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6.1 Plate Theory 
 
 
6.1.1 Plates 
 
A plate is a flat structural element for which the thickness is small compared with the 
surface dimensions.  The thickness is usually constant but may be variable and is 
measured normal to the middle surface of the plate, Fig. 6.1.1 
 

 
 

Fig. 6.1.1: A plate 
 
 
6.1.2 Plate Theory 
 
Plates subjected only to in-plane loading can be solved using two-dimensional plane 
stress theory1 (see Book I, §3.5).  On the other hand, plate theory is concerned mainly 
with lateral loading. 
 
One of the differences between plane stress and plate theory is that in the plate theory the 
stress components are allowed to vary through the thickness of the plate, so that there can 
be bending moments, Fig. 6.1.2. 
 

 
 
Fig. 6.1.2: Stress distribution through the thickness of a plate and resultant bending 

moment 
 
Plate Theory and Beam Theory 
 
Plate theory is an approximate theory; assumptions are made and the general three 
dimensional equations of elasticity are reduced.  It is very like the beam theory (see Book 

                                                           
1 although if the in-plane loads are compressive and sufficiently large, they can buckle (see §6.7) 
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I, §7.4) – only with an extra dimension.  It turns out to be an accurate theory provided the 
plate is relatively thin (as in the beam theory) but also that the deflections are small 
relative to the thickness.  This last point will be discussed further in §6.10. 
 
Things are more complicated for plates than for the beams.  For one, the plate not only 
bends, but torsion may occur (it can twist), as shown in Fig. 6.1.3 
 

 
 

Fig. 6.1.3: torsion of a plate 

 
Assumptions of Plate Theory 
 
Let the plate mid-surface lie in the yx   plane and the z – axis be along the thickness 
direction, forming a right handed set, Fig. 6.1.4.  
 

 
 

Fig. 6.1.4: Cartesian axes 
 
 
The stress components acting on a typical element of the plate are shown in Fig. 6.1.5. 
 

 
 

Fig. 6.1.5: stresses acting on a material element 
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The following assumptions are made: 
 
(i) The mid-plane is a “neutral plane” 
 
The middle plane of the plate remains free of in-plane stress/strain.  Bending of the plate 
will cause material above and below this mid-plane to deform in-plane.  The mid-plane 
plays the same role in plate theory as the neutral axis does in the beam theory. 
 
(ii) Line elements remain normal to the mid-plane 
 
Line elements lying perpendicular to the middle surface of the plate remain perpendicular 
to the middle surface during deformation, Fig. 6.1.6; this is similar the “plane sections 
remain plane” assumption of the beam theory. 
 

 
 

Fig. 6.1.6: deformed line elements remain perpendicular to the mid-plane 
 
 
(iii) Vertical strain is ignored 
 
Line elements lying perpendicular to the mid-surface do not change length during 
deformation, so that 0zz  throughout the plate.  Again, this is similar to an assumption 
of the beam theory. 
 
These three assumptions are the basis of the Classical Plate Theory or the Kirchhoff 
Plate Theory.  The second assumption can be relaxed to develop a more exact theory (see 
§6.10). 
 
 
6.1.3 Notation and Stress Resultants 
 
The stress resultants are obtained by integrating the stresses through the thickness of the 
plate.  In general there will be 
 
moments M:    2 bending moments and 1 twisting moment 
out-of-plane forces V:  2 shearing forces 
in-plane forces N:    2 normal forces and 1 shear force 
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They are defined as follows: 
 
 
In-plane normal forces and bending moments, Fig. 6.1.7: 
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                     (6.1.1) 

 
 

 
 

Fig. 6.1.7: in-plane normal forces and bending moments 
 
 
In-plane shear force and twisting moment, Fig. 6.1.8: 
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Fig. 6.1.8: in-plane shear force and twisting moment 
 
 
Out-of-plane shearing forces, Fig. 6.1.9: 
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Fig. 6.1.9: out of plane shearing forces 
 
Note that the above “forces” and “moments” are actually forces and moments per unit 
length.  This allows one to have moments varying across any section – unlike in the beam 
theory, where the moments are for the complete beam cross-section.  If one considers an 
element with dimensions x  and y , the actual moments acting on the element are 
 

yMxMxMyM xyxyyx  ,,,                                   (6.1.4) 

 
and the forces acting on the element are 
 

yNxNxNyNxVyV xyxyyxyx  ,,,,,                      (6.1.5) 

 
The in-plane forces, which are analogous to the axial forces of the beam theory, do not 
play a role in most of what follows.  They are useful in the analysis of buckling of plates 
and it is necessary to consider them in more exact theories of plate bending (see later). 
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6.2 The Moment-Curvature Equations 
 
 
6.2.1 From Beam Theory to Plate Theory 
 
In the beam theory, based on the assumptions of plane sections remaining plane and that 
one can neglect the transverse strain, the strain varies linearly through the thickness.  In 
the notation of the beam, with y positive up, Ryxx / , where R is the radius of 

curvature, R positive when the beam bends “up” (see Book I, Eqn. 7.4.16).  In terms of 
the curvature Rxv /1/ 22  , where v is the deflection (see Book I, Eqn. 7.4.36), one 
has 
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                (6.2.1) 

 
The beam theory assumptions are essentially the same for the plate, leading to strains 
which are proportional to distance from the neutral (mid-plane) surface, z, and expressions 
similar to 6.2.1.  This leads again to linearly varying stresses xx  and yy  ( zz  is also 

taken to be zero, as in the beam theory). 
 
 
6.2.2 Curvature and Twist 
 
The plate is initially undeformed and flat with the mid-surface lying in the yx   plane.  
When deformed, the mid-surface occupies the surface ),( yxww   and w  is the elevation 
above the yx   plane, Fig. 6.2.1. 
 

 
 

Fig. 6.2.1: Deformed Plate 
 
The slopes of the plate along the x and y directions are xw  /  and yw  / . 
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Curvature 
 
Recall from Book I, §7.4.11, that the curvature in the x direction, x , is the rate of change 

of the slope angle   with respect to arc length s, Fig. 6.2.2, dsdx /  .  One finds that 

 

 

2 2

3/22

/

1 /
x

w x

w x
  


    

                                           (6.2.2) 

 
Also, the radius of curvature xR , Fig. 6.2.2, is the reciprocal of the curvature, xxR /1 .  

 

 
 

Fig. 6.2.2: Angle and arc-length used in the definition of curvature 
 
As with the beam, when the slope is small, one can take xw  /tan  and 

xdsd  //   and Eqn. 6.2.2 reduces to (and similarly for the curvature in the y 
direction) 
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                                    (6.2.3) 

 
This important assumption of small slope, / , / 1w x w y     , means that the theory to 
be developed will be valid when the deflections are small compared to the overall 
dimensions of the plate. 
 
The curvatures 6.2.3 can be interpreted as in Fig. 6.2.3, as the unit increase in slope along 
the x and y directions. 
 
 



x

w s



xR



Section 6.2 

Solid Mechanics Part II                                                                                Kelly 127

 
 

Figure 6.2.3: Physical meaning of the curvatures 
 
 
Twist 
 
Not only does a plate curve up or down, it can also twist (see Fig. 6.1.3).  For example, 
shown in Fig. 6.2.4 is a plate undergoing a pure twisting (constant applied twisting 
moments and no bending moments). 
 

 
 

Figure 6.2.4: A twisting plate 
 
If one takes a row of line elements lying in the y direction, emanating from the x axis, the 
further one moves along the x axis, the more they twist, Fig. 6.2.4.  Some of these line 
elements are shown in Fig. 6.2.5 (bottom right), as veiwed looking down the x axis 
towards the origin (elements along the y axis are shown bottom left).  If a line element at 
position x has slope /w y  , the slope at x x   is / ( / ) /w y x w y x        .  This 
motivates the definition of the twist, defined analogously to the curvature, and denoted by 

xyT/1 ; it is a measure of the “twistiness” of the plate: 
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Figure 6.2.5: Physical meaning of the twist 
 
The signs of the moments, radii of curvature and curvatures are illustrated in Fig. 6.2.6.  
Note that the deflection w  may or may not be of the same sign as the curvature.  Note 
also that when 0/,0 22  xM x  , when 0/,0 22  yM y  . 

 

 
 

Figure 6.2.6: sign convention for curvatures and moments 
 
On the other hand, for the twist, with the sign convention being used, when 

0/,0 2  yxM xy  , as depicted in Fig. 6.2.4. 

 
Principal Curvatures 
 
Consider the two Cartesian coordinate systems shown in Fig. 6.2.7, the second ( nt  ) 
obtained from the first ( yx  ) by a positive rotation  .  The partial derivatives arising in 
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the curvature expressions can be expressed in terms of derivatives with respect to t and n 
as follows: with  yxww , , an increment in w is 
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                                           (6.2.5) 

 
Also, referring to Fig. 6.2.7, with 0n , 
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Similarly, for an increment n , one finds that 
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Equations 6.2.7-8 can be inverted to get the inverse relations 
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Figure 6.2.7: Two different Cartesian coordinate systems  
 
The relationship between second derivatives can be found in the same way.  For example, 
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In summary, one has 
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and the inverse relations 
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These equations which transform between curvatures in different coordinate systems have 
the same structure as the stress transformation equations (and the strain transformation 
equations), Book I, Eqns. 3.4.8.  As with principal stresses/strains, there will be some 
angle   for which the twist is zero; at this angle, one of the curvatures will be the 
minimum and one will be the maximum at that point in the plate.  These are called the 
principal curvatures.  Similarly, just as the sum of the normal stresses is an invariant 
(see Book I, Eqn. 3.5.1), the sum of the curvatures is an invariant2: 
 

ntyx RRRR

1111
                                                (6.2.14) 

 
If the principal curvatures are equal, the curvatures are the same at all angles, the twist is 
always zero and so the plate deforms locally into the surface of a sphere. 
 
 

                                                 
1 these equations are valid for any continuous surface; Eqns. 6.2.12 are restricted to nearly-flat surfaces. 
2 this is known as Euler’s theorem for curvatures 
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6.2.3 Strains in a Plate 
 
The strains arising in a plate are next examined.  A comprehensive strain-state will be first 
examined and this will then be simpilfied down later to various approximate solutions. 
Consider a line element parallel to the x axis, of length x .  Let the element displace as 
shown in Fig. 6.2.8.  Whereas w was used  in the previous section on curvatures to denote 
displacement of the mid-surface, here, for the moment, let ),,( zyxw  be the general 
vertical displacement of any particle in the plate.  Let u and v be the corresponding 
displacements in the x and y directions.  Denote the original and deformed length of the 
element by dS  and ds   respectively. 
 
The unit change in length of the element (that is, the exact normal strain) is, using 
Pythagoras’ theorem, 
 

2 2 2

1 1xx

p q pqds dS u v w

dS pq x x x


                            
             (6.2.15) 

 

 
 

Figure 6.2.8: deformation of a material fibre in the x direction 
 
In the plate theory, it will be assumed that the displacement gradients are small: 
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of order 1ε   say, so that squares and products of these terms may be neglected. 
 
However, for the moment, the squares and products of the slopes will be retained, as they 
may be significant, i.e. of the same order as the strains, under certain circumstances: 
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Eqn. 6.2.15 now reduces to 
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Consider next the angle change for line elements initially lying parallel to the axes, Fig. 
6.2.9.   Let   be the angle qpr  , so that   2/  is the change in the initial right 
angle rpq . 
 

 
 

Figure 6.2.9: the deformation of Fig. 6.2.8, showing shear strains 
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Again, with the displacement gradients /u x  , /v x  , /u z  , /v z  , /w z   of order 

1ε   (and the squares  2
/w x   at most of order 1ε  ),  
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For small  ,  cossin  , so (and similarly for the other shear strains) 
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                                         (6.2.20) 

 
The normal strains 6.2.17 and the shear strains 6.2.20 are non-linear.  They are the starting 
point for the various different plate theories. 
 
Von Kármán Strains 
 
Introduce now the assumptions of the classical plate theory.  The assumption that line 
elements normal to the mid-plane remain inextensible implies that 
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This implies that  yxww ,  so that all particles at a given  yx,  through the thickness of 
the plate experinece the same vertical displacement.  The assumption that line elements 
perpendicular to the mid-plane remain normal to the mid-plane after deformation then 
implies that 0 yzxz  . 

 
The strains now read 
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These are known as the Von Kármán strains. 
 
Membrane Strains and Bending Strains 
 
Since 0xz  and ),( yxww  , one has from Eqn. 6.2.20b, 
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It can be seen that the function ),(0 yxu  is the displacement in the mid-plane.  In terms of 

the mid-surface displacements 000 ,, wvu , then, 
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and the strains 6.2.22 may be expressed as 
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The first terms are the usual small-strains, for the mid-surface.  The second terms, 
involving squares of displacement gradients, are non-linear, and need to be considered 
when the plate bending is fairly large (when the rotations are about 10 – 15 degrees).  
These first two terms together are called the membrane strains.  The last terms, 
involving second derivatives, are the flexural (bending) strains.  They involve the 
curvatures. 
 
When the bending is not too large (when the rotations are below about 10 degrees), one 
has (dropping the subscript “0” from w) 
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Some of these strains are illustrated in Figs. 6.2.10 and 6.2.11; the physical meaning of 

xx  is shown in Fig. 6.2.10 and some terms from xy  are shown in Fig. 6.2.11. 

 
 

 
 

Figure 6.2.10: deformation of material fibres in the x direction 
 
 

 
 

Figure 6.2.11: the deformation of 6.2.10 viewed “from above”; a , b  are the 
deformed positions of the mid-surface points a, b 
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Finally, when the mid-surface strains are neglected, according to the final assumption of 
the classical plate theory, one has 
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In summary, when the plate bends “up”, the curvature is positive, and points “above” the 
mid-surface experience negative normal strains and points “below” experience positive 
normal strains; there is zero shear strain.  On the other hand, when the plate undergoes a 
positive pure twist, so the twisting moment is negative, points “above” the mid-surface 
experience negative shear strain and points “below” experience positive shear strain; there 
is zero normal strain.  A pure shearing of the plate in the x y  plane is illustrated in Fig. 
6.2.12. 
 

 
 
Figure 6.2.12: Shearing of the plate due to a positive twist (neative twisting moment)  
 
 
Compatibility 
 
Note that the strain fields arising in the plate satisfy the 2D compatibility relation Eqn. 
1.3.1: 
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This can be seen by substituting Eqn. 6.25 (or Eqns 6.26-27) into Eqn. 6.2.28. 
 
 
6.2.4 The Moment-Curvature equations 
 
Now that the strains have been related to the curvatures, the moment-curvature relations, 
which play a central role in plate theory, can be derived. 
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Stresses and the Curvatures/Twist in a Linear Elastic Plate 
 
From Hooke’s law, taking 0zz , 
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so, from 6.2.27, and solving 6.2.29a-b for the normal stresses, 
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The Moment-Curvature Equations 
 
Substituting Eqns. 6.2.30 into the definitions of the moments, Eqns. 6.1.1, 6.1.2, and 
integrating, one has 
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where 

 2

3

112 


Eh
D         (6.2.32) 

 
Equations 6.2.31 are the moment-curvature equations for a plate.  The moment-
curvature equations are analogous to the beam moment-deflection equation 

EIMxv // 22  .  The factor D is called the plate stiffness or flexural rigidity and 
plays the same role in the plate theory as does the flexural rigidity term EI  in the beam 
theory. 
 
Stresses and Moments 
 
From 6.30-6.31, the stresses and moments are related through 
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Note the similarity of these relations to the beam formula IMy /  with 12/3hI   
times the width of the beam. 
 
 
6.2.5 Principal Moments 
 
It was seen how the curvatures in different directions are related, through Eqns. 6.2.11-12.  
It comes as no surprise, examining 6.2.31, that the moments are related in the same way. 
 
Consider a small differential element of a plate, Fig. 6.2.13a, subjected to stresses xx , 

yy , xy , and corresponding moments xyyx MMM ,,  given by 6.1.1-2.  On any 

perpendicular planes rotated from the orginal yx   axes by an angle  , one can find the 

new stresses tt , nn , tn , Fig. 6.2.13b (see Fig. 6.2.5), through the stress 

transformatrion equations (Book I, Eqns. 3.4.8).  Then 
 

     
xyyx

xyyyxxttt

MMM

dzzdzzdzzdzzM





2sinsincos

2sinsincos

22

22



    (6.2.34) 

 
and similarly for the other moments, leading to 
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                          (6.2.35) 

 
Also, there exist principal planes, upon which the shear stress is zero (right through the 
thickness).  The moments acting on these planes, 1M  and 2M , are called the principal 
moments, and are the greatest and least bending moments which occur at the element.  
On these planes, the twisting moment is zero. 
  

 
 

Figure 6.2.13: Plate Element; (a) stresses acting on element, (b) rotated element 
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Moments in Different Coordinate Systems 
 
From the moment-curvature equations 6.2.31, {▲Problem 1} 
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                                        (6.2.36) 

 
showing that the moment-curvature relations 6.2.31 hold in all Cartesian coordinate 
systems. 
 
 
6.2.6 Problems 
 
1. Use the curvature transformation relations 6.2.11 and the moment transformation 

relations 6.2.35 to derive the moment-curvature relations 6.2.36. 
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6.3 Plates subjected to Pure Bending and Twisting 
 
 
6.3.1 Pure Bending of an Elastic Plate 
 
Consider a plate subjected to bending moments 1 0xM M= >  and 2 0yM M= > , with no 
other loading, as shown in Fig. 6.3.1. 
 

 
 

Figure 6.3.1: A plate under Pure Bending 
 
From equilibrium considerations, these moments act at all points within the plate – they 
are constant throughout the plate.  Thus, from the moment-curvature equations 6.2.31, one 
has the set of coupled partial differential equations 
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Solving for the derivatives, 
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Integrating the first two equations twice gives1 
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and integrating the third shows that two of these four unknown functions are constants: 
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1 this analysis is similar to that used to evaluate displacements in plane elastostatic problems, §1.2.4 
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Equating both expressions for w in 6.3.3 gives 
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For this to hold, both sides here must be a constant, C−  say.  It follows that 
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The three unknown constants represent an arbitrary rigid body motion.  To obtain values 
for these, one must fix three degrees of freedom in the plate.  If one supposes that the 
deflection w and slopes ywxw ∂∂∂∂ /,/  are zero at the origin 0== yx  (so the origin of 
the axes are at the plate-centre), then  0=== CBA ; all deformation will be measured 
relative to this reference.  It follows that 
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Once the deflection w is known, all other quantities in the plate can be evaluated – the 
strain from 6.2.27, the stress from Hooke’s law or directly from 6.2.30, and moments and 
forces from 6.1.1-3. 
 
In the special case of equal bending moments, with oMMM == 21  say, one has 
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This is the equation of a sphere.  In fact, from the relationship between the curvatures and 
the radius of curvature R,  
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and so the mid-surface of the plate in this case deforms into the surface of a sphere with 
radius given by 6.3.9, as illustrated in Fig. 6.3.2. 
 

 
 

Figure 6.3.2: Deformed plate under Pure Bending with equal moments 
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The character of the deformed plate is plotted in Fig. 6.3.3 for various ratios 12 / MM  (for 
3.0=ν ). 

 

 
 

Figure 6.3.3: Bending of a Plate 
 
 
When the curvatures 22 / xw ∂∂  and 22 / yw ∂∂  are of the same sign2, the deformation is 
called synclastic.  When the curvatures are of opposite sign, as in the lower plots of Fig. 
6.3.3, the deformation is said to be anticlastic. 
 
Note that when there is only one moment, 0=yM  say, there is still curvature in both 
directions.  In this case, one can solve the moment-curvature equations to get 
 

( ) ( ) ( )
2 2 2

2 2
2 2 22 2

, ,
1 2 1

x xM Mw w w w x y
x y xD D

ν ν
ν ν

∂ ∂ ∂
= = − = −

∂ ∂ ∂− −
       (6.3.10) 

 
which is an anticlastic deformation. 
 
In order to get a pure cylindrical deformation, )(xfw =  say, one needs to apply moments 

xM  and xy MM ν= , in which case, from 6.3.6, 
 

 
2 or principal curvatures in the case of a more complex general loading 

5.1/ 12 =MM 3/ 12 =MM
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2

2
x

D
M

w x=                                            (6.3.11) 

 
The deformation for 3/ 12 =MM  in Fig. 6.3.3 is very close to cylindrical, since there  

yx MM ν≈  for typical values of ν . 
 
 
6.3.2 Pure Torsion of an Elastic Plate 
 
In pure torsion, one has the twisting moment 0xyM M= >  with no other loading, Fig. 
6.3.4.  From the moment-curvature equations, 
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so that 
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Figure 6.3.4: Twisting of a Plate 
 
 
Using the same arguments as before, integrating these equations leads to 
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The middle surface is deformed as shown in Fig. 6.3.5, for a negative xyM .  Note that 
there is no deflection along the lines 0=x  or 0=y . 
 
The principal curvatures will occur at 45o to the axes (see Eqns. 6.2.13): 
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Figure 6.3.5: Deformation for a (negative) twisting moment 
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6.4 Equilibrium and Lateral Loading 
 
In this section, lateral loads are considered and these lead to shearing forces yx VV , , in the 

plate. 
 
 
6.4.1 The Governing Differential Equation for Lateral Loads 
 
In general, a plate will at any location be subjected to a lateral pressure q , bending 

moments xyyx MMM ,,  and out-of-plane shear forces xV  and yV ; q is the normal pressure 

on the upper surface of the plate: 
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These quantities are related to each other through force equilibrium. 
 
Force Equilibrium 
 
Consider a differential plate element with one corner at )0,0(),( yx , Fig. 6.4.1, 
subjected to moments, pressure and shear force.  Taking force equilibrium in the vertical 
direction (neglecting a possible small variation in q, since this will only introduce higher 
order terms): 
 

0





 

















 yxqyx

x

V
VyVxy

y

V
VxVF x

xx
y

yyz
    (6.4.2) 

 

 
 

Fig. 6.4.1: a plate element subjected to moments, pressure and shear forces 
 
Eqn. 6.4.2 gives the vertical equilibrium equation 
 

q
y

V

x

V yx 








                                                (6.4.3) 

y

x

 yyM y 

q

 yyVy 

 yyM xy 

 xxM x 

 xxVx 
 xxM xy 



Section 6.4 

Solid Mechanics Part II                                                                                Kelly 146

 
This is analogous to the beam theory equation /p dV dx  (see Book I, §7.4.3). 
 
Next, taking moments about the x axis: 
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Using 6.4.3, this reduces to (and similarly for moments about the x-axis), 
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These are analogous to the beam theory equation dxdMV /  (see Book I, §7.4.3). 
 
Relations directly from the Equations of Equilibrium 
 
The equilibrium relations 6.4.3, 6.4.5 can also be derived directly from the equations of 
equilibrium, Eqns. 1.1.9, which encompass the force balances: 
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Taking the first of these (which ensures equilibrium of forces in the x direction), 
multiplying by z and integrating over the plate thickness, gives 
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             (6.4.7) 

 
and, since the shear stress zx  must be zero over the top and bottom surfaces, one has 

Eqn. 6.4.5a.  Applying a similar procedure to the second equilibrium equation gives Eqn. 
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6.4.5b.  Finally, integrating directly the third equilibrium equation without multiplying 
across by z, one arrives at Eqn. 6.4.3. 
 
Now, eliminating the shear forces from 6.4.3, 6.4.5 leads to the differential equation 
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This equation is analogous to the equation pxM  22 /  in the beam theory.  Finally, 
substituting in the moment-curvature equations 6.2.31 leads to1 
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This is sometimes called the equation of Sophie Germain after the French investigator 
who first obtained it in 18152.  This partial differential equation is solved subject to the 
boundary conditions of the problem, i.e. the fixing conditions of the plate (see below).  
Again, when once an expression for ),( yx  is obtained, the strains, stresses, forces and 
moments follow. 
 
Note that the differential equation 6.4.8 with 0q  is trivially satisfied in the simple pure 
bending and torsion problems considered earlier. 
 
Eqn. 6.4.9 can be succinctly expressed as 
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where 2  is the Laplacian, or “del” operator: 
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Note that the Laplacian operator (on w) gives the sum of the curvatures in two 
perpendicular directions and so it is independent of the directions chosen (see Eqn. 
6.2.14). 
 
Shear Forces in terms of Deflection 
 
From 6.4.5 and the moment-curvature equations, one has the useful relations 

                                                 
1 note that the moment curvature relations were derived for the case of pure bending; here, as in the beam 
theory, the possible effect of the shearing forces on the curvature is neglected.  This is a valid assumption 
provided the thickness of the plate is small in comparison with its other dimensions.  A more exact theory 
taking into account the effect of the shear forces on deflection can be developed 
2 Germain submitted her work to the French Academy, which was awarding a prize for anyone who could 
solve the problem of the vibration of plates; Lagrange was on the Academy awarding committee and 
corrected some of her work, deriving Eqn. 6.4.9 in its final form 
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6.4.2 Stresses in the Plate 
 
The normal and in-plane shear stresses have been expressed in terms of the moments, 
Eqns. 6.2.33.  Note that these stresses are zero over the mid-surface and attain a maximum 
at the outer surfaces. 
 
Expressions for the remaining stress components can be obtained from the equations of 
equilibrium as follows: the first of Eqns. 6.4.6 leads, with 6.4.5a, to 
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Integrating now gives (note that xV  is independent of z) 
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This shear stress must be zero at the upper and lower (free –) surfaces, at 2/hz  .  This 
condition can be used to determine the arbitrary constant C and one finds that (see Fig. 
6.1.9) 
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The other shear stress, zy , can be evaluated in a similar manner: {▲Problem 1} 
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In some analyses, these shear stresses are taken to be zero, although they can be quite 
significant. 
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The only remaining stress component is zz .  This will never exceed the intensity of the 
external load on the plate; the lateral load itself, however, is negligibly small in 
comparison with the in-plane stresses set up by the bending of the plate, and for this 
reason it is acceptable to disregard zz , as has been done, in the plate theory.  
 
 
6.4.3 Problems 
 
1. Derive the expression for shear stress 6.4.16. 
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6.5 Plate Problems in Rectangular Coordinates 
 
In this section, a number of important plate problems will be examined using Cartesian 
coordinates.   
 
 
6.5.1 Uniform Pressure producing Bending in One Direction 
 
Consider first the case of a plate which bends in one direction only.  From 6.3.11 the 
deflection and moments are 
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The differential equation 6.4.9 reads 
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The corresponding equation for a beam is EIxpdxwd /)(/ 44  .  If )(/)( xqbxp  , 

with b the depth of the beam, with 12/3bhI  , the plate will respond more stiffly than 
the beam by a factor of )1/(1 2 , a factor of about 10% for 3.0 , since 
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The extra stiffness is due to the constraining effect of yM , which is not present in the 

beam.  
 
 
6.5.2 Deflection of a Circular Plate by a Uniform Lateral Load 
 
A solution for a circular plate problem is presented next.  This problem will be examined 
again in the section which follows using the more natural polar coordinates. 
 
Consider a circular plate with boundary 
 

222 ayx  ,           (6.5.4) 
 
clamped at its edges and subjected to a uniform lateral load q, Fig. 6.5.1. 
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Figure 6.5.1: a clamped circular plate subjected to a uniform lateral load 
 
The differential equation for the problem is given by 6.4.9.  The boundary conditions are 
that the slope and deflection are zero at the boundary: 
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It will be shown that the deflection 
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is a solution to the problem.  First, this function certainly satisfies 6.5.5.  Further, letting 
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the relevant partial derivatives are 
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Substituting these into the differential equation now yields 
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so the deflection is 
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This is plotted in Fig. 6.5.2.  The maximum deflection occurs at the plate centre, where 
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Figure 6.5.2: mid-plane deflection of the clamped circular plate 
 
The curvature 22 / xw   along a radial line 0y  is displayed in Fig. 6.5.3.  The 
curvature is positive toward the centre of the plate (the plate curves upward) and is 
negative towards the edge of the plate (the plate curves downward). 
 

 
 

Figure 6.5.3: curvature in the clamped circular plate 
 
 
The moments occurring in the plate are, from the moment-curvature equations 6.2.31 and 
6.5.8, 
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The moment xM  along a radial line 0y  is of the same character as the curvature 

displayed in Fig. 6.5.3. 
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The out-of-plane shear forces are, from 6.4.5,  
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At the plate centre, the expressions become 
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Stresses in the Plate 
 
From 6.5.12-13 and 6.2.33, 6.4.15-16, the stresses in the plate are 
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Converting to polar coordinates ),( r  through 
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and using a stress transformation, 
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leads to the axisymmetric stress field {▲Problem 1} 
 

 

 
0

)1()13(
4

3

)1()3(
4

3

22
3

22
3

















r

rr

ar
h

qz

ar
h

qz

                                      (6.5.18) 

 



Section 6.5 

Solid Mechanics Part II                                                                                Kelly 154

At the plate centre, 
 

    1
4

3
3

2

h

qza
rr                                         (6.5.19) 

 
At the plate edge ar  , 
 

  3

2

3

2

2

3
,

2

3

h

qza

h

qza
rr                                         (6.5.20) 

 
For the shear stress, the traction acting on a surface parallel to the yx   plane can be 
expressed as (see Fig. 6.5.4) 
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where ie  is a unit vector in the direction i.  Thus 
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Figure 6.5.4: stress components acting on a surface 
 
 
Note that the maximum stress in the plate is 
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The maximum shear stress, on the other hand, is  haqazr /4/3)0,(  .  Thus the shear 
stress is of an order ah /  smaller than the normal stress. 
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6.5.3 An Infinite Plate with Sinusoidal Deflection 
 
Consider next the classic plate problem addressed by Navier in 1820.  It consists of an 
infinite plate with an undulating “up/down” sinusoidal deflection, Fig. 6.5.5, 
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Figure 6.5.5: A plate with sinusoidal deflection 
 
Differentiation of the deflection leads to the curvatures 
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and hence the pressure 
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The pressure thus varies like the deflection.  There is no need for supports for the plate 
since the “up” loads balance the “down” loads. 
 
From the moment-curvature relations, 
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and, from 6.4.12, the shear forces are 
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                             (6.5.28) 

 
Note that both wq /  and yx MM /  are constant throughout the plate. 

 
 
6.5.4 A Simply Supported Plate with Sinusoidal Deflection 
 
Following on from the previous example, consider now a finite plate of dimensions a  and 
b with the same sinusoidal deflection 6.5.24, simply supported along the edges 0x , 

ax  , 0y , by  .  In what follows, take 0w  in 6.5.24 to be negative, so that the plate 

is pushed down towards the centre. 
 
According to 6.5.24 and 6.5.27, the deflection and slope is zero along the supported 
edges, as required.  The vertical reactions at the supports are given by 6.5.28.  However, 
according to Eqn. 6.5.27c, there are varying non-zero twisting moments over the ends of 
the plate.  Thus the solution given by 6.5.24-28 is not quite the solution to the simply 
supported finite-plate problem, unless one can somehow apply the exact required twisting 
moments over the edges of the plate. 
 
It turns out, however, that the solution 6.5.24-28 is a correct solution, except in a region 
close to the edges of the plate.  This is explained in what follows. 
 
Twisting Moments over “Free” Surfaces 
 
Consider an element of material of width dy , Fig. 6.5.6.  The element is subjected to a 

twisting moment dyM xy , Fig. 6.5.6a.  This twisting moment is due to shear stresses 

acting parallel to the plate surface (see Fig. 6.1.8).  This system of horizontal forces can 
be replaced by the statically equivalent system of vertical forces shown in Fig. 6.5.6b – 
two forces of magnitude xyM  separate by a distance dy .  Recalling Saint-Venant’s 

principle, the difference between the statically equivalent systems of forces of Fig. 6.5.6a 
and 6.5.6b will lead to differences in the stress field within the plate only in a small region 
very close to the plate-edges. 
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Figure 6.5.6: Equivalent systems of forces leading to the same twisting moment; (a) 

horizontal forces, (b) vertical forces 
 
Consider next a distribution of twisting moment along the plate edge, Fig. 6.5.7.  As can 
be seen, this distribution is equivalent to a distribution of shearing forces (per unit length) 
of magnitude 
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Figure 6.5.7: A distribution of twisting moments along a plate edge 
 
The total vertical reaction along the edges can now be taken to be 
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(and xMV xyy  /  along the other edges) and this gives a correct solution to the 

problem.  From 6.5.27-28, these reactions are 
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Corner Forces 
 
Integrating 6.5.31 over the four edges, the resultant upward forces on the four edges (with 

00 w , they are all four upward) are 
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and the resultant of these may be expressed as 
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The resultant downward force is, using 6.5.26, 
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        (6.5.34) 

 
The difference between upF  and downF  is due to the re-distributed twisting moment, and is 

explained a follows: consider again Fig. 6.5.7, where the edge twisting moments have 
been replaced with a statically equivalent distribution of shear forces.  It can be seen that 
there results shear forces at the ends of the plate-edge (the “corners”), where the shear 
forces xyM  have no neighbouring shear force of opposite sign with which to “cancel out”.  

There are concentrated forces (per unit length) at the plate-corners of magnitude xyM .  

Examining Fig. 6.5.7, which shows the edge ax  , the force )0,(aM xy  is positive up 

whereas the force ),( baM xy  is positive down.  There are also contributions to the corner 
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forces at )0,(a  and ),( ba  from the adjacent edges, shown in Fig. 6.5.8.  One finds that the 
downward concentrated forces at the corner are 
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                                  (6.5.35) 

 
Adding these to downF  of Eqn. 6.5.34 now gives the upF  of Eqn. 6.5.33. 

 
Physically, if one applies a pressure to a simply supported plate, the plate will tend to rise 
at the four corners, in a twisting action.  The corner forces 6.5.35 are necessary to keep 
the corners down and so produce the deflection 6.5.24. 
 

 
 

Figure 6.5.8: corner forces in the simply supported plate 
 
The ratio of the resultant downward corner force to the downward force due to the applied 
pressure, downF , is 
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For a square plate, this is 2/)1(  ; with 3.0 , this is 35%. 
 

6.5.5 A Rectangular Plate Simply Supported at the Edges 
 
The above solution can be used to solve the problem of a simply supported plate loaded 
by any arbitrary pressure distribution, through the use of Fourier series. 
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Consider again this plate, whose displacement boundary conditions are 
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Assume the deflection to be of the form 
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with mnA  coefficients to be determined.  It can be seen that this function satisfies the 

boundary conditions.  Taking the derivatives of this function, 
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 etc., and substituting into the differential equation 6.4.9, gives 
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This can be written compactly in the form 
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where  
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It remains to choose the coefficients of the series so as to satisfy the equation identically 
over the whole area of the plate. 
 
One can evaluate the coefficients as one does for ordinary Fourier series, although here 
one has a double series and so one proceeds as follows: first, multiply both sides of 
(6.5.40) by  byk /sin   where k is an integer, and integrate over y between the limits 

],0[ b , so that 
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Using the orthogonality condition 
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leads to 
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Now there are functions of x only so, multiplying both sides by )/sin( axj  and following 
the same procedure, one has 
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and hence the coefficients mnC  are (replacing the dummy subscripts kj,  with nm, ) 
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Thus the coefficients mnA  of the original expression for the deflection ),( yxw , 6.5.38, are 
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It is now possible to solve for the coefficients given any loading ),( yxq  over the plate, 
and hence evaluate the deflection, moments and stresses in the plate, by taking the 
derivatives of the infinite series for w . 
 
This solution is due to Navier and is called Navier’s solution to the rectangular plate 
problem.  A similar solution method has been used by Lévy to solve a more general 
problem – that of a rectangular plate simply supported on two opposite sides, and any one 
of the conditions free, simply-supported, or clamped, along the other two opposite sides.  
For example, considering a square plate, this involves using a trial function for the 
deflection of the form (compare with 6.5.38) 
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and then attempting to determine the functions )(yFn . 

 
A Uniform Load 
 
In the case of a uniform load qyxq ),( , one has 
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The resulting series in 6.5.50 converges rapidly. 
 
The deflection at the centre of the plate is then 
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For a square plate, 
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Denoting the area 2a  by A, this is DqA /0041.0 2 .  This can be compared with the 

clamped circular plate; denoting the area there, 2a , by A, the maximum deflection, Eqn. 
6.5.11, gives DqA /0016.0 2 . 
 
Corner Forces 
 
The twisting moment is 
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and the four corner forces required to hold the plate down are now 
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For a uniform load over a square plate, using 6.5.50, the corner forces reduce to 
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                         (6.5.55) 

 
(for 3.0 ) where 2

0 qaF   is the resultant applied force. 

 
 
6.5.6 Problems 
 
1. Derive the expressions for the stress components in polar form, for the clamped 

circular plate under uniform lateral load, Eqn. 6.5.18. 
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6.6 Plate Problems in Polar Coordinates 
 
 
6.6.1 Plate Equations in Polar Coordinates 
 
To examine directly plate problems in polar coordinates, one can first transform the 
Cartesian plate equations considered in the previous sections into ones in terms of polar 
coordinates. 
 
First, the definitions of the moments and forces are now 
 















2/

2/

2/

2/

2/

2/

,,
h

h

rr

h

h

h

h

rrr dzzMdzzMdzzM                   (6.6.1) 

 
and 
 











2/

2/

2/

2/

,
h

h

z

h

h

zrr dzVdzV                                       (6.6.2) 

 
The strain-curvature relations, Eqns. 6.2.27, can be transformed to polar coordinates using 
the transformations from Cartesian to polar coordinates detailed in §4.2 (in particular,  
§4.2.6).  One finds that {▲Problem 1} 
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The moment-curvature relations 6.2.31 become {▲Problem 2} 
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The governing differential equation 6.4.9 now reads 
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The shear forces in terms of deflection, Eqn 6.4.12, now read {▲Problem 3} 
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Finally, the stresses are {▲Problem 4} 
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The differential equation 6.6.5 can be solved using a method similar to the Airy stress 
function method for problems in polar coordinates (the Mitchell solution), that is, a 
solution is sought in the form of a Fourier series.  Here, however, only axisymmetric 
problems will be considered in detail. 
 
 
6.6.2 Plate Equations for Axisymmetric Problems 
 
When the loading and geometry of the plate are axisymmetric, the plate equations given 
above reduce to 
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Note that there is no twisting moment, so the problem of dealing with non-zero twisting 
moments on free boundaries seen with rectangular plate does not arise here. 
 
 
6.6.3 Axisymmetric Plate Problems 
 
For uniform q, direct integration of 6.6.10 leads to 
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and 
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There are two classes of problem to consider, plates with a central hole and plates with no 
hole.  For a plate with no hole in it, the condition that the stresses remain finite at the plate 
centre requires that 22 / drwd  remains finite, so 0 CA .  Thus immediately one has 

2/qrVr  .  The boundary conditions at the outer edge ar   give B  and D . 
 
 
1. Solid Plate – Uniform Bending 
 
The simplest case is pure bending of a plate, 0MM r  , with no transverse pressure, 

0q .  The plate is solid so 0 CA  and one has DrBw  4/2 .  The applied 
moment is  
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so   1/2 0 DMB .  Taking the deflection to be zero at the plate-centre, the solution is 
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2. Solid Plate Clamped – Uniform Load 
 
Consider next the case of clamped plate under uniform loading.  The boundary conditions 
are that 0/  drdww  at ar  , leading to 
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and hence 
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which is the same as 6.5.10. 
 
The reaction force at the outer rim is 2/)( qaaVr  .  This is a force per unit length; the 

force acting on an element of the outer rim is   2/ aqa  and the total reaction force 

around the outer rim is 2qa , which balances the same applied force. 
 
3. Solid Plate Simply Supported – Uniform Load 
 
For a simply supported plate, 0w  and 0rM  at ar  .  Using 6.6.9a, one then has 
{▲Problem 5} 
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and hence 
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The deflection for the clamped and simply supported cases are plotted in Fig. 6.6.1 (for 

3.0 ). 
 



Section 6.6 

Solid Mechanics Part II                                                                                Kelly 168

 
Figure 6.6.1: deflection for a circular plate under uniform loading 

 
 
4. Solid Plate with a Central Concentrated Force 
 
Consider now the case of a plate subjected to a single concentrated force F at 0r .  The 
resultant shear force acting on any cylindrical portion of the plate with radius r about the 
plate-centre is )(2 rrVr .  As 0r , one must have an infinite rV  so that this resultant is 
finite and equal to the applied force F.  An infinite shear force implies infinite stresses.  It 
is possible for the stresses at the centre of the plate to be infinite.  However, although the 
stresses and strain might be infinite, the displacements, which are obtained from the 
strains through integration, can remain, and should remain, finite.  Although the solution 
will be “unreal” at the plate-centre, one can again use Saint-Venant’s principle to argue 
that the solution obtained will be valid everywhere except in a small region near where 
the force is applied. 
 
Thus, seek a solution which has finite displacement in which case, by symmetry, the slope 
at 0r  will be zero.  From the general axisymmetric solution 6.6.15a, 
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so 0C . 
 
From 6.6.16 
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Thus DFA 2/  and the moments and shear force become infinite at the plate-centre. 
 
The other two constants can be obtained from the boundary conditions.  For a clamped 
plate, 0/  drdww , and one finds that {▲Problem 7} 
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This solution results in )/ln( ar  terms in the expressions for moments, giving 
logarithmically infinite in-plane stresses at the plate-centre. 
 
5. Plate with a Hole 
 
For a plate with a hole in it, there will be four boundary conditions to determine the four 
constants in Eqn. 6.6.14.  For example, for a plate which is simply supported around the 
outer edge br   and free on the inner surface ar  , one has 
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6.6.4 Problems 
 
1. Use the expressions 4.2.11-12, which relate second partial derivatives in the Cartesian 

and polar coordinate systems, together with the strain transformation relations 4.2.17, 
to derive the strain-curvature relations in polar coordinates, Eqn. 6.6.3. 

 
2. Use the definitions of the moments, 6.6.1, and again relations 4.2.11-12, together with 

the stress transformation relations 4.2.18, to derive the moment-curvature relations in 
polar coordinates, Eqn. 6.6.4. 

 
3. Derive Eqns. 6.6.6. 
 
4. Use 6.2.33, 6.4.15-16 to derive the stresses in terms of moments and shear forces, 

Eqns. 6.6.7-8. 
 
5. Solve the simply supported solid plate problem and hence derive the constants 6.6.21. 
 
6. Show that the solution for a simply supported plate (with no hole), Eqn. 6.6.22, can be 

considered a superposition of the clamped solution, Eqn. 6.6.20, and a pure bending, 
by taking an appropriate deflection at the plate-centre in the pure bending case. 

 
7. Solve for the deflection in the case of a clamped solid circular plate loaded by a single 

concentrated force, Eqn. 6.6.25.  
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6.7 In-Plane Forces and Plate Buckling 
 
In the previous sections, only bending and twisting moments and out-of-plane shear 
forces were considered.  In this section, in-plane forces are considered also.  The in-plane 
forces will give rise to in-plane membrane strains, but here it is assumed that these are 
uncoupled from the bending strains.  In other words, the membrane strains can be found 
from a separate plane stress analysis of the mid-surface and the bending of the plate does 
not affect these membrane strains.  The possible effect of the in-plane forces on the 
bending strains is the main concern here. 
 
 
6.7.1 Equilibrium for In-plane Forces 
 
Start again with the equations of equilibrium, Eqns. 6.4.6.  Integrating the first and second 
through the thickness of the plate (this time without multiplying first by z), and using the 
definitions of the in-plane forces 6.1.1-6.1.2, leads to 
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6.7.2 The Governing Differential Equation 
 
Consider an element of the deflected plate, Fig. 6.7.1.  Only a deflection in the y direction, 

y / , is considered for clarity.  Resolving the components of the in-plane forces into 
horizontal and vertical components: 
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These reduce to 
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Using 6.7.1, one has 
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Considering also a deflection x / , one has for the resultant vertical force : 
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Figure 6.7.1: In-plane forces acting on a plate element 
 

When the in-plane forces were neglected, the vertical stress resisted by bending and shear 
force was qzz  .  Here, one has an additional stress given by 6.7.5, and so the 
governing differential equation 6.4.7 becomes 
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6.7.3 Buckling of Plates 
 
When compressive in-plane forces are applied to a plate, the plate will at first remain flat 
and simply be compressed.  However, when the in-plane forces reach a critical level, the 
plate will bend and the deflection will be given by the solution to 6.7.6.  For example, 
consider the case of a simply supported plate subjected to a uniform in-plane compression 

xN  only, Fig. 6.7.2, in which case 6.7.6 reduces to 
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Following Navier’s method from §6.5.5, assume a buckled shape 
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so that 6.7.7 becomes 
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Disregarding the trivial 0mnA , this can be satisfied by taking 
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Figure 6.7.2: In-plane compression of a plate 
 
The lowest in-plane force xN  which will deflect the plate is sought.  Clearly, the smallest 

value on the right hand side of 6.7.10 will be when 1n .  This means that the buckling 
modes as given by 6.7.8 will be of the form 
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so that the plate will only ever buckle with one half-wave in the direction perpendicular to 
loading.  

a
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When ba  , the smallest value occurs when 1m , in which case the critical in-plane 
force is 
 

 
2

2

2

cr 





 

b

a

a

b

b

D
N x


                                    (6.7.12) 

 
When ba /  is very small, the plate is loaded along the relatively long edges and the 
critical load is much higher than for a square plate. 
 
The deflection (buckling mode) corresponding to this critical load is 
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Note that the amplitude 11A  cannot be determined from the analysis1. 
 
As ba /  increases above unity, the value of m at which the applied load is a minimum 

increases.  When ba /  reaches just over 2 , the critical buckling load occurs for 2m , 
for which  
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and corresponding buckling more 
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The plate now buckles in two half-waves, as if the centre-line were simply supported and 
there were two smaller separate plates buckling similarly. 
 
As ba /  increases further, so too does m.  For a very long, thin, plate, bam / , and so 
the plate subdivides approximately into squares, each buckling in a half-wave. 
 

                                                 
1 this is a consequence of assuming small deflections; it can be determined when the deflections are not 
assumed to be small 
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6.8 Plate Vibrations 
 
In this section, the problem of a vibrating circular plate will be considered.  Vibrating 
plates will be re-examined again in the next section, using a strain energy formulation. 
 
 
6.8.1 Vibrations of a Clamped Circular Plate 
 
When a plate vibrates with velocity /w t  , the third equation of equilibrium, Eqn. 6.6.2c 
becomes the equation of motion 
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With this adjustment, the term q is replaced with 22 / twhq    in the relevant 

equations; the acceleration term is treated as a transverse load of intensity 22 / twh  . 
 
Regarding the circular plate, one has from the axisymmetric governing equation 6.6.10 
(with 0q ), 
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Assume a solution of the form 
 

     trWtrw cos),(                                          (6.8.3) 
 
Substituting into 6.8.2 gives 
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Eqn. 6.8.4 gives the two differential equations 
 

0
1

,0
1 2

2

2
2

2

2


















 Wk

dr

d

rdr

d
Wk

dr

d

rdr

d
          (6.8.6) 

 
The solution to these equations are 
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       krKCkrICWkrYCkrJCW 04030201 ,                  (6.8.7)  

 
where 0J  and 0Y  are, respectively, the Bessel functions of order zero of the first kind and 

of the second kind; 0I  and 0K  are, respectively, the Modified Bessel functions of order 

zero of the first kind and of the second kind1.  These functions are plotted in Fig. 6.8.1 
below.  For a solid plate with no hole at 0r , one requires that 042  CC , since 0Y  

and 0K  become unbounded as 0r .  The general solution is thus 

 
   krIBkrJArW 00)(                                          (6.8.8)  

 

 
Figure 6.8.1: Bessel Functions 

 
For a clamped plate, the boundary conditions give 
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where the dash means dxxdJxJ /)()( 00   and dxxdIxI /)()( 00  .  Using the relations 

 
)()(),()( 1010 xIxIxJxJ                                   (6.8.10) 

 
where 11 , IJ  are Bessel functions of order one, one has 
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1 by definition, these Bessel functions are the solution of the differential equations 6.8.6. 
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The roots ka  give the frequencies of vibration of the plate.  The function 
 

       kaJkaIkaIkaJ 1010                                         (6.8.12) 

 
is plotted in Fig. 6.8.2 below.  The smallest root is found to be 3.1962.  Eqn. 6.8.5 then 
gives for the frequency, 
 

h

D

a 


2

1
                                                  (6.8.13) 

 
where 2158.10 . 

 
 

Figure 6.8.2: The Function 6.8.12 
 
Further roots ka  of 6.8.12 are given in Table 6.8.1.  For each of these roots there is a 
corresponding frequency   given by Eqn. 6.8.13, for which the value of   is also 
tabulated. 
 

 ka   nodal circle 
1 3.1962 10.2158  
2 6.3064 39.7711 0.3790 
3 9.4395 89.1041 0.2548, 0.5833 

 
Table 6.8.1: Roots of Eqn. 6.8.11, frequency factors and nodal circle roots 

 
 
From 6.8.3, 6.8.8-9, the solution for the deflection is 
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These are an infinite number of deflections, each one corresponding to a root ka .  The 
actual deflection will be a superposition of these individual solutions. 
 
The term inside the square brackets gives the mode shape of the plate during the vibration.  
The first three (normalized) mode shapes, corresponding to the first three roots, are shown 
in Fig. 6.8.3. 

 
 

Figure 6.8.3: Mode shapes for the Clamped Circular Plate 
 
The point ar /  where these mode-shapes change sign are the positions of the so-called 
nodal circles.  These roots of the mode shapes are given in the last column of Table 6.8.1  
 
The General Problem 
 
For circular plates not constrained to an axisymmetric response, one must use the more 
general differential equation 6.6.5 
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This time, instead of 6.8.3, assume a solution of the form 
 

        tnrWtrw n sincos),,(                                (6.8.16) 

 
Then 6.8.4-6 become 
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where k is again given by 6.8.5, and 6.8.6 becomes 
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The solution to these equations are 
 

       krKCkrICWkrYCkrJCW nnnn 4321 ,                  (6.8.19)  

 
where one now has Bessel functions of order n.  Proceeding as before, one now needs to 
find roots of the equation 
 

        011   kaJkaIkaIkaJ nnnn                                  (6.8.20) 

 
and the deflection is 
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The solution for 0n  has been given already.  For other values of n, there are n so-called 
nodal diameters.  For example, for 1n  there is one nodal diameter along 2/  , 
along which the deflection is zero.  The roots of 6.8.20 for this case are given in Table 
6.8.2, together with the nodal circle locations. 
 

 ka   nodal circle 
1 4.6109 21.2604  
2 7.7993 60.8287 0.4897 
3 10.9581 120.0792 0.3497, 0.6390 

 
Table 6.8.2: Roots of Eqn. 6.8.20 (n=1), frequency factors and nodal circle roots 

 
The mode shapes for half the plate for this case of one nodal diameter are shown in Fig. 
6.8.4, corresponding to the first two roots in Table 6.8.2.  The frequencies corresponding 
to these solutions are again given by 6.8.13 with the frequency factor   given in the 
table. 
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Figure 6.8.4: Mode shapes for the case of one nodal diameter 
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6.9 Strain Energy in Plates 
 
 
6.9.1 Strain Energy due to Plate Bending and Torsion 
 
Here, the elastic strain energy due to plate bending and twisting is considered. 
 
Consider a plate element bending in the x direction, Fig. 6.9.1.  The radius of curvature is 

22 / xwR  .  The strain energy due to bending through an angle   by a moment 
yM x  is 
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Considering also contributions from yM  and xyM , one has 
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Figure 6.9.1: a bending plate element 
 
Using the moment-curvature relations, one has 
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        (6.9.3) 

 
This can now be integrated over the complete plate surface to obtain the total elastic strain 
energy. 
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6.9.2 The Principle of Minimum Potential Energy 
 
Plate problems can be solved using the principle of minimum potential energy (see Book 
I, §8.6).  Let extWV   be the potential energy of the loads, equivalent to the negative of 

the work done by those loads, and so the potential energy of the system is 
     wVwUw  .  The solution is then the deflection which minimizes  w . 

 
When the load is a uniform lateral pressure q, one has 
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As an example, consider again the simply supported rectangular plate subjected to a 
uniform load q.  Use the same trial function 6.5.38 which satisfies the boundary 
conditions: 
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Substituting into 6.9.5 and integrating over the plate gives 
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Carrying out the integration leads to 
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To minimize the total potential energy, one sets 
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which is the same result as 6.5.50. 
 
 
6.9.3 Strain Energy in Polar Coordinates 
 
For circular plates, one can transform the strain energy expression 6.9.3 into polar 
coordinates, giving {▲Problem 1} 
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For an axisymmetric problem, the strain energy is 
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6.9.4 Vibration of Plates 
 
For vibrating plates, one needs to include the kinetic energy of the plate.  The kinetic 
energy of a plate element of dimensions yx  ,  and moving with velocity t /  is 
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According to Hamilton’s principle, then, the quantity to be minimized is now 
    )(wKwVwU  . 

 
Consider again the problem of a circular plate undergoing axisymmetric vibrations.  The 
potential energy function is 
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Assume a solution of the form 
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   trWtrw cos)(),(                                          (6.9.14) 

 
Substituting this into 6.9.13 leads to 
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Examining the clamped plate, assume a solution, an assumption based on the known static 
solution 6.6.20, of the form 
 

 222)( raArW                                                  (6.9.16) 
 
Substituting this into 6.9.15 leads to 
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Evaluating the integrals leads to 
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Minimising this function, setting   0/  A , then gives 
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This simple one-term solution is very close to the exact result given in Table 6.8.1, 
10.2158.  The result 6.9.19 is of course greater than the actual frequency. 
 
 
6.9.5 Problems 
 
1. Derive the strain energy expression in polar coordinates, Eqn. 6.9.10. 
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6.10 Limitations of Classical Plate Theory 
 
The validity of the classical plate theory depends on a number of factors: 

1. the curvatures are small 
2. the in-plane plate dimensions are large compared to the thickness 
3. membrane strains can be neglected 

 
The second and third of these points are discussed briefly in what follows. 
 
 
6.10.1 Moderately Thick Plates 
 
As with beam theory, and as mentioned already, it turns out that the solutions based on 
the classical theory agree well with the full elasticity solutions (away from the edges of 
the plate), provided the plate thickness is small relative to its other linear dimensions.  
When the plate is relatively thick, one is advised to use a more exact theory, for example 
one of the shear deformation theories: 
 
Shear deformation Theories 
 
The Mindlin plate theory (or moderately thick plate theory or shear deformation 
theory) was developed in the mid-1900s to allow for possible transverse shear strains.  In 
this theory, there is the added complication that vertical line elements before deformation 
do not have to remain perpendicular to the mid-surface after deformation, although they 
do remain straight.  Thus shear strains yz  and zx  are generated, constant through the 

thickness of the plate. 
 
The classical plate theory is inconsistent in the sense that elements are assumed to remain 
perpendicular to the mid-plane, yet equilibrium requires that stress components yzxz  ,  

still arise (which would cause these elements to deform).  The theory of thick plates is 
more consistent, but it still makes the assumption that 0zz .  Note that both are 
approximations of the exact three-dimensional equations of elasticity. 
 
As an indication of the error involved in using the classical plate theory, consider the 
problem of a simply supported square plate subjected to a uniform pressure.  According to 
Eqn. 6.5.52, the central deflection is 062.4)1000//( 4 Dqaw .  The shear deformation 
theory predicts 4.060 (for 100/ ha ), 4.070 (for 50/ ha ), 4.111 (for 20/ ha ) and 
4.259 (for 10/ ha ).  This trend holds in general; the classical theory is good for thin 
plates but under-predicts deflections (and over-predicts buckling loads and natural 
frequencies) in relatively thick plates. 
 
An important difference between the thin plate and thick plate theories is that in the 
former the moments are related to the curvatures through (using xM  for illustration) 
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This is only an approximate relation (although it turns out to be exact in the case of pure 
bending).  The thick plate theory predicts that, in the case of a uniform lateral load q, the 
relationship is given by 
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The thin plate expression will be approximately equal to the thick plate expression when 
the thickness h is very small, since in that case 02 h , or when the ratio of load to 
stiffness, Dq / , is small. 
 
Some solutions for circular plates using the various theories are presented next for 
comparison. 
 
Comparison of Solutions for Circular Plates 
 
1. Uniform load q, clamped: 
 
Both thin and thick plate theories give 
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2. Uniform load q, simply supported: 
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3. Concentrated central load, clamped (Eqn. 6.6.25): 
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4. Concentrated central load Q, simply supported: 
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Higher-order deformation Theories 
 
A further theory known as third-order plate theory has also been developed.  This 
allows for the displacements to vary not only linearly (the previously described Mindlin 
theory is also called the first order shear deformation theory), but as cubic functions; 
the in-plane strains are cubic ( 3~ z ) and the shear strains are quadratic.  This allows the 
line elements normal to the mid-surface not only to rotate, but also to deform and not 
necessarily remain straight. 
 
 
6.10.2 Large Deflections 
 
Consider now the assumption that the membrane stresses may be neglected.  To 
investigate the validity of this, consider an initially circular plate of diameter d, clamped 
at the edges, and deformed into a spherically shaped surface, Fig. 6.10.1. 
 

 
 

Figure 6.10.1: a deformed circular plate 
 
Considering a beam, the length of the neutral axis before and after deformation can safely 
be taken to be equal, even when the beam deforms as in Fig. 6.10.1, i.e. one can take 

dd  .  The reason for this is that the “supports” are assumed to move slightly to 
accommodate any small deflection; thus the neutral axis of a beam remains strain-free and 
hence stress-free. 
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Consider next the plate.  Suppose that the supports could move slightly to accommodate 
the deformation of the plate so that the curved length in Fig. 6.10.1 was equal in length to 
the original diameter.  One then sees that a compressive circumferential strain is set up in 
the plate mid-surface, of magnitude   ddd / .  To quantify this, note that Rd 2/  

and Rd 2/sin  .  Thus      !5/2/!3/2/2/2/ 53 RdRdRdRd .  Then 
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With Rw /1cos   and  !2/1cos 2 , one also has 
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so that, approximately, 
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The maximum bending strain occurs at 2/hz  , where )/1)(2/.( Rhrr  , so 
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One can conclude from this rough analysis that, in order that the membrane strains can be 
safely ignored, the deflection w must be small when compared to the thickness h of the 
plate1.  The corollary of this is that when there are large deflections, the middle surface 
will strain and take up the load as in a stretching membrane.  For the bending of circular 
plates, one usually requires that hw 5.0  in order that the membrane strains can be safely 
ignored without introducing considerable error.  For example, a uniformly loaded 
clamped plate deflected to hw   experiences a maximum membrane stress of 
approximately 20% of the maximum bending stress. 
 
When the deflections are large, the membrane strains need to be considered.  This means 
that the von Kármán strains, Eqns. 6.2.22, 6.2.25, must be used in the analysis.  Further, 
the in-plane forces, for example in the bending Eqn. 6.7.6, are now an unknown of the 
problem.  Some approximate solutions of the resulting equations have been worked out, 
for example for uniformly loaded circular and rectangular plates. 
 
 
 
 
 
 

                                                 
1 except in some special cases, for example when a plate deforms into the surface of a cylinder 
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