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6.10 Limitations of Classical Plate Theory 
 
The validity of the classical plate theory depends on a number of factors: 

1. the curvatures are small 
2. the in-plane plate dimensions are large compared to the thickness 
3. membrane strains can be neglected 

 
The second and third of these points are discussed briefly in what follows. 
 
 
6.10.1 Moderately Thick Plates 
 
As with beam theory, and as mentioned already, it turns out that the solutions based on 
the classical theory agree well with the full elasticity solutions (away from the edges of 
the plate), provided the plate thickness is small relative to its other linear dimensions.  
When the plate is relatively thick, one is advised to use a more exact theory, for example 
one of the shear deformation theories: 
 
Shear deformation Theories 
 
The Mindlin plate theory (or moderately thick plate theory or shear deformation 
theory) was developed in the mid-1900s to allow for possible transverse shear strains.  In 
this theory, there is the added complication that vertical line elements before deformation 
do not have to remain perpendicular to the mid-surface after deformation, although they 
do remain straight.  Thus shear strains yz  and zx  are generated, constant through the 

thickness of the plate. 
 
The classical plate theory is inconsistent in the sense that elements are assumed to remain 
perpendicular to the mid-plane, yet equilibrium requires that stress components yzxz  ,  

still arise (which would cause these elements to deform).  The theory of thick plates is 
more consistent, but it still makes the assumption that 0zz .  Note that both are 
approximations of the exact three-dimensional equations of elasticity. 
 
As an indication of the error involved in using the classical plate theory, consider the 
problem of a simply supported square plate subjected to a uniform pressure.  According to 
Eqn. 6.5.52, the central deflection is 062.4)1000//( 4 Dqaw .  The shear deformation 
theory predicts 4.060 (for 100/ ha ), 4.070 (for 50/ ha ), 4.111 (for 20/ ha ) and 
4.259 (for 10/ ha ).  This trend holds in general; the classical theory is good for thin 
plates but under-predicts deflections (and over-predicts buckling loads and natural 
frequencies) in relatively thick plates. 
 
An important difference between the thin plate and thick plate theories is that in the 
former the moments are related to the curvatures through (using xM  for illustration) 
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This is only an approximate relation (although it turns out to be exact in the case of pure 
bending).  The thick plate theory predicts that, in the case of a uniform lateral load q, the 
relationship is given by 
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The thin plate expression will be approximately equal to the thick plate expression when 
the thickness h is very small, since in that case 02 h , or when the ratio of load to 
stiffness, Dq / , is small. 
 
Some solutions for circular plates using the various theories are presented next for 
comparison. 
 
Comparison of Solutions for Circular Plates 
 
1. Uniform load q, clamped: 
 
Both thin and thick plate theories give 
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2. Uniform load q, simply supported: 
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3. Concentrated central load, clamped (Eqn. 6.6.25): 
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4. Concentrated central load Q, simply supported: 
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Higher-order deformation Theories 
 
A further theory known as third-order plate theory has also been developed.  This 
allows for the displacements to vary not only linearly (the previously described Mindlin 
theory is also called the first order shear deformation theory), but as cubic functions; 
the in-plane strains are cubic ( 3~ z ) and the shear strains are quadratic.  This allows the 
line elements normal to the mid-surface not only to rotate, but also to deform and not 
necessarily remain straight. 
 
 
6.10.2 Large Deflections 
 
Consider now the assumption that the membrane stresses may be neglected.  To 
investigate the validity of this, consider an initially circular plate of diameter d, clamped 
at the edges, and deformed into a spherically shaped surface, Fig. 6.10.1. 
 

 
 

Figure 6.10.1: a deformed circular plate 
 
Considering a beam, the length of the neutral axis before and after deformation can safely 
be taken to be equal, even when the beam deforms as in Fig. 6.10.1, i.e. one can take 

dd  .  The reason for this is that the “supports” are assumed to move slightly to 
accommodate any small deflection; thus the neutral axis of a beam remains strain-free and 
hence stress-free. 
 

d 

R

2

d

w



Section 6.10 

Solid Mechanics Part II                                                                                Kelly 187

Consider next the plate.  Suppose that the supports could move slightly to accommodate 
the deformation of the plate so that the curved length in Fig. 6.10.1 was equal in length to 
the original diameter.  One then sees that a compressive circumferential strain is set up in 
the plate mid-surface, of magnitude   ddd / .  To quantify this, note that Rd 2/  

and Rd 2/sin  .  Thus      !5/2/!3/2/2/2/ 53 RdRdRdRd .  Then 
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With Rw /1cos   and  !2/1cos 2 , one also has 
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so that, approximately, 
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The maximum bending strain occurs at 2/hz  , where )/1)(2/.( Rhrr  , so 
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One can conclude from this rough analysis that, in order that the membrane strains can be 
safely ignored, the deflection w must be small when compared to the thickness h of the 
plate1.  The corollary of this is that when there are large deflections, the middle surface 
will strain and take up the load as in a stretching membrane.  For the bending of circular 
plates, one usually requires that hw 5.0  in order that the membrane strains can be safely 
ignored without introducing considerable error.  For example, a uniformly loaded 
clamped plate deflected to hw   experiences a maximum membrane stress of 
approximately 20% of the maximum bending stress. 
 
When the deflections are large, the membrane strains need to be considered.  This means 
that the von Kármán strains, Eqns. 6.2.22, 6.2.25, must be used in the analysis.  Further, 
the in-plane forces, for example in the bending Eqn. 6.7.6, are now an unknown of the 
problem.  Some approximate solutions of the resulting equations have been worked out, 
for example for uniformly loaded circular and rectangular plates. 
 
 
 
 
 
 

                                                 
1 except in some special cases, for example when a plate deforms into the surface of a cylinder 


