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6.9 Strain Energy in Plates 
 
 
6.9.1 Strain Energy due to Plate Bending and Torsion 
 
Here, the elastic strain energy due to plate bending and twisting is considered. 
 
Consider a plate element bending in the x direction, Fig. 6.9.1.  The radius of curvature is 

22 / xwR  .  The strain energy due to bending through an angle   by a moment 
yM x  is 
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Considering also contributions from yM  and xyM , one has 
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Figure 6.9.1: a bending plate element 
 
Using the moment-curvature relations, one has 
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        (6.9.3) 

 
This can now be integrated over the complete plate surface to obtain the total elastic strain 
energy. 
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6.9.2 The Principle of Minimum Potential Energy 
 
Plate problems can be solved using the principle of minimum potential energy (see Book 
I, §8.6).  Let extWV   be the potential energy of the loads, equivalent to the negative of 

the work done by those loads, and so the potential energy of the system is 
     wVwUw  .  The solution is then the deflection which minimizes  w . 

 
When the load is a uniform lateral pressure q, one has 
 

  xxyxwqWV ext  ,                                  (6.9.4) 
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       (6.9.5) 

 
As an example, consider again the simply supported rectangular plate subjected to a 
uniform load q.  Use the same trial function 6.5.38 which satisfies the boundary 
conditions: 
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    (6.9.6) 

 
Substituting into 6.9.5 and integrating over the plate gives 
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       (6.9.7) 

 
Carrying out the integration leads to 
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To minimize the total potential energy, one sets 
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which is the same result as 6.5.50. 
 
 
6.9.3 Strain Energy in Polar Coordinates 
 
For circular plates, one can transform the strain energy expression 6.9.3 into polar 
coordinates, giving {▲Problem 1} 
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       (6.9.10) 

  
For an axisymmetric problem, the strain energy is 
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6.9.4 Vibration of Plates 
 
For vibrating plates, one needs to include the kinetic energy of the plate.  The kinetic 
energy of a plate element of dimensions yx  ,  and moving with velocity t /  is 
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According to Hamilton’s principle, then, the quantity to be minimized is now 
    )(wKwVwU  . 

 
Consider again the problem of a circular plate undergoing axisymmetric vibrations.  The 
potential energy function is 
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Assume a solution of the form 
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   trWtrw cos)(),(                                          (6.9.14) 

 
Substituting this into 6.9.13 leads to 
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Examining the clamped plate, assume a solution, an assumption based on the known static 
solution 6.6.20, of the form 
 

 222)( raArW                                                  (6.9.16) 
 
Substituting this into 6.9.15 leads to 
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Evaluating the integrals leads to 
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Minimising this function, setting   0/  A , then gives 
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This simple one-term solution is very close to the exact result given in Table 6.8.1, 
10.2158.  The result 6.9.19 is of course greater than the actual frequency. 
 
 
6.9.5 Problems 
 
1. Derive the strain energy expression in polar coordinates, Eqn. 6.9.10. 
 
 


