
The full solution is listed below, and these are evidently the maximum (absolute value of 
the) shear stresses acting at a point: 
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2
1,0,

2
1,

2
1

2
1,

2
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2
1

2
1,

2
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2
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±±=

S

S

S

n

n

n

      (7.2.37) 

 
Taking 321 σσσ ≥≥ , the maximum shear stress at a point is 
 

( )31max 2
1 σστ −=     (7.2.38) 

 
and acts on a plane with normal oriented at 45o to the 1 and 3 principal directions.  This is 
illustrated in Fig. 7.2.14. 
 

 
 

Figure 7.2.14: maximum shear stress at a point 
 
 
Example 
 
Consider the stress state examined in the Example of §7.2.4: 

[ ]
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005

ijσ  

The principal stresses were found to be 15,5,10 321 −=== σσσ  and so the maximum 
shear stress is 

( )
2
25

2
1

31max =−= σστ  

One of the planes upon which they act is shown in Fig. 7.2.15 (see Fig. 7.2.12) 
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Figure 7.2.15: maximum shear stress 
 

■  
 
 
7.2.6 Mohr’s Circles of Stress 
 
The Mohr’s circle for 2D stress states was discussed in Book I, §3.5.5.  For the 3D case, 
following on from section 7.2.5, one has the conditions 
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                        (7.2.39) 

 
Solving these equations gives 
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( )( )
( )( )

( )( )
( )( )2313

2
212

3

1232

2
132

2

3121

2
322

1

σσσσ
σσσσσ

σσσσ
σσσσσ

σσσσ
σσσσσ

−−
+−−

=

−−
+−−

=

−−
+−−

=

SNN

SNN

SNN

n

n

n

         (7.2.40) 

 
Taking 321 σσσ ≥≥ , and noting that the squares of the normal components must be 
positive, one has that 
 

( )( )
( )( )
( )( ) 0

0
0

2
21

2
13

2
32

≥+−−
≤+−−
≥+−−

SNN

SNN

SNN

σσσσσ
σσσσσ
σσσσσ

                 (7.2.41) 

 
and these can be re-written as 

 
( )[ ] ( )[ ]
( )[ ] ( )[ ]
( )[ ] ( )[ ]2212

12
212

12

2
312

12
312

12

2
322

12
322

12

σσσσσσ
σσσσσσ
σσσσσσ

−≥+−+
−≤+−+
−≥+−+

NS

NS

NS

           (7.2.42) 
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If one takes coordinates ( )SN σσ , , the equality signs here represent circles in ( )SN σσ ,  
stress space, Fig. 7.2.16.  Each point ( )SN σσ ,  in this stress space represents the stress on 
a particular plane through the material particle in question.  Admissible ( )SN σσ ,  pairs are 
given by the conditions Eqns. 7.2.42; they must lie inside a circle of centre ( )( )0,312

1 σσ +  
and radius ( )312

1 σσ − .  This is the large circle in Fig. 7.2.16.  The points must lie outside 
the circle with centre ( )( )0,322

1 σσ +  and radius ( )322
1 σσ −  and also outside the circle 

with centre ( )( )0,212
1 σσ +  and radius ( )212

1 σσ − ; these are the two smaller circles in the 
figure.  Thus the admissible points in stress space lie in the shaded region of Fig. 7.2.16. 
 

 
 

Figure 7.2.16: admissible points in stress space 
 
 
7.2.7 Three Dimensional Strain 
 
The strain ijε , in symbolic form ε , is a tensor and as such it follows the same rules as for 
the stress tensor.  In particular, it follows the general tensor transformation rule 7.2.16; it 
has principal values ε  which satisfy the characteristic equation 7.2.23 and these include 
the maximum and minimum normal strain at a point.  There are three principal strain 
invariants  given by 7.2.24 or 7.2.26 and the maximum shear strain occurs on planes 
oriented at 45o to the principal directions. 
 
 
7.2.8 Problems 
 
1. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by  

[ ]












−−
−=

212
101

212
ijσ  

Use Cauchy’s law to determine the traction vector acting on a plane trough this 
point whose unit normal is 3/)( 321 eeen ++= .  What is the normal stress acting 
on the plane?  What is the shear stress acting on the plane? 
 

2. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by 

[ ]












−
=

202
013
231

ijσ  

Nσ

Sσ

• ••
3σ 2σ 1σ
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What are the stress components with respect to axes 3210 xxx ′′′  which are obtained 
from the first by a o45  rotation (positive counterclockwise) about the 3x  axis 
 

3. Show, in both the index and matrix notation, that the components of an isotropic 
stress state remain unchanged under a coordinate transformation. 

 
4. Consider a two-dimensional problem.  The stress transformation formulae are then, 

in full, 








 −
















−

=







′′
′′

θθ
θθ

σσ
σσ

θθ
θθ

σσ
σσ

cossin
sincos

cossin
sincos

2221

1211

2221

1211  

Multiply the right hand side out and use the fact that the stress tensor is symmetric 
( 2112 σσ =  - not true for all tensors).  What do you get?  Look familiar? 

 
5. The state of stress at a point with respect to a 3210 xxx  coordinate system is given by 

[ ]











−

−
=

100
02/52/1
02/12/5

ijσ  

Evaluate the principal stresses and the principal directions.  What is the maximum 
shear stress acting at the point? 
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7.3 Governing Equations of Three Dimensional 
Elasticity 

 
 
7.3.1 Hooke’s Law and Lamé’s Constants 
 
Linear elasticity was introduced in Book I, §6.  The three-dimensional Hooke’s law for 
isotropic linear elastic solids (Book I, Eqns. 6.1.9) can be expressed in index notation as 
 

ijkkijij µεελδσ 2+=                                           (7.3.1) 
 
where  
 

( )( ) ( )νµ
νν

νλ
+

=
−+

=
12

,
211

EE                               (7.3.2) 

 
are the Lamé constants (µ  is the Shear Modulus).  Eqns. 7.3.1 can be inverted to obtain 
(see Book I, Eqns. 6.1.8) {▲Problem 1} 
 

( ) kkijijij σδ
µλµ

λσ
µ

ε
2322

1
+

−=                                  (7.3.3) 

 
 
7.3.2 Navier’s Equations 
 
The governing equations of elasticity are Hooke’s law (Eqn. 7.3.1), the equations of 
motion, Eqn. 1.1.9 (see Eqns. 7.1.10-11), 
 

ii
j

ij ab
x

ρ
σ

=+
∂

∂
                                                (7.3.4) 

 
 and the strain-displacement relations, Eqn. 1.2.19 (see Eqns. 7.1.25-26), 
 












∂

∂
+

∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ε                                             (7.3.5) 

 
Substituting 7.3.5 into 7.3.1 and then into 7.3.4 leads to the 3D Navier’s equations 
{▲Problem 2} 
 

( ) ii
jj

i

ij

j ab
xx

u
xx

u
ρµµλ =+

∂∂
∂

+
∂∂

∂
+

22

      Navier’s Equations     (7.3.6) 

 
These reduce to the 2D plane strain Navier’s equations, Eqns. 3.1.4, by setting 03 =u  and  

0/ 3 =∂∂ x .  They do not reduce to the plane stress equations since the latter are only an 
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approximate solution to the equations of elasticity which are valid only in the limit as the 
thickness of the thin plate of plane stress tends to zero.   
 
In terms of the dilatation and the rotation 
 
The dilatation (unit volume change) is the scalar invariant 
 

div j
ii

j

u
e

x
ε

∂
= = = ∇ ⋅ =

∂
u u                                          (7.3.7) 

 
The gradient of this scalar is then the vector 
 

( )
2

grad div j

i j

u
x x
∂

≡ ∇ ∇⋅ ≡
∂ ∂

u u .                                  (7.3.8) 

 
The Lapacian of the displacement vector is defined to be the vector 
 

2
2 i

j j

u
x x
∂

∇ ≡
∂ ∂

u .                                                 (7.3.9) 

 
Navier’s equations can thus be expressed in the vector notation 
 

( ) ( ) 2λ µ µ ρ+ ∇ ∇⋅ + ∇ + =u u b u                              (7.3.10) 
 
or, in full, and in terms of the dilatation, 
 

( )

( )

( )

2 2 2
1 1 1 1

12 2 2 2
1 1 2 3

2 2 2
2 2 2 2

22 2 2 2
2 1 2 3

2 2 2
3 3 3 3

12 2 2 2
3 1 2 3

e u u u ub
x x x x t

e u u u ub
x x x x t

e u u u ub
x x x x t

λ µ µ ρ

λ µ µ ρ

λ µ µ ρ

 ∂ ∂ ∂ ∂ ∂
+ + + + + = ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
+ + + + + = ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
+ + + + + = ∂ ∂ ∂ ∂ ∂ 

                  (7.3.11) 

 
Using the vector relation 
 

( ) ( )2∇ = ∇ ∇⋅ −∇× ∇×a a a ,                               (7.3.12) 
 
Naviers equations can also be expressed in the form 
 

( ) ( ) ( )2λ µ µ ρ+ ∇ ∇⋅ − ∇× ∇× + =u u b u                       (7.3.13) 
 
Now the curl of the displacement is the rotation vector  
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1
2

= ∇×ω u                                                      (7.3.14) 

 
In full, these are (see Eqns. 1.2.20): 
 

3 2 1 3 2 1
1 2 3

2 3 3 1 1 2

1 1 1, ,
2 2 2

u u u u u u
x x x x x x

ω ω ω
     ∂ ∂ ∂ ∂ ∂ ∂

= − = − = −     ∂ ∂ ∂ ∂ ∂ ∂    
       (7.3.15) 

 
For example, as illustrated in Fig. 7.3.1, the third component is the (angle of) rotation of 
material about the 3x  axis. 

 

 
 

Figure 7.3.1: a rotation 
 
Navier’s equations can thus be expressed as 
 

( )2 2eλ µ µ ρ+ ∇ − ∇× + =ω b u                                (7.3.16) 
 
 
7.3.3 Problems 
 
1. Invert Eqns. 7.3.1 to get 7.3.3. 
 
2. Derive the 3D Navier’s equations from 7.3.6 from 7.3.1, 7.3.4 and 7.3.5 
 
 

1x

2x

2u

1u−

3ω
3ω
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7.4 Elastodynamics 
 
In this section, solutions to the Navier’s equations are derived, which show that two 
different types of wave travel through elastic solids.  The (gravitational) body force will 
be neglected, as it is a relatively small term in most practical applications of wave 
propagation through elastic solids. 
 
 
7.4.1 Solutions to Navier’s equations 
 
Navier’s equations are given by Eqn. 7.3.6 (and 7.3.10) 
 

( )

( ) ( )

2 2

2

j i
i

j i j j

u u a
x x x x

λ µ µ ρ

λ µ µ ρ

∂ ∂
+ + =

∂ ∂ ∂ ∂

+ ∇ ∇⋅ + ∇ =u u u
                                     (7.4.1) 

 
It was seen that Navier’s equations could also be expressed in terms of the dilataion and 
rotation, Eqn. 7.3.16: 
 

( ) ( ) ( )
( )

2

2 2e

λ µ µ ρ

λ µ µ ρ

+ ∇ ∇⋅ − ∇× ∇× =

+ ∇ − ∇× =

u u u

ω u





                               (7.4.2) 

 
Navier’s equations can be reduced to the three-dimensional wave equation in one of two 
ways. 
 
P Waves 
 
First, taking the divergence of Eqn. 7.4.2 leads to 
 

( ) ( )( )2 eλ µ µ ρ+ ∇ ⋅∇ − ∇ ⋅ ∇× ∇× = ∇⋅u u                            (7.4.3) 
 
But the divergence of the curl of any vector is zero: 
 

1 2 3

1 2 3

1 2 3

3 2 1 3 2 1

1 2 3 2 3 1 3 1 2

div curl div / / /

0

x x x
a a a

a a a a a a
x x x x x x x x x

= ∂ ∂ ∂ ∂ ∂ ∂

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + − + − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

e e e
a

       (7.4.4) 

 
and so one has 
 

( ) 22 e eλ µ ρ+ ∇ =                                                     (7.4.5) 
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In full, this is the three dimensional wave equation: 
 

2 2 2 2

2 2 2 2 2
1 2 3

1

L

e e e e
x x x c t
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

                                             (7.4.6) 

 
where the wave speed is  

 
( )

( ) ( )
12

1 1 2L
E

c
νλ µ

ρ ρ ν ν
−+

= =
+ −

                                 (7.4.7) 

 
This solution predicts that a wave propagates through an elastic solid at wave speed Lc , 
and the wave excites volume changes within the material it passes, as characterised by the 
dilatation e. 
 
Such waves are called P-waves (for reasons which will be explained later). 
 
S Waves 
 
A second wave equation can be derived from Navier’s equations; taking the curl of 7.4.2 
leads to: 
 

( ) ( ) ( )2 2eλ µ µ ρ+ ∇× ∇ − ∇× ∇× = ∇×ω u                         (7.4.8) 
 
Now the curl of the gradient of any scalar is zero: 
 

1 2 3

1 2 3

1 2 3

curl grad / / / 0
/ / /

e x x x
e x e x e x

= ∂ ∂ ∂ ∂ ∂ ∂ =
∂ ∂ ∂ ∂ ∂ ∂

e e e
                              (7.4.9) 

 
Further, using again the vector identity Eqn. 7.3.12,  
 

( ) ( )2−∇× ∇× = ∇ −∇ ∇⋅ω ω ω                                       (7.4.10) 
 
From Eqn. 7.4.4, the second term on the right is again zero, so one has the alternative 
wave equation: 
 

2µ ρ∇ =ω ω                                                   (7.4.11) 
 
which in full reads 
 

2 2 2 2

2 2 2 2 2
1 2 3

1i i i i

Tx x x c t
ω ω ω ω∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

                                     (7.4.12) 

 
where the wave speed is  
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Tc µ
ρ

=                                                      (7.4.13) 

 
This solution predicts that a wave propagates through an elastic solid at wave speed Tc , 
and the wave excites rotation within the material it passes, as characterised by the rotation 
vector ω  . 

 
Such waves are called S-waves. 
 
 
7.4.2 Longitudinal and Transverse Waves 
 
Consider now a sinusoidal wave of the general form 
 

( )
( )

sin

sin

t

t

ω= ⋅ −

= ⋅ −  

u a k x

a k x c
                                         (7.4.14) 

 
This is a displacement with amplitude a, wave vector k and angular frequency ω .  The 
wave vector indicates the direction of the propagation of the wave, through the wave 
velocity vector: 

 

2
ω

=c k
k

                                                   (7.4.15) 

 
In substituting Eqn. 7.4.14 into Navier’s equations 7.4.1, make the substitution 
 

2

2

2

2 2

sin cos

cos sin

cos sin

sin sin

m m

m
m m mi i

i i

i
i j i

j j

i
j i j j i

j j j

i
j i i j i

i j i

i
i i

k x t
xk k k

x x
u a k a
x x

u k a k k a
x x x

u k a k k a
x x x

u a a
t t

ξ ω
ξ δ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

= −
∂ ∂

= = =
∂ ∂
∂ ∂

= =
∂ ∂

∂ ∂
= = −

∂ ∂ ∂

∂ ∂
= = −

∂ ∂ ∂

∂ ∂
= =

∂ ∂

                                     (7.4.1) 

 
and using the relations 
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( )

( ) ( )

2 2

2

j i
i

j i j j

u u a
x x x x

λ µ µ ρ

λ µ µ ρ

∂ ∂
+ + =

∂ ∂ ∂ ∂

+ ∇ ∇⋅ + ∇ =u u u
                                     (7.4.1) 

 
 
 
 
7.4.3 Description in terms of Potentials 
 
The above analysis can be expressed in terms of vector potentials, as described next. 
 
It can be shown that any vector u can be written in the form1 
 

au curl+∇= φ                                               (7.4.17) 
 
where φ  is a scalar potential and a is a vector potential.  These two terms in the 
displacement field can be examined separately.  The most general displacement field can 
be obtained by adding both solutions together. 
 
P Waves (Irrotational Waves) 
 
First looking at the scalar potential term, suppose that the displacement is given by 

φ∇=u .  Now, as in Eqn. 7.4.9, the curl of φ∇  is zero, and so 0u =curl .Thus the 
rotation =ω 0 .  Thus there is no rotation of material particles. 
 
Taking the displacement field φ∇=u , writing it in index notation, jj xu ∂∂= /φ , and 
substituting into Navier’s equations, leads to the three-dimensional wave equation: 
 

2 2

2 2
1i i

k k L

u u
x x c t
∂ ∂

=
∂ ∂ ∂

                                                   (7.4.4) 

 
This displacement field thus corresponds to stress waves travelling at speed Lc , causing 
material to strain but not to rotate.  These irrotational waves are also called waves of 
dilatation. 
 
Equivoluminal Waves 
 
Consider now the displacement field au curl= .  If one can find a vector a such that 

au curl= , then it follows that 0e = ∇ ⋅ =u .  Thus the condition that the displacement 
field be divergence-free implies that there is no volume change.  There can be normal 
strains only so long as their sum is zero. 
 
Taking kkkk xu ∂∂= /ε  and substituting into Navier’s equations then leads immediately to 

 
1 from the Helmholtz theory 
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2

22

t
u

xx
u i

kk

i

∂
∂

=
∂∂

∂
ρµ                                            (7.4.6) 

 
or the three-dimensional wave equation: 
 

( )νρρ
µ

+
==

∂
∂

=
∂∂

∂
12

,1
2

2

2

2 Ec
t
u

cxx
u

T
i

Tkk

i                     (7.4.7) 

 
This displacement field thus corresponds to stress waves travelling at speed Tc , causing 
material to shear.  These equivoluminal waves are also called shear waves or waves of 
distortion. 
 
In summary, when an event such as an explosion occurs, two different types of wave 
emerge, irrotational waves which result in irrotational displacement fields, and 
equivoluminal waves which result in equivoluminal displacements.  These waves travel at 
different speeds. 
 
 
7.4.4 Plane Waves 
 
At a sufficient distance from any initial disturbance, a stress wave will travel in a plane.  It 
can be assumed that all material particles will displace either parallel to the direction of 
wave propagation (longitudinal waves) or perpendicular to this direction (transverse 
waves). 
 
Let the wave travel in the 1x  direction.  
 
Irrotational (p / longitudinal) Plane Waves 
 
Consider particles which displace in the direction of wave propagation according to  

111 ),( eu txu= .  This is an irrotational wave since 0u =curl , and the stress wave is 
governed by the one-dimensional wave equation 
 

2
1

2

22
1

1
2 1

t
u

cx
u

L ∂
∂

=
∂
∂                                                  (7.4.8) 

 
These longitudinal plane waves are also called p-waves2. 
 

 
2 p stands for “primary” 
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Figure 7.4.2: a longitudinal wave 
 
 
Equivoluminal (s / transverse / shear) Plane Waves 
 
Consider particles which displace according to 212 ),( eu txu= .  This is an equivoluminal 
wave since 0=⋅∇ u , and the stress wave is governed by the one-dimensional wave 
equation 
 

2
2

2

22
1

2
2 1

t
u

cx
u

T ∂
∂

=
∂
∂                                               (7.4.9) 

 
These transverse/shear waves are also called s-waves3. 
 
 

 
Figure 7.4.3: a transverse wave 

 
 
7.4.5 Vibration Analysis 
 

 
3 s stands for “secondary” 

1x

wavefront 

compression / 
rarefaction 

1x
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A vibration analysis can be carried out in exactly the same way as in Chapter 2, only the 
wave speeds in the 1D wave equations 
7.4.8 and 7.4.9 are now different from 
the 1D speed ρ/E .  The particular 
solutions, forced vibration and resonance 
theory of Chapter 2 can again be applied 
here.  The analysis here is appropriate for 
thin plates “infinitely wide” in the 32 , xx  
directions, Fig. 7.4.4.  The figure shows 
longitudinal vibration, but one can also 
have transverse vibration where the 
particles displace perpendicular to the 1x  
axis. 
 

 
 

Figure 7.4.4: stretch vibration of a plate 
 
 
7.4.6 Waves at Boundaries 
 
Plane waves exist in unbounded elastic continua.  In a finite body, a plane wave will be 
reflected when it hits a free surface.  In this case, one needs to solve Navier’s equations 
subject to the boundary conditions of zero normal and shear stress at the free surface.  
Waves of both types will in general be reflected for any single type of incident wave. 
 
Similarly, when a wave meets an interface between two different materials, there will be 
reflection and refraction.  The boundary conditions are that the displacements are 
continuous and the normal and shear stresses are continuous, Fig. 7.4.5 
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Figure 7.4.5: reflection and refraction of a wave at an interface 

 
 
7.4.7 Waves at Boundaries 
 
The waves discussed thus far are body waves.  When a free surface exists, for example 
the surface of the earth, another type of wave motion is possible; these are the Rayleigh 
waves and travel along the surface very much like water waves.  It can be shown that the 
speed of Rayleigh waves is between 90% and 95% of Tc , depending on the value of 
Poisson’s ratio.  Similar types of waves can propagate along the interface between two 
different materials. 
 
 
7.4.8 Problems 
 
1. Consider the motion 

( ) 0,0,2sin 3211 ==−= uuctx
l

uu π ,  

What are the strains in the material?  What are the corresponding stresses?  What is 
the volume change in the material?  What is the name (or names) given to the type of 
wave which causes this kind of motion? 

 
2. Consider the motion 

( ) 0,2sin,0 3121 =−== uctx
l

uuu π ,  

What are the strains in the material?  What are the corresponding stresses?  What is 
the volume change in the material?  What is the name (or names) given to the type of 
wave which causes this kind of motion? 

 
3. Derive an expression for the ratio TL cc /  in terms of the material’s Poisson’s ratio 

only.  Which is the faster, the longitudinal or transverse wave? 
 
4. Show that the motion 

( ) ( )ctx
l

pxuuuu −=== 12321
2coscos,0,0 π ,  

is equivoluminal. 
 
5. Consider the motion 

( ) ( )[ ] 0,0,sinsin 32331 ==++−= uuctxctxuu βαβ  
(i) what kind of elastic stress wave does this involve ? (Sketch the plane of the wave 

and its direction of propagation.) 
(ii) what are the strains and stresses. 
(iii) use the equations of motion to determine the wave speed.  Is it what you 

expected? 
(iv) Suppose that the plane 03 =x  is a free surface.  Determine α . 
(v) Suppose also that hx =3  is a free surface.  Determine β . 
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6. Consider a plate with left face ( )01 =x  subjected to a forced displacement 

1sin eu tΩ=α  and the right face ( )lx =1  free. 
(i) find the “thickness-stretch” vibration of the plate.  What are the natural 

frequencies? 
(ii) When does resonance occur? 

 
7. Consider a plate with left face ( )01 =x  subjected to a traction 2cos et tΩ−= α  and 

the right face ( )lx =1  fixed, as shown in the figure below. 
(i) find the “thickness-shear” vibration of the plate.  What are the natural 

frequencies? 
(ii) When does resonance occur? 

 

 
 
[note: assume a displacement 212 ),( eu txu= ; as with transverse waves, this will 
satisfy the 1-d wave equation with c being the transverse wave speed.  Use the traction 
to obtain an expression for the shear stress 12σ  over the left hand face.  When 
applying the stress boundary condition, you will need the strain-displacement 
expression and stress-strain law, 









∂
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+
∂
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=
1

2

2

1
12 2

1
x
u

x
u

ε ,     1212 2
1 σ
µ

ε =  

 
8. Consider the case of ( )32 sincos eeu tt Ω+Ω=α  over the left face ( )01 =x  with the 

right face ( )lx =1  fixed.  Derive an expression for the particular solution and show 
that it represents circular motion of the particles in the 32 xx −  plane. 
[hint: evaluate the particular solutions for 2u  and 3u  separately and then show that 

22
3

2
2 ruu =+  for some r (independent of time)] 

 
 

fixed 

1x

2x

12σ
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