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7.4 Elastodynamics 
 
 
7.4.1 Propagation of Waves in Elastic Solids 
 
When a stress wave travels through a material, it causes material particles to displace by 
u.  It can be shown that any vector u can be written in the form1 
 

au curl+∇= φ                                             (7.4.1) 
 
where φ  is a scalar potential and a is a vector.  These two terms in the displacement 
field can be examined separately.  The most general displacement field can be obtained by 
adding both solutions together. 
 
Irrotational Waves 
 
First looking at the scalar potential term, suppose that the displacement is given by 

φ∇=u .  If one can find a scalar φ  such that φ∇=u , then it follows that 0u =curl , or 
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           (7.4.2) 

 
Thus each of the terms inside the brackets is zero.  But these terms represent rotations of 
material particles (see Eqns. 1.1.20).  For example, as illustrated in Fig. 7.4.1, 
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Figure 7.4.1: a rotation 
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Thus 0u =curl  can be interpreted as no rotation of material particles.  A small element of 
material can still undergo normal and shear strain, but the element will not rotate as a 
rigid body in space. 
 
Taking the displacement field φ∇=u , writing it in index notation, jj xu ∂∂= /φ , and 
substituting into Navier’s equations, leads to the three-dimensional wave equation: 
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This displacement field thus corresponds to stress waves travelling at speed Lc , causing 
material to strain but not to rotate.  These irrotational waves are also called waves of 
dilatation. 
 
Equivoluminal Waves 
 
Consider now the displacement field au curl= .  If one can find a vector a such that 

au curl= , then it follows that 0=⋅∇ u , or  
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Thus the condition that the displacement field be divergence-free implies that there is no 
volume change.  There can be normal strains only so long as their sum is zero. 
 
Taking kkkk xu ∂∂= /ε  and substituting into Navier’s equations then leads immediately to 
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or the three-dimensional wave equation: 
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This displacement field thus corresponds to stress waves travelling at speed Tc , causing 
material to shear.  These equivoluminal waves are also called shear waves or waves of 
distortion. 
 
In summary, when an event such as an explosion occurs, two different types of wave 
emerge, irrotational waves which result in irrotational displacement fields, and 
equivoluminal waves which result in equivoluminal displacements.  These waves travel at 
different speeds. 
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7.4.2 Plane Waves 
 
At a sufficient distance from any initial disturbance, a stress wave will travel in a plane.  It 
can be assumed that all material particles will displace either parallel to the direction of 
wave propagation (longitudinal waves) or perpendicular to this direction (transverse 
waves). 
 
Let the wave travel in the 1x  direction.  
 
Irrotational (p / longitudinal) Plane Waves 
 
Consider particles which displace in the direction of wave propagation according to  

111 ),( eu txu= .  This is an irrotational wave since 0u =curl , and the stress wave is 
governed by the one-dimensional wave equation 
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These longitudinal plane waves are also called p-waves2. 
 

 
 

Figure 7.4.2: a longitudinal wave 
 
 
Equivoluminal (s / transverse / shear) Plane Waves 
 
Consider particles which displace according to 212 ),( eu txu= .  This is an equivoluminal 
wave since 0=⋅∇ u , and the stress wave is governed by the one-dimensional wave 
equation 
 

2
2

2

22
1

2
2 1

t
u

cx
u

T ∂
∂

=
∂
∂                                               (7.4.9) 

 

                                                 
2 p stands for “primary” 
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These transverse/shear waves are also called s-waves3. 
 
 

 
Figure 7.4.3: a transverse wave 

 
 
7.4.3 Vibration Analysis 
 
A vibration analysis can be carried out in exactly the same way as in Chapter 2, only the 
wave speeds in the 1D wave equations 7.4.8 and 7.4.9 are now different from the 1D 
speed ρ/E .  The particular solutions, forced vibration and resonance theory of Chapter 
2 can again be applied here.  The analysis here is appropriate for thin plates “infinitely 
wide” in the 32 , xx  directions, Fig. 7.4.4.  The figure shows longitudinal vibration, but 
one can also have transverse vibration where the particles displace perpendicular to the 1x  
axis. 
 

 
 

Figure 7.4.4: stretch vibration of a plate 
 
 
7.4.4 Waves at Boundaries 
 
Plane waves exist in unbounded elastic continua.  In a finite body, a plane wave will be 
reflected when it hits a free surface.  In this case, one needs to solve Navier’s equations 
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subject to the boundary conditions of zero normal and shear stress at the free surface.  
Waves of both types will in general be reflected for any single type of incident wave. 
 
Similarly, when a wave meets an interface between two different materials, there will be 
reflection and refraction.  The boundary conditions are that the displacements are 
continuous and the normal and shear stresses are continuous, Fig. 7.4.5 
 

 
 

Figure 7.4.5: reflection and refraction of a wave at an interface 
 
 
7.4.5 Waves at Boundaries 
 
The waves discussed thus far are body waves.  When a free surface exists, for example 
the surface of the earth, another type of wave motion is possible; these are the Rayleigh 
waves and travel along the surface very much like water waves.  It can be shown that the 
speed of Rayleigh waves is between 90% and 95% of Tc , depending on the value of 
Poisson’s ratio.  Similar types of waves can propagate along the interface between two 
different materials. 
 
 
7.4.6 Problems 
 
1. Consider the motion 

( ) 0,0,2sin 3211 ==−= uuctx
l

uu π ,  

What are the strains in the material?  What are the corresponding stresses?  What is 
the volume change in the material?  What is the name (or names) given to the type of 
wave which causes this kind of motion? 

 
2. Consider the motion 

( ) 0,2sin,0 3121 =−== uctx
l

uuu π ,  

What are the strains in the material?  What are the corresponding stresses?  What is 
the volume change in the material?  What is the name (or names) given to the type of 
wave which causes this kind of motion? 

 
3. Derive an expression for the ratio TL cc /  in terms of the material’s Poisson’s ratio 

only.  Which is the faster, the longitudinal or transverse wave? 
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4. Show that the motion 

( ) ( )ctx
l

pxuuuu −=== 12321
2coscos,0,0 π ,  

is equivoluminal. 
 
5. Consider the motion 

( ) ( )[ ] 0,0,sinsin 32331 ==++−= uuctxctxuu βαβ  
(i) what kind of elastic stress wave does this involve ? (Sketch the plane of the wave 

and its direction of propagation.) 
(ii) what are the strains and stresses. 
(iii) use the equations of motion to determine the wave speed.  Is it what you 

expected? 
(iv) Suppose that the plane 03 =x  is a free surface.  Determine α . 
(v) Suppose also that hx =3  is a free surface.  Determine β . 

 
6. Consider a plate with left face ( )01 =x  subjected to a forced displacement 

1sin eu tΩ= α  and the right face ( )lx =1  free. 
(i) find the “thickness-stretch” vibration of the plate.  What are the natural 

frequencies? 
(ii) When does resonance occur? 

 
7. Consider a plate with left face ( )01 =x  subjected to a traction 2cos et tΩ−= α  and 

the right face ( )lx =1  fixed, as shown in the figure below. 
(i) find the “thickness-shear” vibration of the plate.  What are the natural 

frequencies? 
(ii) When does resonance occur? 

 

 
 
[note: assume a displacement 212 ),( eu txu= ; as with transverse waves, this will 
satisfy the 1-d wave equation with c being the transverse wave speed.  Use the traction 
to obtain an expression for the shear stress 12σ  over the left hand face.  When 
applying the stress boundary condition, you will need the strain-displacement 
expression and stress-strain law, 
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8. Consider the case of ( )32 sincos eeu tt Ω+Ω=α  over the left face ( )01 =x  with the 

right face ( )lx =1  fixed.  Derive an expression for the particular solution and show 
that it represents circular motion of the particles in the 32 xx −  plane. 
[hint: evaluate the particular solutions for 2u  and 3u  separately and then show that 
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2 ruu =+  for some r (independent of time)] 

 
 


