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6.2 The Moment-Curvature Equations 
 
 
6.2.1 From Beam Theory to Plate Theory 
 
In the beam theory, based on the assumptions of plane sections remaining plane and that 
one can neglect the transverse strain, the strain varies linearly through the thickness.  In 
the notation of the beam, with y positive up, Ryxx / , where R is the radius of 

curvature, R positive when the beam bends “up” (see Book I, Eqn. 7.4.16).  In terms of 
the curvature Rxv /1/ 22  , where v is the deflection (see Book I, Eqn. 7.4.36), one 
has 
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                (6.2.1) 

 
The beam theory assumptions are essentially the same for the plate, leading to strains 
which are proportional to distance from the neutral (mid-plane) surface, z, and expressions 
similar to 6.2.1.  This leads again to linearly varying stresses xx  and yy  ( zz  is also 

taken to be zero, as in the beam theory). 
 
 
6.2.2 Curvature and Twist 
 
The plate is initially undeformed and flat with the mid-surface lying in the yx   plane.  
When deformed, the mid-surface occupies the surface ),( yxww   and w  is the elevation 
above the yx   plane, Fig. 6.2.1. 
 

 
 

Fig. 6.2.1: Deformed Plate 
 
The slopes of the plate along the x and y directions are xw  /  and yw  / . 
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Curvature 
 
Recall from Book I, §7.4.11, that the curvature in the x direction, x , is the rate of change 

of the slope angle   with respect to arc length s, Fig. 6.2.2, dsdx /  .  One finds that 
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                                           (6.2.2) 

 
Also, the radius of curvature xR , Fig. 6.2.2, is the reciprocal of the curvature, xxR /1 .  

 

 
 

Fig. 6.2.2: Angle and arc-length used in the definition of curvature 
 
As with the beam, when the slope is small, one can take xw  /tan  and 

xdsd  //   and Eqn. 6.2.2 reduces to (and similarly for the curvature in the y 
direction) 
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                                    (6.2.3) 

 
This important assumption of small slope, / , / 1w x w y     , means that the theory to 
be developed will be valid when the deflections are small compared to the overall 
dimensions of the plate. 
 
The curvatures 6.2.3 can be interpreted as in Fig. 6.2.3, as the unit increase in slope along 
the x and y directions. 
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Figure 6.2.3: Physical meaning of the curvatures 
 
 
Twist 
 
Not only does a plate curve up or down, it can also twist (see Fig. 6.1.3).  For example, 
shown in Fig. 6.2.4 is a plate undergoing a pure twisting (constant applied twisting 
moments and no bending moments). 
 

 
 

Figure 6.2.4: A twisting plate 
 
If one takes a row of line elements lying in the y direction, emanating from the x axis, the 
further one moves along the x axis, the more they twist, Fig. 6.2.4.  Some of these line 
elements are shown in Fig. 6.2.5 (bottom right), as veiwed looking down the x axis 
towards the origin (elements along the y axis are shown bottom left).  If a line element at 
position x has slope /w y  , the slope at x x   is / ( / ) /w y x w y x        .  This 
motivates the definition of the twist, defined analogously to the curvature, and denoted by 

xyT/1 ; it is a measure of the “twistiness” of the plate: 
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y

x

z

xyM

xyM

y

w

x

y

A B

C D

A
B

w

y




2

2

w w
y

y y

 
 

 

A

w

x




2

2

w w
x

x x

 
 

 

x

C

w w

y

x



Section 6.2 

Solid Mechanics Part II                                                                                Kelly 128

 
 

Figure 6.2.5: Physical meaning of the twist 
 
The signs of the moments, radii of curvature and curvatures are illustrated in Fig. 6.2.6.  
Note that the deflection w  may or may not be of the same sign as the curvature.  Note 
also that when 0/,0 22  xM x  , when 0/,0 22  yM y  . 

 

 
 

Figure 6.2.6: sign convention for curvatures and moments 
 
On the other hand, for the twist, with the sign convention being used, when 

0/,0 2  yxM xy  , as depicted in Fig. 6.2.4. 

 
Principal Curvatures 
 
Consider the two Cartesian coordinate systems shown in Fig. 6.2.7, the second ( nt  ) 
obtained from the first ( yx  ) by a positive rotation  .  The partial derivatives arising in 
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the curvature expressions can be expressed in terms of derivatives with respect to t and n 
as follows: with  yxww , , an increment in w is 
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                                           (6.2.5) 

 
Also, referring to Fig. 6.2.7, with 0n , 
 

 sin,cos tytx                                   (6.2.6) 
 
Thus 
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Similarly, for an increment n , one finds that 
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Equations 6.2.7-8 can be inverted to get the inverse relations 
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Figure 6.2.7: Two different Cartesian coordinate systems  
 
The relationship between second derivatives can be found in the same way.  For example, 
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In summary, one has 
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and the inverse relations 
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These equations which transform between curvatures in different coordinate systems have 
the same structure as the stress transformation equations (and the strain transformation 
equations), Book I, Eqns. 3.4.8.  As with principal stresses/strains, there will be some 
angle   for which the twist is zero; at this angle, one of the curvatures will be the 
minimum and one will be the maximum at that point in the plate.  These are called the 
principal curvatures.  Similarly, just as the sum of the normal stresses is an invariant 
(see Book I, Eqn. 3.5.1), the sum of the curvatures is an invariant2: 
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                                                (6.2.14) 

 
If the principal curvatures are equal, the curvatures are the same at all angles, the twist is 
always zero and so the plate deforms locally into the surface of a sphere. 
 
 

                                                 
1 these equations are valid for any continuous surface; Eqns. 6.2.12 are restricted to nearly-flat surfaces. 
2 this is known as Euler’s theorem for curvatures 
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6.2.3 Strains in a Plate 
 
The strains arising in a plate are next examined.  A comprehensive strain-state will be first 
examined and this will then be simpilfied down later to various approximate solutions. 
Consider a line element parallel to the x axis, of length x .  Let the element displace as 
shown in Fig. 6.2.8.  Whereas w was used  in the previous section on curvatures to denote 
displacement of the mid-surface, here, for the moment, let ),,( zyxw  be the general 
vertical displacement of any particle in the plate.  Let u and v be the corresponding 
displacements in the x and y directions.  Denote the original and deformed length of the 
element by dS  and ds   respectively. 
 
The unit change in length of the element (that is, the exact normal strain) is, using 
Pythagoras’ theorem, 
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             (6.2.15) 

 

 
 

Figure 6.2.8: deformation of a material fibre in the x direction 
 
In the plate theory, it will be assumed that the displacement gradients are small: 
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of order 1ε   say, so that squares and products of these terms may be neglected. 
 
However, for the moment, the squares and products of the slopes will be retained, as they 
may be significant, i.e. of the same order as the strains, under certain circumstances: 
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Eqn. 6.2.15 now reduces to 
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With 2/11 xx   for 1x , one has (and similarly for the other normal strains) 
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                                           (6.2.17) 

 
Consider next the angle change for line elements initially lying parallel to the axes, Fig. 
6.2.9.   Let   be the angle qpr  , so that   2/  is the change in the initial right 
angle rpq . 
 

 
 

Figure 6.2.9: the deformation of Fig. 6.2.8, showing shear strains 
 

Taking the dot product of the  of the vector elements qp   and rp  : 
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Again, with the displacement gradients /u x  , /v x  , /u z  , /v z  , /w z   of order 

1ε   (and the squares  2
/w x   at most of order 1ε  ),  

 

z

v

x

v

x

w

z

u

zx

zx
x

w
z

z

v
x

x

v
z

z

u
x
























 









 









 









 




cos         (6.2.19) 

 
For small  ,  cossin  , so (and similarly for the other shear strains) 
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                                         (6.2.20) 

 
The normal strains 6.2.17 and the shear strains 6.2.20 are non-linear.  They are the starting 
point for the various different plate theories. 
 
Von Kármán Strains 
 
Introduce now the assumptions of the classical plate theory.  The assumption that line 
elements normal to the mid-plane remain inextensible implies that 
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This implies that  yxww ,  so that all particles at a given  yx,  through the thickness of 
the plate experinece the same vertical displacement.  The assumption that line elements 
perpendicular to the mid-plane remain normal to the mid-plane after deformation then 
implies that 0 yzxz  . 

 
The strains now read 

 



Section 6.2 

Solid Mechanics Part II                                                                                Kelly 134

0

0

2

1

0

2

1

2

1

2

2































































yz

xz

xy

zz

yy

xx

y

w

x

w

x

v

y

u

y

w

y

v

x

w

x

u












                                     (6.2.22) 

 
These are known as the Von Kármán strains. 
 
Membrane Strains and Bending Strains 
 
Since 0xz  and ),( yxww  , one has from Eqn. 6.2.20b, 
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It can be seen that the function ),(0 yxu  is the displacement in the mid-plane.  In terms of 

the mid-surface displacements 000 ,, wvu , then, 
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and the strains 6.2.22 may be expressed as 
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                        (6.2.25) 

 
The first terms are the usual small-strains, for the mid-surface.  The second terms, 
involving squares of displacement gradients, are non-linear, and need to be considered 
when the plate bending is fairly large (when the rotations are about 10 – 15 degrees).  
These first two terms together are called the membrane strains.  The last terms, 
involving second derivatives, are the flexural (bending) strains.  They involve the 
curvatures. 
 
When the bending is not too large (when the rotations are below about 10 degrees), one 
has (dropping the subscript “0” from w) 
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Some of these strains are illustrated in Figs. 6.2.10 and 6.2.11; the physical meaning of 

xx  is shown in Fig. 6.2.10 and some terms from xy  are shown in Fig. 6.2.11. 

 
 

 
 

Figure 6.2.10: deformation of material fibres in the x direction 
 
 

 
 

Figure 6.2.11: the deformation of 6.2.10 viewed “from above”; a , b  are the 
deformed positions of the mid-surface points a, b 
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Finally, when the mid-surface strains are neglected, according to the final assumption of 
the classical plate theory, one has 
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In summary, when the plate bends “up”, the curvature is positive, and points “above” the 
mid-surface experience negative normal strains and points “below” experience positive 
normal strains; there is zero shear strain.  On the other hand, when the plate undergoes a 
positive pure twist, so the twisting moment is negative, points “above” the mid-surface 
experience negative shear strain and points “below” experience positive shear strain; there 
is zero normal strain.  A pure shearing of the plate in the x y  plane is illustrated in Fig. 
6.2.12. 
 

 
 
Figure 6.2.12: Shearing of the plate due to a positive twist (neative twisting moment)  
 
 
Compatibility 
 
Note that the strain fields arising in the plate satisfy the 2D compatibility relation Eqn. 
1.3.1: 
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This can be seen by substituting Eqn. 6.25 (or Eqns 6.26-27) into Eqn. 6.2.28. 
 
 
6.2.4 The Moment-Curvature equations 
 
Now that the strains have been related to the curvatures, the moment-curvature relations, 
which play a central role in plate theory, can be derived. 
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Stresses and the Curvatures/Twist in a Linear Elastic Plate 
 
From Hooke’s law, taking 0zz , 
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so, from 6.2.27, and solving 6.2.29a-b for the normal stresses, 
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The Moment-Curvature Equations 
 
Substituting Eqns. 6.2.30 into the definitions of the moments, Eqns. 6.1.1, 6.1.2, and 
integrating, one has 
 

 
yx

w
DM

x

w

y

w
DM

y

w

x

w
DM

xy

y

x








































2

2

2

2

2

2

2

2

2

1 





                                   (6.2.31) 

 
where 
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Equations 6.2.31 are the moment-curvature equations for a plate.  The moment-
curvature equations are analogous to the beam moment-deflection equation 

EIMxv // 22  .  The factor D is called the plate stiffness or flexural rigidity and 
plays the same role in the plate theory as does the flexural rigidity term EI  in the beam 
theory. 
 
Stresses and Moments 
 
From 6.30-6.31, the stresses and moments are related through 
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Note the similarity of these relations to the beam formula IMy /  with 12/3hI   
times the width of the beam. 
 
 
6.2.5 Principal Moments 
 
It was seen how the curvatures in different directions are related, through Eqns. 6.2.11-12.  
It comes as no surprise, examining 6.2.31, that the moments are related in the same way. 
 
Consider a small differential element of a plate, Fig. 6.2.13a, subjected to stresses xx , 

yy , xy , and corresponding moments xyyx MMM ,,  given by 6.1.1-2.  On any 

perpendicular planes rotated from the orginal yx   axes by an angle  , one can find the 

new stresses tt , nn , tn , Fig. 6.2.13b (see Fig. 6.2.5), through the stress 

transformatrion equations (Book I, Eqns. 3.4.8).  Then 
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and similarly for the other moments, leading to 
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                          (6.2.35) 

 
Also, there exist principal planes, upon which the shear stress is zero (right through the 
thickness).  The moments acting on these planes, 1M  and 2M , are called the principal 
moments, and are the greatest and least bending moments which occur at the element.  
On these planes, the twisting moment is zero. 
  

 
 

Figure 6.2.13: Plate Element; (a) stresses acting on element, (b) rotated element 
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Moments in Different Coordinate Systems 
 
From the moment-curvature equations 6.2.31, {▲Problem 1} 
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showing that the moment-curvature relations 6.2.31 hold in all Cartesian coordinate 
systems. 
 
 
6.2.6 Problems 
 
1. Use the curvature transformation relations 6.2.11 and the moment transformation 

relations 6.2.35 to derive the moment-curvature relations 6.2.36. 


