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6.3 Plates subjected to Pure Bending and Twisting 
 
 
6.3.1 Pure Bending of an Elastic Plate 
 
Consider a plate subjected to bending moments 1 0xM M= >  and 2 0yM M= > , with no 
other loading, as shown in Fig. 6.3.1. 
 

 
 

Figure 6.3.1: A plate under Pure Bending 
 
From equilibrium considerations, these moments act at all points within the plate – they 
are constant throughout the plate.  Thus, from the moment-curvature equations 6.2.31, one 
has the set of coupled partial differential equations 
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Solving for the derivatives, 
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Integrating the first two equations twice gives1 
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and integrating the third shows that two of these four unknown functions are constants: 
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1 this analysis is similar to that used to evaluate displacements in plane elastostatic problems, §1.2.4 
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Equating both expressions for w in 6.3.3 gives 
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For this to hold, both sides here must be a constant, C−  say.  It follows that 
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The three unknown constants represent an arbitrary rigid body motion.  To obtain values 
for these, one must fix three degrees of freedom in the plate.  If one supposes that the 
deflection w and slopes ywxw ∂∂∂∂ /,/  are zero at the origin 0== yx  (so the origin of 
the axes are at the plate-centre), then  0=== CBA ; all deformation will be measured 
relative to this reference.  It follows that 
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Once the deflection w is known, all other quantities in the plate can be evaluated – the 
strain from 6.2.27, the stress from Hooke’s law or directly from 6.2.30, and moments and 
forces from 6.1.1-3. 
 
In the special case of equal bending moments, with oMMM == 21  say, one has 
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This is the equation of a sphere.  In fact, from the relationship between the curvatures and 
the radius of curvature R,  
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and so the mid-surface of the plate in this case deforms into the surface of a sphere with 
radius given by 6.3.9, as illustrated in Fig. 6.3.2. 
 

 
 

Figure 6.3.2: Deformed plate under Pure Bending with equal moments 
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The character of the deformed plate is plotted in Fig. 6.3.3 for various ratios 12 / MM  (for 
3.0=ν ). 

 

 
 

Figure 6.3.3: Bending of a Plate 
 
 
When the curvatures 22 / xw ∂∂  and 22 / yw ∂∂  are of the same sign2, the deformation is 
called synclastic.  When the curvatures are of opposite sign, as in the lower plots of Fig. 
6.3.3, the deformation is said to be anticlastic. 
 
Note that when there is only one moment, 0=yM  say, there is still curvature in both 
directions.  In this case, one can solve the moment-curvature equations to get 
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which is an anticlastic deformation. 
 
In order to get a pure cylindrical deformation, )(xfw =  say, one needs to apply moments 

xM  and xy MM ν= , in which case, from 6.3.6, 
 

 
2 or principal curvatures in the case of a more complex general loading 

5.1/ 12 =MM 3/ 12 =MM

5.1/ 12 −=MM 3/ 12 −=MM
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The deformation for 3/ 12 =MM  in Fig. 6.3.3 is very close to cylindrical, since there  

yx MM ν≈  for typical values of ν . 
 
 
6.3.2 Pure Torsion of an Elastic Plate 
 
In pure torsion, one has the twisting moment 0xyM M= >  with no other loading, Fig. 
6.3.4.  From the moment-curvature equations, 
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so that 
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Figure 6.3.4: Twisting of a Plate 
 
 
Using the same arguments as before, integrating these equations leads to 
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The middle surface is deformed as shown in Fig. 6.3.5, for a negative xyM .  Note that 
there is no deflection along the lines 0=x  or 0=y . 
 
The principal curvatures will occur at 45o to the axes (see Eqns. 6.2.13): 
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Figure 6.3.5: Deformation for a (negative) twisting moment 
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