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6.4 Equilibrium and Lateral Loading 
 
In this section, lateral loads are considered and these lead to shearing forces yx VV , , in the 
plate. 
 
 
6.4.1 The Governing Differential Equation for Lateral Loads 
 
In general, a plate will at any location be subjected to a lateral pressure q , bending 
moments xyyx MMM ,,  and out-of-plane shear forces xV  and yV ; q is the normal pressure 
on the upper surface of the plate: 
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These quantities are related to each other through force equilibrium. 
 
Force Equilibrium 
 
Consider a differential plate element with one corner at )0,0(),( =yx , Fig. 6.4.1, 
subjected to moments, pressure and shear force.  Taking force equilibrium in the vertical 
direction (neglecting a possible small variation in q, since this will only introduce higher 
order terms): 
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Fig. 6.4.1: a plate element subjected to moments, pressure and shear forces 
 
Eqn. 6.4.2 gives the vertical equilibrium equation 
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This is analogous to the beam theory equation /p dV dx=  (see Book I, §7.4.3). 
 
Next, taking moments about the x axis: 
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Using 6.4.3, this reduces to (and similarly for moments about the y-axis, the first eqn. 
here), 
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These are analogous to the beam theory equation dxdMV /=  (see Book I, §7.4.3). 
 
Relations directly from the Equations of Equilibrium 
 
The equilibrium relations 6.4.3, 6.4.5 can also be derived directly from the equations of 
equilibrium, Eqns. 1.1.9, which encompass the force balances: 
 

0

0

0

=
∂
∂

+
∂

∂
+

∂
∂

=
∂

∂
+

∂

∂
+

∂

∂

=
∂
∂

+
∂

∂
+

∂
∂

zyx

zyx

zyx

zzyzxz

zyyyxy

zxyxxx

σσσ

σσσ

σσσ

        (6.4.6) 

 
Taking the first of these (which ensures equilibrium of forces in the x direction), 
multiplying by z and integrating over the plate thickness, gives 
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and, since the shear stress zxσ  must be zero over the top and bottom surfaces, one has 
Eqn. 6.4.5a.  Applying a similar procedure to the second equilibrium equation gives Eqn. 
6.4.5b.  Finally, integrating directly the third equilibrium equation without multiplying 
across by z, one arrives at Eqn. 6.4.3. 
 
Now, eliminating the shear forces from 6.4.3, 6.4.5 leads to the differential equation 
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This equation is analogous to the equation pxM =∂∂ 22 /  in the beam theory.  Finally, 
substituting in the moment-curvature equations 6.2.31 leads to1 
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This is sometimes called the equation of Sophie Germain after the French investigator 
who first obtained it in 18152.  This partial differential equation is solved subject to the 
boundary conditions of the problem, i.e. the fixing conditions of the plate (see below).  
Again, when once an expression for ),( yxω  is obtained, the strains, stresses, forces and 
moments follow. 
 
Note that the differential equation 6.4.8 with 0=q  is trivially satisfied in the simple pure 
bending and torsion problems considered earlier. 
 
Eqn. 6.4.9 can be succinctly expressed as 
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where 2∇  is the Laplacian, or “del” operator: 
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Note that the Laplacian operator (on w) gives the sum of the curvatures in two 
perpendicular directions and so it is independent of the directions chosen (see Eqn. 
6.2.14). 
 

                                                 
1 note that the moment curvature relations were derived for the case of pure bending; here, as in the beam 
theory, the possible effect of the shearing forces on the curvature is neglected.  This is a valid assumption 
provided the thickness of the plate is small in comparison with its other dimensions.  A more exact theory 
taking into account the effect of the shear forces on deflection can be developed 
2 Germain submitted her work to the French Academy, which was awarding a prize for anyone who could 
solve the problem of the vibration of plates; Lagrange was on the Academy awarding committee and 
corrected some of her work, deriving Eqn. 6.4.9 in its final form 
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Shear Forces in terms of Deflection 
 
From 6.4.5 and the moment-curvature equations, one has the useful relations 
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6.4.2 Stresses in the Plate 
 
The normal and in-plane shear stresses have been expressed in terms of the moments, 
Eqns. 6.2.33.  Note that these stresses are zero over the mid-surface and attain a maximum 
at the outer surfaces. 
 
Expressions for the remaining stress components can be obtained from the equations of 
equilibrium as follows: the first of Eqns. 6.4.6 leads, with 6.4.5a, to 
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Integrating now gives (note that xV  is independent of z) 
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This shear stress must be zero at the upper and lower (free –) surfaces, at 2/hz ±= .  This 
condition can be used to determine the arbitrary constant C and one finds that (see Fig. 
6.1.9) 
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The other shear stress, zyσ , can be evaluated in a similar manner: {▲Problem 1} 
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In some analyses, these shear stresses are taken to be zero, although they can be quite 
significant. 
 
The only remaining stress component is zzσ .  This will never exceed the intensity of the 
external load on the plate; the lateral load itself, however, is negligibly small in 
comparison with the in-plane stresses set up by the bending of the plate, and for this 
reason it is acceptable to disregard zzσ , as has been done, in the plate theory.  
 
 
6.4.3 Problems 
 
1. Derive the expression for shear stress 6.4.16. 
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