7.3 Governing Equations of Three Dimensional Elasticity

7.3.1 Hooke's Law and Lamé's Constants

Linear elasticity was introduced in Part I, §4.2. The three-dimensional Hooke’s law for isotropic linear elastic solids (Part I, Eqns. 4.2.9) can be expressed in index notation as

$$
\begin{equation*}
\sigma_{i j}=\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j} \tag{7.3.1}
\end{equation*}
$$

where (see also Part I, Eqns. 6.2.21)

$$
\begin{equation*}
\lambda=\frac{E v}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)} \tag{7.3.2}
\end{equation*}
$$

are the Lamé constants (μ is the Shear Modulus). Eqns. 7.3.1 can be inverted to obtain \{ $\mathbf{\Delta}$ Problem 1\}

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2 \mu} \sigma_{i j}-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)} \delta_{i j} \sigma_{k k} \tag{7.3.3}
\end{equation*}
$$

7.3.2 Navier's Equations

The governing equations of elasticity are Hooke's law (Eqn. 7.3.1), the equations of motion, Eqn. 1.1.9 (see Eqns. 7.1.10-11),

$$
\begin{equation*}
\frac{\partial \sigma_{i j}}{\partial x_{j}}+b_{i}=\rho a_{i} \tag{7.3.4}
\end{equation*}
$$

and the strain-displacement relations, Eqn. 1.2.19 (see Eqns. 7.1.25-26),

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{7.3.5}
\end{equation*}
$$

Substituting 7.3.5 into 7.3.1 and then into 7.3.4 leads to the 3D Navier's equations \{ $\mathbf{\Delta}$ Problem 2\}

$$
\begin{equation*}
(\lambda+\mu) \frac{\partial^{2} u_{j}}{\partial x_{j} \partial x_{i}}+\mu \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}+b_{i}=\rho a_{i} \quad \text { Navier's Equations } \tag{7.3.6}
\end{equation*}
$$

These reduce to the 2D plane strain Navier's equations, Eqns. 3.1.4, by setting $u_{3}=0$ and $\partial / \partial x_{3}=0$. They do not reduce to the plane stress equations since the latter are only an
approximate solution to the equations of elasticity which are valid only in the limit as the thickness of the thin plate of plane stress tends to zero.

7.3.3 Problems

1. Invert Eqns. 7.3.1 to get 7.3.3.
2. Derive the 3D Navier's equations from 7.3.6 from 7.3.1, 7.3.4 and 7.3.5
