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6.5 Plate Problems in Rectangular Coordinates 
 
In this section, a number of important plate problems will be examined using Cartesian 
coordinates.   
 
 
6.5.1 Uniform Pressure producing Bending in One Direction 
 
Consider first the case of a plate which bends in one direction only.  From 6.3.11 the 
deflection and moments are 
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The differential equation 6.4.9 reads 
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The corresponding equation for a beam is EIxpdxwd /)(/ 44  .  If )(/)( xqbxp  , 

with b the depth of the beam, with 12/3bhI  , the plate will respond more stiffly than 
the beam by a factor of )1/(1 2 , a factor of about 10% for 3.0 , since 
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The extra stiffness is due to the constraining effect of yM , which is not present in the 

beam.  
 
 
6.5.2 Deflection of a Circular Plate by a Uniform Lateral Load 
 
A solution for a circular plate problem is presented next.  This problem will be examined 
again in the section which follows using the more natural polar coordinates. 
 
Consider a circular plate with boundary 
 

222 ayx  ,           (6.5.4) 
 
clamped at its edges and subjected to a uniform lateral load q, Fig. 6.5.1. 
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Figure 6.5.1: a clamped circular plate subjected to a uniform lateral load 
 
The differential equation for the problem is given by 6.4.9.  The boundary conditions are 
that the slope and deflection are zero at the boundary: 
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It will be shown that the deflection 
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is a solution to the problem.  First, this function certainly satisfies 6.5.5.  Further, letting 
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the relevant partial derivatives are 
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Substituting these into the differential equation now yields 
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so the deflection is 
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This is plotted in Fig. 6.5.2.  The maximum deflection occurs at the plate centre, where 
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Figure 6.5.2: mid-plane deflection of the clamped circular plate 
 
The curvature 22 / xw   along a radial line 0y  is displayed in Fig. 6.5.3.  The 
curvature is positive toward the centre of the plate (the plate curves upward) and is 
negative towards the edge of the plate (the plate curves downward). 
 

 
 

Figure 6.5.3: curvature in the clamped circular plate 
 
 
The moments occurring in the plate are, from the moment-curvature equations 6.2.31 and 
6.5.8, 
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          (6.5.12) 

 
The moment xM  along a radial line 0y  is of the same character as the curvature 

displayed in Fig. 6.5.3. 
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The out-of-plane shear forces are, from 6.4.5,  
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At the plate centre, the expressions become 
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Stresses in the Plate 
 
From 6.5.12-13 and 6.2.33, 6.4.15-16, the stresses in the plate are 
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Converting to polar coordinates ),( r  through 
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and using a stress transformation, 
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leads to the axisymmetric stress field {▲Problem 1} 
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At the plate centre, 
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At the plate edge ar  , 
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For the shear stress, the traction acting on a surface parallel to the yx   plane can be 
expressed as (see Fig. 6.5.4) 
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where ie  is a unit vector in the direction i.  Thus 
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Figure 6.5.4: stress components acting on a surface 
 
 
Note that the maximum stress in the plate is 
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The maximum shear stress, on the other hand, is  haqazr /4/3)0,(  .  Thus the shear 
stress is of an order ah /  smaller than the normal stress. 
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6.5.3 An Infinite Plate with Sinusoidal Deflection 
 
Consider next the classic plate problem addressed by Navier in 1820.  It consists of an 
infinite plate with an undulating “up/down” sinusoidal deflection, Fig. 6.5.5, 
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Figure 6.5.5: A plate with sinusoidal deflection 
 
Differentiation of the deflection leads to the curvatures 
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and hence the pressure 
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The pressure thus varies like the deflection.  There is no need for supports for the plate 
since the “up” loads balance the “down” loads. 
 
From the moment-curvature relations, 
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and, from 6.4.12, the shear forces are 
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Note that both wq /  and yx MM /  are constant throughout the plate. 

 
 
6.5.4 A Simply Supported Plate with Sinusoidal Deflection 
 
Following on from the previous example, consider now a finite plate of dimensions a  and 
b with the same sinusoidal deflection 6.5.24, simply supported along the edges 0x , 

ax  , 0y , by  .  In what follows, take 0w  in 6.5.24 to be negative, so that the plate 

is pushed down towards the centre. 
 
According to 6.5.24 and 6.5.27, the deflection and slope is zero along the supported 
edges, as required.  The vertical reactions at the supports are given by 6.5.28.  However, 
according to Eqn. 6.5.27c, there are varying non-zero twisting moments over the ends of 
the plate.  Thus the solution given by 6.5.24-28 is not quite the solution to the simply 
supported finite-plate problem, unless one can somehow apply the exact required twisting 
moments over the edges of the plate. 
 
It turns out, however, that the solution 6.5.24-28 is a correct solution, except in a region 
close to the edges of the plate.  This is explained in what follows. 
 
Twisting Moments over “Free” Surfaces 
 
Consider an element of material of width dy , Fig. 6.5.6.  The element is subjected to a 

twisting moment dyM xy , Fig. 6.5.6a.  This twisting moment is due to shear stresses 

acting parallel to the plate surface (see Fig. 6.1.8).  This system of horizontal forces can 
be replaced by the statically equivalent system of vertical forces shown in Fig. 6.5.6b – 
two forces of magnitude xyM  separate by a distance dy .  Recalling Saint-Venant’s 

principle, the difference between the statically equivalent systems of forces of Fig. 6.5.6a 
and 6.5.6b will lead to differences in the stress field within the plate only in a small region 
very close to the plate-edges. 
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Figure 6.5.6: Equivalent systems of forces leading to the same twisting moment; (a) 

horizontal forces, (b) vertical forces 
 
Consider next a distribution of twisting moment along the plate edge, Fig. 6.5.7.  As can 
be seen, this distribution is equivalent to a distribution of shearing forces (per unit length) 
of magnitude 
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Figure 6.5.7: A distribution of twisting moments along a plate edge 
 
The total vertical reaction along the edges can now be taken to be 
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(and xMV xyy  /  along the other edges) and this gives a correct solution to the 

problem.  From 6.5.27-28, these reactions are 
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Corner Forces 
 
Integrating 6.5.31 over the four edges, the resultant upward forces on the four edges (with 

00 w , they are all four upward) are 
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and the resultant of these may be expressed as 
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The resultant downward force is, using 6.5.26, 
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The difference between upF  and downF  is due to the re-distributed twisting moment, and is 

explained a follows: consider again Fig. 6.5.7, where the edge twisting moments have 
been replaced with a statically equivalent distribution of shear forces.  It can be seen that 
there results shear forces at the ends of the plate-edge (the “corners”), where the shear 
forces xyM  have no neighbouring shear force of opposite sign with which to “cancel out”.  

There are concentrated forces (per unit length) at the plate-corners of magnitude xyM .  

Examining Fig. 6.5.7, which shows the edge ax  , the force )0,(aM xy  is positive up 

whereas the force ),( baM xy  is positive down.  There are also contributions to the corner 
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forces at )0,(a  and ),( ba  from the adjacent edges, shown in Fig. 6.5.8.  One finds that the 
downward concentrated forces at the corner are 
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                                  (6.5.35) 

 
Adding these to downF  of Eqn. 6.5.34 now gives the upF  of Eqn. 6.5.33. 

 
Physically, if one applies a pressure to a simply supported plate, the plate will tend to rise 
at the four corners, in a twisting action.  The corner forces 6.5.35 are necessary to keep 
the corners down and so produce the deflection 6.5.24. 
 

 
 

Figure 6.5.8: corner forces in the simply supported plate 
 
The ratio of the resultant downward corner force to the downward force due to the applied 
pressure, downF , is 
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For a square plate, this is 2/)1(  ; with 3.0 , this is 35%. 
 

6.5.5 A Rectangular Plate Simply Supported at the Edges 
 
The above solution can be used to solve the problem of a simply supported plate loaded 
by any arbitrary pressure distribution, through the use of Fourier series. 
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Consider again this plate, whose displacement boundary conditions are 
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Assume the deflection to be of the form 
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with mnA  coefficients to be determined.  It can be seen that this function satisfies the 

boundary conditions.  Taking the derivatives of this function, 
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 etc., and substituting into the differential equation 6.4.9, gives 
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This can be written compactly in the form 
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where  
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It remains to choose the coefficients of the series so as to satisfy the equation identically 
over the whole area of the plate. 
 
One can evaluate the coefficients as one does for ordinary Fourier series, although here 
one has a double series and so one proceeds as follows: first, multiply both sides of 
(6.5.40) by  byk /sin   where k is an integer, and integrate over y between the limits 

],0[ b , so that 
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Using the orthogonality condition 
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leads to 
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Now there are functions of x only so, multiplying both sides by )/sin( axj  and following 
the same procedure, one has 
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and hence the coefficients mnC  are (replacing the dummy subscripts kj,  with nm, ) 
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Thus the coefficients mnA  of the original expression for the deflection ),( yxw , 6.5.38, are 
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It is now possible to solve for the coefficients given any loading ),( yxq  over the plate, 
and hence evaluate the deflection, moments and stresses in the plate, by taking the 
derivatives of the infinite series for w . 
 
This solution is due to Navier and is called Navier’s solution to the rectangular plate 
problem.  A similar solution method has been used by Lévy to solve a more general 
problem – that of a rectangular plate simply supported on two opposite sides, and any one 
of the conditions free, simply-supported, or clamped, along the other two opposite sides.  
For example, considering a square plate, this involves using a trial function for the 
deflection of the form (compare with 6.5.38) 
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and then attempting to determine the functions )(yFn . 

 
A Uniform Load 
 
In the case of a uniform load qyxq ),( , one has 
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The resulting series in 6.5.50 converges rapidly. 
 
The deflection at the centre of the plate is then 
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For a square plate, 
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Denoting the area 2a  by A, this is DqA /0041.0 2 .  This can be compared with the 

clamped circular plate; denoting the area there, 2a , by A, the maximum deflection, Eqn. 
6.5.11, gives DqA /0016.0 2 . 
 
Corner Forces 
 
The twisting moment is 
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and the four corner forces required to hold the plate down are now 
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For a uniform load over a square plate, using 6.5.50, the corner forces reduce to 
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(for 3.0 ) where 2

0 qaF   is the resultant applied force. 

 
 
6.5.6 Problems 
 
1. Derive the expressions for the stress components in polar form, for the clamped 

circular plate under uniform lateral load, Eqn. 6.5.18. 
 
 
 
 
 


